Optim Eng (2012) 13:1-27
DOI 10.1007/s11081-011-9176-9

CVXGEN: a code generator for embedded convex
optimization

Jacob Mattingley - Stephen Boyd

Received: 4 April 2011 / Accepted: 4 October 2011 / Published online: 6 November 2011
© Springer Science+Business Media, LLC 2011

Abstract CVXGEN is a software tool that takes a high level description of a con-
vex optimization problem family, and automatically generates custom C code that
compiles into a reliable, high speed solver for the problem family. The current imple-
mentation targets problem families that can be transformed, using disciplined convex
programming techniques, to convex quadratic programs of modest size. CVXGEN
generates simple, flat, library-free code suitable for embedding in real-time applica-
tions. The generated code is almost branch free, and so has highly predictable run-
time behavior. The combination of regularization (both static and dynamic) and itera-
tive refinement in the search direction computation yields reliable performance, even
with poor quality data. In this paper we describe how CVXGEN is implemented, and
give some results on the speed and reliability of the automatically generated solvers.

Keywords Convex optimization - Code generation - Embedded optimization

1 Introduction

Convex optimization is widely used, since convex optimization problems can be
solved reliably and efficiently, with both useful theoretical performance guarantees,
and well-developed, practical methods and tools (Boyd and Vandenberghe 2004;
Nesterov and Nemirovskii 1994; Ye 1997; Nocedal and Wright 1999). Current ap-
plication areas include control (Boyd and Barratt 1991; Boyd et al. 1994; Dahleh and
Diaz-Bobillo 1995), circuit design (del Mar Hershenson et al. 2001, 1999; Boyd et
al. 2005), economics and finance (Markowitz 1952; Cornuejols and Tiittincti 2007),
networking (Kelly et al. 1998; Wei et al. 20006), statistics and machine learning (Vap-
nik 2000; Cristianini and Shawe-Taylor 2000), quantum information theory (Eldar

J. Mattingley (X) - S. Boyd
Electrical Engineering, Stanford University, 350 Serra Mall, Stanford, CA 94305, USA
e-mail: jem@ieee.org

@ Springer

mailto:jem@ieee.org

2 J. Mattingley, S. Boyd

et al. 2003), combinatorial optimization (Graham et al. 1996) and signal process-
ing (Special Issue on Convex Optimization Methods for Signal Processing 2007;
Calvin et al. 1969).

Parser-solvers like CVX (Grant and Boyd 2008a) and YALMIP (Lofberg 2004)
make the process of specifying and solving a convex problem simple, and so are
ideal for prototyping an algorithm or method that relies on convex optimization. But
the resulting solve times are measured in seconds or minutes, which precludes their
use in faster real-time systems. In addition, these tools require extensive libraries and
commercial software to run, and so are not suitable for embedding in many appli-
cations. Conventionally, however, moving from a general purpose parser-solver to a
high-speed, embeddable solver requires extensive modeling and conversion by hand.
This is a time consuming process that requires significant expertise, so embedded
convex optimization applications have so far been limited.

This paper describes the capabilities and implementation of CVXGEN, a code
generator for convex optimization problem families that can be reduced to quadratic
programs (QPs). CVXGEN takes a high level description of a convex optimization
problem family, and automatically generates flat, library-free C code that can be com-
piled into a high speed custom solver for the problem family. For small and medium
sized problems (with up to hundreds of optimization variables), CVXGEN generates
solvers with solve times measured in microseconds or milliseconds. These solvers can
therefore be embedded in applications requiring hundreds (or thousands) of solves per
second. The generated solvers are very reliable and robust, gracefully handling even
relatively poor quality data (such as redundant constraints).

1.1 Embedded convex optimization

The setting we will consider here is embedded convex optimization, where finding the
solution to convex optimization problems is part of a wider algorithm. This imposes
special requirements on the solver. First, the solver must be robust. While it may be
acceptable for a general purpose solver to occasionally fail, since a human can readily
intervene, this is not acceptable for a solver running automatically. In particular, the
solver should never cause a ‘fatal error’ such as a division-by-zero or segmentation
fault that could crash the entire on-line algorithm. This should apply even in the
presence of poor quality data.

The solver must also be fast. Depending on the sample rate of the system, the
time available to solve each optimization problem may be very small, with operation
speeds measured in Hz or kHz. This requires solve times measured in milliseconds
or microseconds. In particular, the maximum solve time should be known ahead of
time.

Finally, the solver should have a simple footprint. General purpose parser-solvers
usually depend on either an integrated environment like Matlab, or, at least, extensive
pre-built libraries. This makes it difficult to adapt and validate the solver for use in
embedded applications. Instead, the solver should ideally use simple, flat code with
minimal, or no, library dependencies.

These requirements are particularly important for embedded applications, but can
also benefit off-line applications. For example, with a high-speed solver, Monte Carlo

@ Springer

CVXGEN: a code generator for embedded convex optimization 3

Problem General solver
instance

(a) A general purpose parser-solver turns a single problem instance into a
single optimal point.

Problem family | Code generator | Source cod Compiler - Cus ol
description e ource code »> ustom solver
v
Problem Embedded solver .
instance 7 z

(b) An automatic code generator produces code for an embedded solver, which is then used to provide
the optimal points for many different problem instances.

Fig. 1 Operation of a parser-solver, and a code generator for embedded solvers

simulation can be carried out many times faster than real-time. This is particularly
useful for verifying algorithm performance on historic or simulated data.

While embedded solvers have certain requirements, they also have certain features
that can be exploited to make their design less challenging. Embedded solvers often
require only limited accuracy. This allows early termination and makes numerical
scaling problems less likely. As an example, with model predictive control (MPC),
even very low accuracy can result in acceptable control performance (Wang and Boyd
2008). Another difference is that, for an embedded solver, the problem family (i.e.,
the problem statement, dimensions and sparsity) remains constant with each solution.
Each solver will perform many solves with different problem instances (i.e., the fully
specified optimization problem, including data).

This means we have the opportunity to spend considerable time preparing the
solver at development time, making use of the (known) exact size and structure of the
problem to reduce the (later) solve time. To make this important point clear, consider
first Fig. 1(a), which shows how a general purpose parser-solver works. The parser-
solver is always called with both the problem structure and data as part of the problem
instance, so if used repeatedly, it must also repeat all preparation and transformations
before producing the optimal point x*. By contrast, consider Fig. 1(b), which shows
how a code generator works. The code generator creates source code from a problem
family description, which is then compiled into a custom embedded solver. Rather
than needing to process the problem structure separately for every instance, the data
are put into the embedded solver directly, which then produces an optimal point x*.

1.2 Prior work

The idea of automatic code generation is rather old, and has been used since (at
least) the 1970s for parser-generators like Yacc (1975). Domain-specific code gen-
erators are prevalent also; see, for example, Kant (1993), Bacher (1996, 1997), Shi
and Brodersen (2004). The authors’ previous papers discuss various current appli-
cations of real-time optimization (Mattingley and Boyd 2009a), especially in control

@ Springer

4 J. Mattingley, S. Boyd

systems (Mattingley et al. 2010) and signal processing (Mattingley and Boyd 2009b);
however, we do not know of any previous general purpose convex optimization code
generators.

CVXGEN was originally part of CVXMOD (Mattingley and Boyd 2008), a gen-
eral purpose convex optimization parser-solver for Python. Rudimentary code gener-
ation capability was added to CVXMOD, but this functionality was soon moved into
the separate (Ruby) project CVXGEN. We mention this since previous papers refer
to CVXMOD as a code generator (Mattingley and Boyd 2009a; Mattingley and Boyd
2009b); however, we consider CVXMOD to be an early prototype of CVXGEN.

1.3 Overview

The remainder of this paper discusses the use and implementation of CVXGEN. In
Sect. 2, we give an example showing how CVXGEN looks to the user. In Sect. 3,
we describe the CVXGEN specification language, which is used to describe each
problem family. In Sect. 4, we show how the generated solver code is embedded in
an application. The CVXGEN implementation requires parsing and conversion to a
standard form QP, discussed in Sect. 5.1. Solving the standard form QP is covered
in Sects. 5.2 and 5.3, and the code generation process itself is described in Sect. 5.4.
Finally, we report on speed and reliability by showing several examples in Sect. 6.

2 CVXGEN example

In this section, we will look at a simple example that uses CVXGEN for an embed-
ded convex optimization problem arising in multi-period trading. (For similar appli-
cations, see Boyd and Vandenberghe (2004, Sects. 4.4.1 and 4.6.3).)

Multi-period trading example First we describe the overall application setting (but
not in detail). We let x; € R” denote the vector of asset holdings in time period ¢,
with (x;); denoting the dollar value of asset i. (Negative values of (x;); represent
short positions.) We let #;, € R" denote the vector of trades executed at the beginning
of investment period ¢; this results in the post-trade portfolio vector z; = x; + u,. The
post-trade portfolio is invested for the period, and results in a portfolio at the next
period given by

Xt+1 =Tt 0%,

where r; € R’ is the vector of (total) returns for the assets, and o is the Hadamard
(elementwise) product. (The return vector r; is unknown when the trade vector u; is
chosen.)

The trades must be self-financing, including transaction costs. Using linear trans-
action costs, this constraint can be expressed as

Vur + b/)y +s/ (w)- <0,
where b, € R'| (s; € R’}) is the vector of buying (selling) transaction cost rates in

period ¢, (-)+ ((-)—) denotes the nonnegative (nonpositive) part of a number, and 1

@ Springer

CVXGEN: a code generator for embedded convex optimization 5

denotes the vector with all entries one. The first term, 17 u,, denotes the total cash
required to carry out the trades given by u,, not including transaction costs. The sec-
ond and third terms are the (nonnegative) total buying and selling transaction costs,
respectively.

We also have a limit on the leverage of the post-trade portfolio, expressed as

17z - <nl'z,.

This limits the total post-trade short position (the left-hand side) to be no more than
a fraction 1 > 0 of the total post-trade portfolio value.

The trading policy, i.e., how u; is chosen as a function of data known at time
period ¢, will be based on solving the optimization problem

maximize ¢!z —z! Oz

subjectto z; = x; + u;
1w +b] (w4 + 58 (u)- <0
lT(Zt)_ < TllTZt,

with variables u; € R", z; € R", and parameters (problem data)

qt, Qt» Xt bt» St n. (2)

Here ¢; € R" is an estimate or prediction of the return r;, available at time ¢, and
0 €8} (with 8 denoting the cone of n x n positive semidefinite matrices) encodes
uncertainty in return, i.e., risk, along with an appropriate scaling factor. (Traditionally
these parameters are the mean and a scaled variance of r;, respectively. But here we
consider them simply parameters used to shape the trading policy.)

Our trading policy works as follows. In period ¢, we obtain the problem parame-
ters (2). Some of these are known (such as the current portfolio x;); others are spec-
ified or chosen (such as 1); and others are estimated by an auxiliary algorithm (g,
O:, by, s;). We then solve the problem (1), which is feasible provided 17 x; > 0. (If
this is not the case, we declare ruin and quit.) We then choose the trade u; as a so-
lution of (1). By construction, this trade will be self-financing, and will respect the
post-trade leverage constraint. (The solution can be u; = 0, meaning that no trades
should be executed in period ¢.)

ey

CVXGEN specification The CVXGEN specification of this problem family is
shown in Fig. 2, for the case with n = 20 assets. The specification is explored in
detail in Sect. 3, but for now we point out the obvious correspondence between the
optimization problem (1) and the CVXGEN description in Fig. 2.

For this problem family, code generation takes 24 s, and the generated code re-
quires 7.9 s to compile. The generated solver solves instances of the problem (1) in
200 ps. For comparison, instances of the problem (1) require around 600 ms to solve
using CVX, so code generation yields a speed-up of around 3000 .

Even if the actual trading application does not require a 200 ps solve time, a fast
solver is still very useful. For example, to test the performance of our trading policy
(together with the auxiliary algorithm that provides the parameter estimates in each
period), we would need to solve, sequentially, many instances of the problem (1).
Simulating or testing the trading policy for one year, with trading every 10 minutes

@ Springer

6 J. Mattingley, S. Boyd

Fig. 2 CVXGEN problem dimensions
specification for the n = 20
multi-period trading problem
example

end

parameters
q-t ;o Qot symmetric psd
b_t nonnegative; s_t nonnegative
eta nonnegative
x_t
end

variables
u_t ;0 z_t
end

maximize
q_t'*z_t - quad(z_t, Q_t)
subject to
z_t == x_t +u_t
sum(u_t) + b_t'*pos(u_t) + s_t'*neg(u_t) <=0
sum(neg(z_t)) <= etaksum(z_t)
end

(say) and around 2000 hours of trading per year, requires solving 12,000 instances
of the problem (1) (sequentially, so it cannot be done in parallel). Using CVX, the
trading policy simulation time would be around two hours (not counting the time
required to produce the parameter estimates). Using the CVXGEN-generated solver
for this same problem, on the same computer, the year-long simulation can be carried
out in a few seconds. The speed-up is important, since we may need to simulate
the trading policy many times as we adjust the parameters or develop the auxiliary
prediction algorithm.

3 Problem specification

Here we describe CVXGEN’s problem specification language. The language is built
on the principles of disciplined convex programming (DCP) (Grant 2004; Grant et
al. 2006; Grant and Boyd 2008b). By imposing several simple rules on the problem
specification, we ensure that valid problem statements represent convex problems,
which can be transformed to canonical form in a straightforward and automatic way.
Figure 2 shows the CVXGEN problem specification for problem (1).

3.1 Symbols
Dimensions The first part of the problem specification shows the numeric dimen-
sions of each of the problem’s parameters and variables. This highlights an important

point: The numeric size of each parameter and variable must be specified at code
generation time, and cannot be left symbolic.

@ Springer

CVXGEN: a code generator for embedded convex optimization 7

Parameters Parameters are placeholders for problem data, which are not specified
numerically until solve time. Parameters are used to describe problem families; the
actual parameter values, specified when the solver is called, define each problem in-
stance. Parameter values are specified with a name and dimensions, and include op-
tional attributes, which are used for DCP convexity verification. Available attributes
are nonnegative, nonpositive, psd,nsdand symmetric and diagonal.
All except diagonal are used for convexity verification; diagonal is used to
specify the sparsity structure.

Variables The third block shows optimization variables, which are to be found dur-
ing the solve phase, i.e., when the solver is called. Variables are also specified with a
name and dimension, and optional attributes.

3.2 Functions and expressions

Expressions are created from parameters and variables using addition, subtraction,
multiplication, division and several additional functions. These expressions can then
be used in the objective and constraints. The example in Fig. 2 shows basic matrix
and vector multiplication and addition, transposition, and the use of several different
functions. Expressions may also be created with scalar division (although with no
optimization variables in the denominator) and vector indexing.

CVXGEN comes with a small set of functions that can be composed to create
problem descriptions, when supported by the relevant convex calculus (see Sect. 3.3).
There are two sets of functions provided by CVXGEN. The first set may be used in
the objective and constraints, and consists of elementwise absolute value (abs), vec-
tor and elementwise maximum and minimum (max and min), £; and f,, norms
(norm_1 and norm_inf), vector summation (sum) and elementwise positive part
and negative part (pos and neg). The second set of functions consists of the
quadratic and square functions. These can only be used in the objective. This is nec-
essary so that the problem can be transformed to a QP.

3.3 Convexity

CVXGEN library functions Functions (or operators) in the CVXGEN library are
marked for curvature (affine, convex, concave), sign (nonnegative, nonpositive or
unknown), and monotonicity (nondecreasing, nonincreasing, or unknown). Affine
means both convex and concave. Function monotonicity sometimes depends on the
sign of the function arguments; for example, square is marked as nonincreasing
only if its argument is nonnegative. Here are some examples of CVXGEN functions:

e The sum function is affine and nondecreasing. It is nonnegative when its arguments
are nonnegative, and nonpositive when its arguments are nonpositive.

e The square function is convex and nonnegative. It is nondecreasing for nonnegative
arguments, and nonincreasing for nonpositive arguments.

e Negation is affine and nonincreasing. It is nonpositive when its argument is non-
negative, and nonnegative when its argument is nonpositive.

@ Springer

8 J. Mattingley, S. Boyd

CVXGEN expressions CVXGEN expressions are created from literal constants, pa-
rameters, variables, and functions from the CVXGEN library. Expressions are al-
lowed only when CVXGEN can guarantee that the expression is convex, concave,
or affine from these attributes. The composition rules used by CVXGEN, which are
similar to those used in CVX (Grant and Boyd 2008a), are given below, where we
use terms like ‘affine’, ‘convex’, and ‘nonnegative’, to mean ‘verified by CVXGEN
to be affine’ (or convex or nonnegative).

e A constant expression is one of:
— A literal constant.
— A parameter.
— A function of constant expressions.
e An affine expression is one of:
— A constant expression.
— An optimization variable.
— An affine function of affine expressions.
e A convex expression is one of:
— An affine expression.
— A convex function of an affine expression.
— A convex nondecreasing function of a convex expression.
— A convex function, nondecreasing when its argument is nonnegative, of a convex
nonnegative expression.
— A convex nonincreasing function of a concave expression.
— A concave function, nondecreasing when its argument is nonnegative, of a con-
vex nonnegative expression.
e (An analogous set of rules for concave expressions.)

The calculus of signs is obvious, so we omit it. This set of rules is not minimal: Note,
for example, that the rules for affine expressions may be derived by recognizing that
affine means both convex and concave.

As an example, consider the expression p*abs (2*x + 1) - g*square(x
+ r), where x is a variable, and p, g, and r are parameters. The above rules verify
that this expression is convex, provided p is nonnegative and g is nonpositive. The
expression is verified to be concave, provided p is nonpositive and g is nonnegative.
The expression is invalid in all other cases.

3.4 Objective and constraints

The objective is a direction (minimize or maximize) and a (respectively, con-
vex or concave) scalar expression. Feasibility problems are specified by omitting the
objective. The problem specification in Fig. 2 is a concave maximization problem.

Constraints have an expression, a relation sign (<=, == or >=) and another expres-
sion. Valid constraints must take one of the forms:

e convex <= concave,
e concave <= convex or
e affine == affine.

@ Springer

CVXGEN: a code generator for embedded convex optimization 9

The CVXGEN specification in Fig. 2 contains two constraints: an affine equality
constraint and a convex-less-than-affine inequality constraint (which is a special case
of convex-less-than-concave, since affine functions are also concave). In CVXGEN,
the square function cannot appear in constraints, since the problem is converted to a
convex QP.

4 Using CVXGEN

CVXGEN performs syntax, dimension and convexity checks on each problem de-
scription. Once the problem description has been finalized, CVXGEN converts the
description into a custom C solver. The user interface to the generated solver has just
a few parts. No configuration, beyond the problem description, is required prior to
code generation.

4.1 Generated files

Code generation produces five primary C source files. The bulk of the algorithm is
contained in solver.c, which has the main solve function and core routines.
KKT matrix factorization and solution is carried out by functions in 1d1 . c, while
matrix_support.c contains code for filling vectors and matrices, and perform-
ing certain matrix-vector products. All data structures and function prototypes are
defined in solver.h, and testsolver.c contains simple driver code for exer-
cising the solver.

Additional functions for testing are provided by util.c, and a Makefile is
supplied for automated building. CVXGEN also generates code for a Matlab inter-
face, including a driver for simple comparison to CVX.

4.2 Using the generated code

For suitability when embedding, CVXGEN solvers require no dynamic memory al-
location. Each solver uses four data structures, which can be statically allocated and
initialized just once. These contain problem data (in the params data structure),
algorithm settings (in settings), additional working space (in work), and, after
solution, optimized variable values (in vars).

Once the structures have been defined, the solver can be used in a simple control
or optimization loop like this:
for (;;) { // Main control loop.

load_data (params) ;

// Solve individual problem instance defined in params.

num_iters = solve(params, vars, work, settings);

// Solution available in vars; status details in work.

All data in CVXGEN are stored in flat arrays, in column-major form with zero-
based indices. For consistency, the same applies for vectors, and even scalars. Sym-

metric matrices are stored in exactly the same way, but only the diagonal entries are

@ Springer

10 J. Mattingley, S. Boyd

stored for diagonal matrices. For performance reasons, no size, shape or attribute
checks are performed on parameters. In all cases, we assume that valid data are pro-
vided to CVXGEN.

4.3 Solver settings

While CVXGEN is designed for excellent performance with no configuration, sev-
eral customizations are available. These are made by modifying values inside the
settings structure. The most important settings are

settings.eps, with default 107%. CVXGEN will not declare a problem con-
verged until the duality gap is known to be bounded by eps.

settings.resid_tol, with default 10~*. CVXGEN will not declare a problem
converged until the norm of the equality and inequality residuals are both less than
resid_tol.

settings.max_iters, with default 25. CVXGEN will exit early if eps and
resid_tol are satisfied. It will also exit when it has performed max_iters
iterations, regardless of the quality of the point it finds. Most problems require far
fewer than 25 iterations.

settings.kkt_reg, with default 10~7. This controls the regularization € added
to the KKT matrix. See Sect. 5.3.1.

settings.refine_steps, with default 1. This controls the number of steps of
iterative refinement. See Sect. 5.3.2.

4.4 Handling infeasibility and unboundedness

The solver generated by CVXGEN does not explicitly handle infeasible or un-
bounded problems. In both cases, the solver will terminate once it reaches the it-
eration limit, without convergence. This is by design, and can be overcome by using
a model which is always feasible.

One way to ensure feasibility is to replace constraints with penalty terms for con-
straint violation. For example, instead of the equality constraint Ax = b, add the
penalty term A||Ax — b||1, with A > 0, to the objective. This term is the sum of the
absolute values of the constraint violations. With sufficiently large A, the constraint
will be satisfied (provided the problem is feasible); see, e.g., Bertsekas (1975). In-
equality constraints Gx < h can be treated in a similar way, using a penalty term
AT (Gx —h),.

A (classical) option for handling possible infeasibility is to create an additional
‘phase I solver’, which finds a feasible point if one exists, and otherwise finds a
point that minimizes some measure of infeasibility. This solver can be called after
the original solver has failed to converge (Boyd and Vandenberghe 2004, Sect. 11.4).

To avoid unbounded problems, problems should include additional constraints,
such as lower and upper bounds on some or all variables. These should be set suffi-
ciently large so that bounded problems are unaffected, and may be checked for tight-
ness, after solution. (If any of these bound constraints is tight, we mark the problem
instance as likely unbounded.)

@ Springer

CVXGEN: a code generator for embedded convex optimization 11

4.5 Increasing solver speed

CVXGEN is designed to solve convex optimization problems extremely quickly with
default settings. Several improvements are available, however, for the user wanting
best performance. The most important technique is to make the optimization problem
as small as possible, by reducing the number of variables, constraints or objective
terms. With model predictive control problems, for example, see Wang and Boyd
(2008).

An important part of optimization is compiler choice. We recommend using the
most recent compiler for your platform, along with appropriate compiler optimiza-
tions. The results here were generated with gcc-4 .4, with the -Os option. Good
optimization settings are important: A typical improvement with the right settings is
a factor of three. Using -Os is appropriate, since it aims to reduce code size, and
CVXGEN problems often have relatively large code size.

Changing the solver settings can also improve performance. For applications
where average solve times are more important than maximum times, we recommend
using relaxed constraint satisfaction and duality gap specifications (see Sect. 4.3),
which allow early termination once a good (but not provably optimal) solution is
found. Often, a near-optimal point is found early, with subsequent iterations merely
confirming the point’s quality.

If the maximum solve time is more important than the average time, lower the fixed
iteration limit. This may lead to a reduced-quality (or even infeasible) solution, and
should be used with care, but will give excellent performance for some applications.
Again, see Wang and Boyd (2008).

5 Implementation

In this portion of the paper, we describe the techniques used to create CVXGEN
solvers and make them fast and robust. While CVXGEN handles only problems that
transform to QPs, nearly all of the techniques described would apply, with minimal
variation, to more general convex problem families.

5.1 Parsing and canonicalization

Before code generation, CVXGEN problem specifications, in the form discussed in
Sect. 3, are parsed and converted to an internal CVXGEN representation. All con-
vexity and dimension checking is performed in this internal layer. Once parsed, the
problem family is analyzed to determine the problem transformations required to tar-
get a single canonical form. With vector variable x € R”, the canonical form is

minimize (1/2)x7 Qx 4+ ¢ x
subjectto Gx <h, Ax =b,
with problem data Q € S", g e R", G e RP*", h e R?,; A e R™*" and b € R™.

Importantly, the output of the parsing stage is not a single transformed problem,
but instead a method for performing the mapping between problem instance data and

3

@ Springer

12 J. Mattingley, S. Boyd

the generated custom CVXGEN solver. In particular, the output is C code that takes a
problem instance and transforms it for use as the Q, ¢, G, h, A and b in the canonical
form. This step also produces code for taking the optimal point x from the canonical
form, and transforming it back to the variables in the original CVXGEN problem
specification.

Transformations are performed by recursive epigraphical (hypographical) expan-
sions. Each expansion replaces a non-affine convex (concave) function with a newly
introduced variable, and adds additional constraints to create an equivalent problem.
For a simple example, consider the constraint, with variable y € R”,

Ay = bl < 3.

By introducing the variable r € R” (assuming A € R™*"), the original constraint can
be replaced with the constraints

171 <3, —t<Ax—-b<t,

which, crucially, are all affine.

This process is performed recursively, for the objective and all constraints, un-
til all constraints are affine and the objective is affine-plus-quadratic. After that, all
variables are vertically stacked into one, larger, variable x, and the constraints and
objective are written in terms of the new variable. Finally, code is generated for the
forward and backward transformations.

Parsing and canonicalization for more general convex optimization families, e.g.,
as is used in CVX (Grant and Boyd 2008a) or YALMIP (Lofberg 2004), follows the
same steps. In this case the target canonical form is a more general cone problem,
instead of the QP used in CVXGEN.

5.2 Solving the standard-form QP

Once the problem is in canonical form, we use a standard primal-dual interior point
method to find the solution. While there are alternatives, such as active set or first
order methods, an interior point method is particularly appropriate for embedded
optimization, since, with proper implementation and tuning, it can reliably solve to
high accuracy in 5-25 iterations, without warm start. While we initially used a pri-
mal barrier method, we found that primal-dual methods, particularly with Mehrotra
predictor-corrector, give more consistent performance on a wide range of problems.

For completeness, we now describe the algorithm. This standard algorithm is taken
from Vandenberghe (2010), but similar treatments may be found in Wright (1997),
Nocedal and Wright (1999), Sturm (2002), with the Mehrotra predictor-corrector, in
particular, described in Mehrotra (1992), Wright (1997).

Introduce slack variables Given a QP in the form (3), introduce a slack variable
s € R?, and solve the equivalent problem
minimize (1/2)x7 Qx 4+ ¢ x

subjectto Gx +s=h, Ax=b, s>0,

@ Springer

CVXGEN: a code generator for embedded convex optimization 13

with variables x € R" and s € R”. With dual variables y € R™ associated with the
equality constraints, and z € R? associated with the inequality constraints, the KKT
conditions for this problem are

Gx+s=h, Ax=b, s>0
z>0
Ox+q+Glz+ATy=0
Z,‘S,’ZO, i=1,...,p.
Initialization The initialization we use exactly follows that given in Vandenberghe

(2010, Sect. 5.3). We first find the (analytic) solution of the pair of primal and dual
problems

minimize (1/2)x7 Qx +¢Tx + (1/2)[1s13
subjectto Gx +s=nh, Ax =b,
with variables x and s, and
maximize —(1/2)w” Qw —h"z —b"y — (1/2)lIz]13
subjectto Qw+q+GTz+ATy=0,

with variables w, y and z. We can solve for the optimality conditions of both problems
simultaneously by solving the linear system

0 GT AT [«x —q
G -1 0 z|=| h
A 0 0 y b

We then use the solution to set the initial primal and dual variables to x(® = x and
y@ =y Then, we set z = Gx — h and ap =inf{a | —z+ al >0}, and use

RO B ap <0
Tl —z+ A+ ap)1l otherwise

as the initial value of s. Finally, we set ¢y = inf{o | z + @1 > 0}, and use

o _)z ag <0
ST z4+ A+l otherwise

as the initial value of z. We now have the starting point (x (@, s© 7© O

Main iterations

1. Evaluate stopping criteria (residual sizes and duality gap). Halt if the stopping
criteria are satisfied.
2. Compute affine scaling directions by solving

0 0 GT ATT|[Axt —(ATy+GTz4+ 0x+¢q)
0z S 0 ||As*]_ —Sz

G I 0 0 AT —(Gx +s—h) ’
A 0 0 0 Ayt —(Ax —b)

where S = diag(s) and Z = diag(z). We will shortly see that we do not solve this
system directly.

@ Springer

14 J. Mattingley, S. Boyd

3. Compute centering-plus-corrector directions by solving

Q0 0 GT AT [Axc 0

0 Z S 0 As® | | opl — diag(As*T) Az
G I 0 0 Az | T 0 :
A 0O 0 0 Ay*e 0

where u =s7z/p,

sTz

o <(s + aAs* 7T (7 + a AZ?T))3
and
a =supfo € [0, 11| s + aAs™ >0, z + « Az > 0).
4. Update the primal and dual variables. Combine the two updates using
Ax = Ax™ 4 Axc,
As = As* 4+ As©C,
Ay = Ay 4 Ayee,
Az= A"+ Az,
then find an appropriate step size that maintains nonnegativity of s and z,
a =minf{l, 0.99sup{e > 0| s+ aAs >0,z 4+ aAz > 0}}.
5. Update primal and dual variables:

X:=x+aAx,

s =5+ aAs,
yi=y+tady,
z:=z7+aAz.

6. Repeat from step 1.

Nearly all of the computational effort is in the solution of the linear systems in
steps 2 and 3. As well as requiring most of the computational effort, the linear system
solution is the only operation which requires (hazardous) floating-point division and
a risk of algorithm failure. Thus, it is important to have a robust method for solving
the linear systems.

Primal-dual interior point methods for more general canonical convex problems,
such as the cone programs used in CVX (Grant and Boyd 2008a) or YALMIP (Lof-
berg 2004) (in both cases, by SeDuMi (Sturm and Using 1999) or SDPT3 (Toh et al.
1999)), are very similar, with just a few differences in the form of the KKT matrix
used for the search direction computations. The only substantial difference is that in
these cases, the matrices Z and S are no longer diagonal. Our method for solving the
KKT system (i.e., computing the search directions) described below, however, will
work without change for such problems.

@ Springer

CVXGEN: a code generator for embedded convex optimization 15

5.3 Solving the KKT system

Each iteration of the primal-dual algorithm requires two solves with the so-called
KKT matrix. We will symmetrize this matrix, and instead find solutions ¢ to the
system K¢ = r, with two different right-hand sides r, and the block 2 x 2 system

0 0 ‘ GT AT
0 sz I 0
K=\G—"1 0 O
A 0 0 0

(When solving more general canonical forms such as cone programs, S~!Z is re-
placed with a symmetric version such as S~'/2ZS~1/2)) The matrix K is qua-
sisemidefinite, i.e., symmetric with (1, 1) block diagonal positive semidefinite, and
(2,2) block diagonal negative semidefinite. This special structure occurs in most
interior point methods, and allows us to use special solve methods (Tuma 2002;
Vanderbei 1995; Vanderbei and Carpenter 1993). In our case, we will solve this sys-
tem using a permuted LD LT factorization with diagonal matrix D, and unit lower-
triangular matrix L. With a suitable permutation matrix P, we will find a factorization

PKPT =LDLT,

where, if the factorization exists, L and D are unique. Additionally, the sign pattern
of the diagonal entries of D is known in advance (Tuma 2002).

In a traditional optimization setting, we would choose the permutation P on-line,
with full knowledge of the numerical values of K. This allows us to pivot to main-
tain stability and ensure existence of the factorization (Gill et al. 1996), but has the
side effect of requiring complex data structures and nondeterministic code that in-
volves extensive branching. This contributes significant overhead to the factorization.
If, by contrast, we choose the permutation off-line, we can generate explicit, branch-
and loop-free code that can be executed far more quickly. Unfortunately, for qua-
sisemidefinite K we cannot necessarily choose, in advance, a permutation for which
the factorization exists and is stable. In fact, the matrix K may even be singular, or
nearly so, if the supplied parameters are poor quality.

5.3.1 Regularization
To ensure the factorization always exists and is numerically stable, we will modify the

linear system. Instead of the original system K, we will regularize the KKT matrix
by choosing € > 0 and work with

0 0 ‘ GT AT
~ |0 sz I 0 el | 0
K=1G"1 0 0 +[0 | —61]
A 0 0 0

This new matrix K is quasidefinite, i.e., symmetric with (1, 1) block diagonal pos-
itive definite, and (2, 2) block diagonal negative definite. This means that, for any
permutation P the LDLT factorization must exist (Saunders 1995; Gill et al. 1996).

@ Springer

16 J. Mattingley, S. Boyd

In fact, with sufficient regularization, the performance of the factorization is nearly
independent of the permutation (Saunders 1996, Sect. 4.2). Thus, to find a solution to
the system K¢ = r, we can permute and factor K so that

PKPT =LDL”,
then find solutions £ via
=K Y% =pPTL "D 'L Py,

where (-)~! denotes not matrix inversion and multiplication, but the application
of backward substitution, scaling, and forward substitution, respectively. This pro-
vides solutions to the perturbed system of equations, with coefficient matrix K in-
stead of K. This is not necessarily a problem, since the search direction found via
this method is merely a heuristic, and good performance can still be obtained with
K ~ K. However, we will now discuss a method that allows us to recover solutions
to the original system with coefficient matrix K.

5.3.2 Iterative refinement

While we can easily find solutions to the system Ke=r,we actually want solutions
to the system K¢ = r. We will use iterative refinement to find successive estimates
¢% that get progressively closer to solving K £ = r, while using only the operator
K- (See Duff et al. (1989, Sect. 4.11) for more details). We now describe the algo-
rithm for iterative refinement.

1. Solve K¢© =r and set k = 0. This gives an initial estimate.

2. We now desire a correction term §¢ so that K (Z(k) + 8¢) = r. However, this would
require solving K 8¢ = r — K £% to find 8¢, which would require an operator K ~'.
Instead, find an approximate correction §¢%) = K-! (r — KeW)y,

. Update the iterate 24D — g0 4 50 and increment k.

4. Repeat steps (2) and (3) until the residual || K 20— pl is sufficiently small. Use

£% as an estimated solution to the system K £ = r.

w

With this particular choice of K , it can be shown that iterative refinement will
converge to a solution of the system with K.

5.3.3 Dynamic regularization

We wish to ensure that the factorization and solution methods can never fail, and in
particular, that they never cause floating-point exceptions or excessively large numer-
ical errors. Apart from floating-point overflow caused by data with gross errors, the
only possible floating-point problems would come from divide-by-zero operations
involving the diagonal entries D;;. If we can ensure that each D;; is bounded away
from zero, we avoid these problems.

As mentioned above, we know the sign &; of each D;; at development time. Specif-
ically, Dj; > € corresponds to an entry from the (1, 1) block before permutation, and
D;; < —e to an entry from the (2, 2) block. In the absence of numerical errors or poor
data, we already have the necessary guarantee to ensure safe division. However, for

@ Springer

CVXGEN: a code generator for embedded convex optimization 17

safe performance in the presence of such defects, where the computed ﬁii # Dj;, we
will instead use

Dji = &((&Dip)+ + e,
which is clearly bounded away from zero, and will thus prevent floating-point ex-
ceptions. It has a clear interpretation, too: (§; D;;)_ is additional, dynamic regulariza-

tion. Conveniently, iterative refinement with this modified system will still converge,
allowing us to obtain a solution to the original KKT system.

5.3.4 Choosing a permutation

In a previous section, we described how, after regularization, for any choice of per-
mutation matrix P, the factorization

PKPT =LDLT

will exist and will be unique. However, the choice of P is important in another way:
It determines the number, and pattern, of nonzero entries in L. All nonzero entries
in the lower triangular portion of PK PT will cause corresponding nonzero entries
in L; additional nonzero entries in L are called fill-in. We wish to (approximately)
minimize the number of nonzero entries in L, as it approximately corresponds to the
amount of work required to factorize and solve the linear system. Thus, we will use
a heuristic to choose P to minimize the nonzero count in L. We will use a simple,
greedy method, called local minimum fill-in (Duff et al. 1989, Sect. 7.5). This tech-
nique requires comparatively large amounts of time to determine, but with CVXGEN
occurs at code generation time, and thus has no solve time penalty. We now describe
the permutation selection algorithm.

1. Create an undirected graph L from K. Initialize the empty list of eliminated
nodes, E.

2. For each node i ¢ E, calculate the fill-in if it were eliminated next. This is sim-
ply the number of missing links between uneliminated nodes j, k ¢ E for which
Lijgx=0and L;j =Ly =1.

3. Select the node i for which the fill-in would be lowest, add it to E, and make the
appropriate changes to L.

4. Repeat steps (2) and (3) until all nodes have been eliminated. This gives us the
elimination ordering, and the structure of non-zero elements in the factor L.

Two example sparsity patterns, after permutation and fill-in, are shown in Fig. 3.
Elements that constitute fill-in are shown in red. The pattern on the left-hand side is
for an MPC problem like those described in Sect. 6.4. There are 398 non-zero entries
in the (non-strict) lower triangle of the regularized KKT matrix; after permutation
and fill-in, there are 509 non-zero entries in L. This gives a fill-in factor of 1.28. The
pattern on the right-hand side is for a lasso problem like those of Sect. 6.3. There are
358 non-zero entries in the KKT matrix; afterward, there are 411, for a fill-in factor
of 1.15.

The entire discussion above applies just as well when solving more general canon-
ical forms, such as cone problems, once an appropriate symmetrized version of S~ Z
is chosen.

@ Springer

18 J. Mattingley, S. Boyd

Fig. 3 Sparsity patterns of the factor L, with red indicating fill-in

5.4 Code generation

The goal of code generation is to describe the structure and implementation of a
solver once, then programmatically transform that implementation, any number of
times, into a code tailored for a specific problem. This is much like a compiler, which
allows programmers to write code in a more powerful, higher level language, while
still getting the performance from (say) assembly code after compilation. CVXGEN
uses a templating language to describe the general solver structure, and a modeling
and generation layer that fills the holes in each template with detailed code specific
to each solver.

5.4.1 Templating language

Much of the code is nearly identical in every generated solver, with only the details
changing. This is captured by a templating language, which allows a combination
of generic boilerplate code, and problem-specific substitutions to be written in one
unified form. CVXGEN uses a templating language where in-place substitutions are

marked by ‘# {-}’, whole-line substitutions are marked with ‘=", and control logic is
marked with ‘-’. Consider this simple example, which generates code for evaluating
the surrogate duality gap:

gap = 0;

for (1 = 0; i < #{p}; i++)
gap += work.z[i]l*work.s[i];
Here, # {p} is an in-place substitution. Thus, for a problem with 100 inequality con-
straints, i.e., with p = 100, this code segment will be replaced with
gap = 0;
for (i = 0; 1 < 100; i++)
gap += work.z[i]l*work.s[i];

@ Springer

CVXGEN: a code generator for embedded convex optimization 19

This extremely basic example demonstrates how the template has the flavor of a gen-
eral purpose solver before code generation (using symbolic p), but a very specific
solver afterwards (using numeric 100).

For a more involved example, consider this segment, which is a function for mul-
tiplying the KKT matrix and source and storing the result:

void kkt_multiply(double *result, double *source) {

- kkt.rows.times do |1i|
result[#{i}] = 0;
- kkt.neighbors(i).each do |Jj]
- if kkt.nonzero? i, j
result += #{kkt[i,j]}*sourcel#{J} 1;

}
Here, we see plain C code (in black), control statements (in green) and in-
text substitutions (in blue). The control statements allow us to loop, at develop-
ment time, over the nonzero entries of the symbolic kkt structure, determine
the non-zero products, and emit code that describes exactly how to multiply with
the given kkt structure. In fact, the segment #{kkt[i,j]} will be replaced
with an expression that could be anything from 1, describing a constant, a pa-
rameter reference such as params.A[12], or even a multiplication such as
2*params.lambda[0] *vars.s_inv[15]. Thus, with a very short descrip-
tion length in the templating language, we get extremely explicit, highly optimizable
code ready for processing by the compiler.

5.4.2 Explicit coding style

The simple KKT multiplication code above illustrates a further point: In CVXGEN,
the generated code is extremely explicit. Conventional solvers use sparse matrix li-
braries like UMFPACK and CHOLMOD (Davis 2003, 2006) to perform matrix op-
erations and factorizations. These require only small amounts of code, and are well
tested, but carry significant overhead, since the sparse structures must be repeatedly
unpacked, evaluated to determine necessary operations, then repacked. By contrast,
CVXGEN determines the necessary operations at code development time, then uses
flat data structures and explicit references to individual data elements. This means
verbose, explicit code, which can be bulky for larger problems, but, after compilation
by an optimizing compiler, performs faster than standard libraries.

6 Numerical examples

In this section, we give a series of examples to demonstrate the speed of CVXGEN
solvers. For each of the four examples, we create several problem families with dif-
fering dimensions, then test performance for 10,000 to 1 million problem instances
(depending on solve time). The data for each problem instance are generated ran-
domly, but in a way that would be plausible for each application, and that guarantees
the feasibility and boundedness of each problem instance.

@ Springer

20 J. Mattingley, S. Boyd

Table 1 Performance results for the simple quadratic program example

Size (m, n)

Small (3, 10) Medium (6, 20) Large (12, 40)
CVX and SeDuMi 230 ms 260 ms 340 ms
Scalar parameters 143 546 2132
Variables, original 10 20 40
Variables, transformed 10 20 40
Equalities, transformed 3 6 12
Inequalities, transformed 20 40 80
KKT matrix dimension 53 106 212
KKT matrix nonzeros 165 490 1620
KKT factor fill-in 1.00 1.00 1.00
Code size 123 kB 377 kB 1891 kB
Generation time, i7 0.6s 5.6s 95s
Compilation time, i7 I.l1s 4.2s 56s
Binary size, i7 67 kB 231 kB 1256 kB
CVXGEN, i7 26 ps 110 ps 720 ps
CVXGEN, Atom 250 ps 860 us 4.6 ms
Maximum iterations required, 99.9% 8 9 11
Maximum iterations required, all 20 17 12

We will show results with two different computers. The first is a powerful desktop,
running an Intel Core i7-860 with maximum single-core clock speed of 3.46 GHz, an
8 MB Level 2 cache and 95 W peak processor power consumption. The second is an
Intel Atom Z530 at 1.60 GHz, with 512 kB of Level 2 Cache and just 2 W of peak
power consumption.

We compare the results for CVXGEN with CVX (Grant and Boyd 2008a), which
targets a general cone solver (rather than the QP used in CVXGEN), which is solved
using SeDuMi (Sturm and Using 1999), a primal-dual interior point solver. As ex-
plained above, however, the computation involved in such an algorithm is quite sim-
ilar.

6.1 Simple quadratic program

For the first example, we consider the basic quadratic program

minimize x7 Qx +cTx
subjectto Ax=b, 0<x<I,

with optimization variable x € R" and parameters A € R"*", b € R", ¢ € R" and
0 € §'. Results for three different problem sizes are shown in Table 1.

@ Springer

CVXGEN: a code generator for embedded convex optimization

21

Table 2 Performance results for the support vector machine example

Size (N, n)

Medium (50, 10)

Large (100, 20)

CVX and SeDuMi 750 ms 1400 ms
Scalar parameters 551 2101
Variables, original 11 21
Variables, transformed 61 121
Equalities, transformed 0 0
Inequalities, transformed 100 200
KKT matrix dimension 261 521
KKT matrix nonzeros 960 2920
KKT factor fill-in 1.11 1.11
Code size 712 kB 2334 kB
Generation time, i7 25s 420 s
Compilation time, i7 83s 54s
Binary size, i7 367 kB 1424 kB
CVXGEN, i7 250 ps 1.1 ms
CVXGEN, Atom 2.4 ms 9.3 ms
Maximum iterations required, 99.9% 11 12
Maximum iterations required, all 15 18

6.2 Support vector machine

This example, from machine learning, demonstrates the creation of a support vector
machine (Boyd and Vandenberghe 2004, Sect. 8.6.1). In this problem, we are given
observations (x;, y;) € R* x {—1,1},fori =1,..., N, and a parameter A € R;. We
wish to choose two optimization variables: a weight vector w € R”, and an offset
b € R that solve the optimization problem

minimize ||w||% +AY i (= yi(wTx; —b)),.

Table 2 shows the results for two problem families of different sizes.
6.3 Lasso

This example, from statistics, demonstrates the lasso procedure (¢;-regularized least
squares) (Boyd and Vandenberghe 2004, Sect. 6.3.2). Here we wish to solve the op-
timization problem

minimize (1/2)[|Ax — b1 + Allx |1,

with parameters A € R"*", b € R™ and A € Ry, and optimization variable x € R".
The problem is interesting both when m < n, and when m > n. Table 3 shows perfor-
mance results for an example from each case.

@ Springer

22

J. Mattingley, S. Boyd

Table 3 Performance results for the lasso example

Family (N, n)

Overdetermined (100, 10)

Underdetermined (10, 100)

CVX and SeDuMi 170 ms 200 ms
Scalar parameters 1101 1011
Variables, original 10 100
Variables, transformed 20 210
Equalities, transformed 0 10
Inequalities, transformed 20 200
KKT matrix dimension 60 620
KKT matrix nonzeros 155 3050
KKT factor fill-in 1.06 1.13
Code size 454 kB 1089 kB
Generation time, i7 18s 130's
Compilation time, i7 4.8s 23s
Binary size, i7 215 kB 631 kB
CVXGEN, i7 33 ps 660 us
CVXGEN, Atom 280 ps 4.2 ms
Maximum iterations required, 99.9% 7 9
Maximum iterations required, all 7 10

6.4 Model predictive control

This example, from control systems, is for model predictive control (MPC). See Mat-
tingley et al. (2010) for several detailed CVXGEN MPC examples. For this example,
we will solve the optimization problem

.. T
minimize Zt:O(x,T Ox; +ul Ru;) + x%ﬂ Ofinal XT +1

subjectto x;4+1 = Ax; + Bu;, t=0,...
lur] <umax, t=0,...,T,
with optimization variables xi, ..., x74+1 € R" (state variables) and ug, ..., ur € R”

(input variables); and problem data consisting of system dynamics matrices A € R"*"
and B € R"*"; input cost diagonal R € S"/™™, state and final state costs diagonal
Q € 87" and dense Qfina € S'V*"; amplitude and slew rate limits umax € R4 and
S € R4; and initial state xg € R". Table 4 shows performance results for three prob-
lem families of varying sizes.

6.5 Settings and reliability

To explore and verify the performance of CVXGEN solvers, we tested many differ-
ent problem families, with at least millions, and sometimes hundreds of millions, of

@ Springer

CVXGEN: a code generator for embedded convex optimization 23

Table 4 Performance results for the model predictive control example

Size (m,n, T)
Small (2, 3, 10) Medium (3, 5, 10) Large (4, 8,20)

CVX and SeDuMi 870 ms 880 ms 1.6s
Scalar parameters 41 105 249
Variables, original 55 88 252
Variables, transformed 77 121 336
Equalities, transformed 33 55 168
Inequalities, transformed 66 99 252
KKT matrix dimension 242 374 1008
KKT matrix nonzeros 552 1025 3568
KKT factor fill-in 1.30 1.44 1.60
Code size 337 kB 622 kB 2370 kB
Generation time, i7 43s 13s 200 s
Compilation time, i7 3.6s 94s 41s
Binary size, i7 175 kB 351 kB 1445 kB
CVXGEN, i7 85 us 230 ps 970 ps
CVXGEN, Atom 1.7 ms 3.3 ms 13 ms
Maximum iterations required, 99.9% 13 13 12
Maximum iterations required, all 23 24 24

problem instances for each family. Since the computation time of the solver is almost
exactly proportional to the number of iterations, we verified both reliability and per-
formance by recording the number of iterations for every problem instance. Failures,
in this case, are not merely problem instances for which the algorithm would never
converge, but problem instances which take more than some fixed limit of iterations
(say, 20).

CVXGEN solvers demonstrate reliable performance with default solver settings,
with minimal dependence on the particular algorithm settings. As an example of this
type of analysis, in this section we demonstrate the behavior of a single CVXGEN
solver as we vary the solver settings. In each case, we solve the same 100,000 prob-
lem instances, recording the number of iterations required to achieve relatively high
accuracy in both provable optimality gap and equality and inequality residuals.

The problem we will solve is

minimize ||Ax — b||;

subjectto —1<x <1,
with optimization variable x € R!> and problem data A € R®<!> and b € R®. We will
generate data by setting each element A;; ~ N (0, 1) and b;; ~ N (0,9). (With these

problem instances, at optimality, approximately 50% of the constraints are active.)
The optimal value is nearly always between 1 and 10, and problems are solved to

@ Springer

24 J. Mattingley, S. Boyd

Dl:l&ﬁ.ﬂi;

5 12 13 14

37k

Dw

Number of instances:
with iteration count:

| /\

(a) Default settings: € = 10’7, 1 iterative refinement step

37k
20k 22k
16k
Number of instances: D]:| 699108 100 1 252
with iteration count: <5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >20

(b) Decreased regularization: € = 10711, 1 iterative refinement step

15k 145 15k g 13k

4k
Number of instances: D D D]3:k|]2:1{' |2:k[11:1{[927 766 651 506 D
with iteration count: <5 6 12 13 14 15 16 17 18 19 > 20

(c) Increased regularization: € = 1()’27 1 iterative refinement step

36k

16k
5k N
Number of instances:] A 1k 431 196 115 81 37 41 27 29 15]‘:kl

with iteration count: <5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 >20

(d) Increased regularization, more iterative refinement steps; ¢ = 1072, 10 iterative refinement steps

Fig. 4 Iteration counts for 100,000 problem instances, with varying solver settings. Labels on x-axis are
iteration counts; bar heights and labels are the number of problem instances requiring that many iterations

a relatively tight tolerance of 10~* (approximately 0.01%), with constraint residual
norms required to be less than 1076,

Figure 4(a) shows the performance of the solver with default settings. All problems
were solved within 14 iterations, so it would be reasonable to set a maximum iteration
limit of 10, at the cost of slightly poorer accuracy in less than 1% of cases.

If the regularization is removed, by setting the regularization € = 0, the solver fails
in every case. This is because no factorization of K is possible with the permutation
chosen by CVXGEN. However, as long as some regularization is present, solution is
still successful. Figure 4(b) shows the behavior of the solver with the regularization

@ Springer

CVXGEN: a code generator for embedded convex optimization 25

decreased by a factor of 10%, to € = 10~!!, This is a major change, yet the solver
works nearly as well, encountering the iteration limit in less than 0.2% of cases.

The CVXGEN generated solver shows similarly excellent behavior with increased
regularization. To illustrate the point, however, Fig. 4(c) shows what happens when
regularization is increased too much, by a factor of 10° to € = 10~2. Even with this
excessive regularization, however, the solver still only reaches the iteration limit in
13% of cases.

This extreme case gives us an opportunity to show the effect of iterative refine-
ment. With this excessively high € = 1072, using 10 iterative refinement steps, as
shown in Fig. 4(d) means the iteration limit is only reached in 2% of cases.

Similar testing was carried out for a much wider selection of problems and solver
configurations, and demonstrates that CVXGEN solvers are robust, and perform
nearly independently of their exact configuration.

7 Conclusion

CVXGEN is, as far as we are aware, the first automatic code generator for convex op-
timization. It shows the feasibility of automatically generating extremely fast solvers,
directly from a high level problem family description. In addition to high speed, the
generated solvers have no library dependencies, and are almost branch free, making
them suitable for embedding in real-time applications.

The current implementation is limited to small and medium sized problems, that
can be transformed to QPs. The size limitation is mostly due to our choice of generat-
ing explicit factorization code; handling dense blocks separately would go a long way
towards alleviating this short-coming. Our choice of QP as the target, as opposed to
a more general form such as second-order cone program (SOCP), was for simplicity.
The changes needed to handle such problems are (in principle) not very difficult. The
language needs to be extended, and the solver would need to be modified to handle
SOCPs. Fortunately, the current methods for solving the KKT system would work
almost without change.

Historically, embedded convex optimization has been challenging and time con-
suming to use. CVXGEN makes this process much simpler by letting users move
from a high level problem description to a fast, robust solver, with minimal effort.
We hope that CVXGEN (or similar tools) will greatly increase the interest in and use
of embedded convex optimization.

Acknowledgements We are grateful to Lieven Vandenberghe for some very helpful discussions, includ-
ing suggesting the initialization method and algorithm of Sect. 5.2. We also thank early users of CVXGEN,
including Yang Wang and Craig Beal, for important bug reports and suggestions. We are indebted to Lars
Blackmore and Behcet Acikmese for helpful feedback on an early version of this paper.

The research reported here was supported in part by JPL contract 1400723, and NASA grant
NNXO7AEIIA. Jacob Mattingley was supported in part by a Lucent Technologies Stanford Graduate Fel-
lowship.

References

Bacher R (1996) Automatic generation of optimization code based on symbolic non-linear domain formu-
lation. In: Proceedings international symposium on symbolic and algebraic computation, pp 283-291

@ Springer

26 J. Mattingley, S. Boyd

Bacher R (1997) Combining symbolic and numeric tools for power system network optimization. Maple
Tech Newsl 4(2):41-51

Bertsekas DP (1975) Necessary and sufficient conditions for a penalty method to be exact. Math Program
9(1):87-99

Boyd S, Barratt C (1991) Linear controller design: limits of performance. Prentice-Hall, New York

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control
theory. SIAM, Philadelphia

Boyd S, Kim S-J, Patil D, Horowitz MA (2005) Digital circuit optimization via geometric programming.
Oper Res 53(6):899-932

Calvin R, Ray C, Rhyne V (1969) The design of optimal convolutional filters via linear programming.
IEEE Trans Geosci Electron 7(3):142-145

Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based
learning methods. Cambridge University Press, Cambridge

Cornuejols G, Tiitiincii R (2007) Optimization methods in finance. Cambridge University Press, Cam-
bridge

Davis TA (2003) UMFPACK User Guide.Available from http://www.cise.ufl.edu/research/sparse/umfpack

Davis TA (2006) CHOLMOD User Guide. Available from http://www.cise.ufl.edu/research/sparse/cholmod/

Dahleh MA, Diaz-Bobillo 1J (1995) Control of uncertain systems: a linear programming approach.
Prentice-Hall, New York

Duff IS, Erisman AM, Reid JK (1989) Direct methods for sparse matrices. Oxford University Press, Lon-
don

Eldar YC, Megretski A, Verghese GC (2003) Designing optimal quantum detectors via semidefinite pro-
gramming. IEEE Trans Inf Theory 49(4):1007-1012

Grant M, Boyd S (2008a) CVX: Matlab software for disciplined convex programming (web page and
software). http://www.stanford.edu/~boyd/cvx/, July 2008

Grant M, Boyd S (2008b) Graph implementations for nonsmooth convex programs. In: Blondel V, Boyd S,
Kimura H (eds) Recent advances in learning and control (a tribute to M. Vidyasagar). Springer,
Berlin, pp 95-110

Grant M, Boyd S, Ye Y (2006) Disciplined convex programming. In: Liberti L, Maculan N (eds) Global
optimization: from theory to implementation: nonconvex optimization and its applications. Springer,
New York, pp 155-210

Graham R, Grotschel M, Lovédsz L (1996) Handbook of combinatorics, vol 2. MIT Press, Cambridge,
Chap 28

Grant M (2004) Disciplined convex programming. PhD thesis, Department of Electrical Engineering, Stan-
ford University, December 2004

Gill PE, Saunders MA, Shinnerl JR (1996) On the stability of Cholesky factorization for symmetric
quasidefinite systems. SIAM J Matrix Anal Appl 17(1):35-46

del Mar Hershenson M, Boyd S, Lee TH (2001) Optimal design of a CMOS op-amp via geometric pro-
gramming. IEEE Trans Comput-Aided Des Integr Circuits Syst 20(1):1-21

del Mar Hershenson M, Mohan SS, Boyd S, Lee TH (1999) Optimization of inductor circuits via geometric
programming. In: Design automation conference. IEEE Computer Society, Los Alamitos, pp 994—
998

Johnson SC (1975) Yacc: Yet another compiler-compiler. Computing Science Technical Report, 32

Kant E (1993) Synthesis of mathematical-modeling software. IEEE Softw 10(3):30-41

Kelly FP, Maulloo AK, Tan DKH (1998) Rate control for communication networks: shadow prices, pro-
portional fairness and stability. Journal of the Operational Research society, 237-252,

Lofberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the
CACSD conference, Taipei, Taiwan. http://control.ee.ethz.ch/~joloef/yalmip.php

Markowitz H (1952) Portfolio selection. J Finance 7(1):77-91

Mattingley J, Boyd S (2008) CVXMOD: convex optimization software in Python (web page and software).
http://cvxmod.net/, August 2008

Mattingley JE, Boyd S (2009a) Automatic code generation for real-time convex optimization. In: Palo-
mar DP, Eldar YC (eds) Convex optimization in signal processing and communications. Cambridge
University Press, Cambridge

Mattingley JE, Boyd S (2009b) Real-time convex optimization in signal processing. IEEE Signal Process
Mag 23(3):50-61

Mattingley JE, Wang Y, Boyd S (2010) Code generation for receding horizon control. In: Proceedings
IEEE multi-conference on systems and control, September 2010, pp 985-992

@ Springer

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/cholmod/
http://www.stanford.edu/~boyd/cvx/
http://control.ee.ethz.ch/~joloef/yalmip.php
http://cvxmod.net/

CVXGEN: a code generator for embedded convex optimization 27

Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2:575

Nesterov Y, Nemirovskii A (1994) Interior point polynomial algorithms in convex programming, vol 13.
SIAM, Philadelphia

Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Berlin

Saunders MA (1995) Solution of sparse rectangular systems using LSQR and CRAIG. BIT Numer Math
35:588-604

Saunders MA (1996) Cholesky-based methods for sparse least squares: the benefits of regularization. In:
Adams L, Nazareth JL (eds) Linear and nonlinear conjugate gradient-related methods. Proceedings
of AMS-IMS-SIAM joint summer research conference. SIAM, Philadelphia, pp 92-100

Shi C, Brodersen RW (2004) Automated fixed-point data-type optimization tool for signal processing and
communication systems. In: ACM IEEE design automation conference, pp 478-483

IEEE Journal of Selected Topics in Signal Processing, December 2007, Special Issue on Convex Opti-
mization Methods for Signal Processing

Sturm J (1999) Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim
Methods Softw 11:625-653. Software available at http://sedumi.ie.lehigh.edu/

Sturm JF (2002) Implementation of interior point methods for mixed semidefinite and second order cone
optimization problems. Optim Methods Softw 17(6):1105-1154

Toh KC, Todd MJ, Tiitiincii RH (1999) SDPT3—a Matlab software package for semidefinite program-
ming, version 1.3. Optim Methods Softw 11(1):545-581

Tuma M (2002) A note on the LDLT decomposition of matrices from saddle-point problems. SIAM J
Matrix Anal Appl 23(4):903-915

Vanderbei RJ (1995) Symmetric quasi-definite matrices. STAM J Optim 5(1):100-113

Vandenberghe L (2010) The cvxopt linear and quadratic cone program solvers. http://abel.ee.ucla.edu/
cvxopt/documentation/coneprog.pdf, March 2010

Vapnik VN (2000) The nature of statistical learning theory, 2nd edn. Springer, Berlin

Vanderbei RJ, Carpenter TJ (1993) Symmetric indefinite systems for interior point methods. Math Program
58(1):1-32

Wang Y, Boyd S (2008) Fast model predictive control using online optimization. In: Proceedings IFAC
world congress, July 2008, pp 6974-6997

Wei DX, Jin C, Low SH, Hegde S (2006) FAST TCP: motivation, architecture, algorithms, performance.
IEEE/ACM Trans Netw 14(6):1246-1259

Wright SJ (1997) Primal-dual interior-point methods. SIAM, Philadelphia

Ye Y (1997) Interior point algorithms: theory and analysis. Wiley, New York

@ Springer

http://sedumi.ie.lehigh.edu/
http://abel.ee.ucla.edu/cvxopt/documentation/coneprog.pdf
http://abel.ee.ucla.edu/cvxopt/documentation/coneprog.pdf

	CVXGEN: a code generator for embedded convex optimization
	Abstract
	Introduction
	Embedded convex optimization
	Prior work
	Overview

	CVXGEN example
	Problem specification
	Symbols
	Functions and expressions
	Convexity
	Objective and constraints

	Using CVXGEN
	Generated files
	Using the generated code
	Solver settings
	Handling infeasibility and unboundedness
	Increasing solver speed

	Implementation
	Parsing and canonicalization
	Solving the standard-form QP
	Solving the KKT system
	Regularization
	Iterative refinement
	Dynamic regularization
	Choosing a permutation

	Code generation
	Templating language
	Explicit coding style

	Numerical examples
	Simple quadratic program
	Support vector machine
	Lasso
	Model predictive control
	Settings and reliability

	Conclusion
	Acknowledgements
	References

