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Purpose: This article considers the problem of reconstructing cone-beam computed tomography
(CBCT) images from a set of undersampled and potentially noisy projection measurements.
Methods: The authors cast the reconstruction as a compressed sensing problem based on ¢, norm
minimization constrained by statistically weighted least-squares of CBCT projection data. For
accurate modeling, the noise characteristics of the CBCT projection data are used to determine the
relative importance of each projection measurement. To solve the compressed sensing problem, the
authors employ a method minimizing total-variation norm, satisfying a prespecified level of mea-
surement consistency using a first-order method developed by Nesterov.

Results: The method converges fast to the optimal solution without excessive memory requirement,
thanks to the method of iterative forward and back-projections. The performance of the proposed
algorithm is demonstrated through a series of digital and experimental phantom studies. It is found
a that high quality CBCT image can be reconstructed from undersampled and potentially noisy
projection data by using the proposed method. Both sparse sampling and decreasing x-ray tube
current (i.e., noisy projection data) lead to the reduction of radiation dose in CBCT imaging.
Conclusions: It is demonstrated that compressed sensing outperforms the traditional algorithm
when dealing with sparse, and potentially noisy, CBCT projection views. © 2010 American Asso-
ciation of Physicists in Medicine. [DOI: 10.1118/1.3481510]

Key words: cone-beam computed tomography, compressed sensing, weighted least-squares, Nest-
erov’s first order method

I. INTRODUCTION

There is growing interest in using on-board cone-beam com-
puted tomography (CBCT) in radiation therapy for patient
setup and adaptive replanning.k5 While the onboard volu-
metric imaging offers welcome on-treatment patient
anatomy, there is critical concern over the risk associated
with the excessive radiation dose when it is used
repeatedly.6_9 The risk is invisible, long term, and cumula-
tive; every scan compounds the dose and the risk. The 2006
report of the Biological Effects of Ionizing Radiation pro-
vides a framework for estimating the lifetime attributable
risk of cancer incidence from radiation exposure using the
most current data on the health effects of radiation. In gen-
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eral, the risk is significantly modulated by polymorphism of
genes involved in DNA damage and repair (such as the
BRCA1-BRCA2 mutation). It has been reported7’8 that the
dose delivered to the patient is more than 3 cGy for central
tissue and about 5 cGy for most of the peripheral tissues
from a kV-CBCT scan with current clinical protocols. When
a patient is imaged daily, this amounts to more than 100 cGy
dose to the region inside the field of view during a treatment
course with a conventional fractionation scheme. The risk is
exacerbated by the frequent use of other modern x-ray imag-
ing modalities such as 4D simulation CT and fluoroscopic
imaging in modern radiation oncology clinics.'® Given that
the radiological dose is directly and linearly related to risk
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and based on the as low as reasonably achievable principle,
the unwanted kV-CBCT dose must be minimized in order for
the patient to truly benefit from the modern image guidance
technology.9

In CBCT literature, a variety of filtered back-projection
(FBP) algorithms are popularly used for image reconstruc-
tion from projection data. A FBP-type algorithm, originally
proposed by Feldkamp, Davis, and Kress (FDK),"" and its
derivatives'> ™" are widely used for CBCT reconstruction.
When FBP or FDK algorithms are applied to undersampled
projection data, the quality of resultant images degrades dra-
matically due to incomplete information in the Fourier do-
main. Several methods are under investigation for tomogra-
phic image reconstruction from sparse samples.lé_20 For
cone-beam geometry, in contrast to its counterpart of
parallel-beam scan, obtaining Fourier-domain samples from
the projection data is less straightforward. This process is
typically done by approximation algorithms, e.g., Fourier re-
binning, which interpolate the projection data and may result
in some distortion.*>* Total variation based CBCT recovery
has recently been propose:d.26_32 Heuristic iterative algo-
rithms, such as projection on convex sets?® (POCS) and ran-
dom search,29 are developed to find solutions and the results
are very encouraging. In the statistics and signal processing,
€,-regularization for compressed sensing (CS) is a well-
established approach for signal recovery. Computationally,
while the standard second-order methods work well, it is
necessary to solve a large system of linear equations in order
to compute the Newton steps.33_35 A great number of first-
order methods are available to tackle the problem of com-
pressed sensing.%f38 In this work, we apply this technique to
solve the problem of CBCT image reconstruction from a set
of highly undersampled and noisy CBCT projection mea-
surements. We show that high quality CBCT images are at-
tainable under the condition of sparse and even noisy projec-
tion data.

The contribution of this work spans several knowledge
areas. First, our compressed sensing problem formulation,
i.e., total-variation (TV) norm minimization with a quadratic
inequality constraint, mitigates the manual parameter selec-
tion in previous approaches by enabling the physical inter-
pretation of data. Second, we investigate a first-order method
for solving the large-scale imaging problem to reduce the
computational burden. Compared to conventional second-
order iterative methods, our implementation avoids excessive
usage of computer memory by iterative forward and back-
projections. Additionally, our method outperforms the other
memory-saving methods, such as POCS, in that it leads to an
order of magnitude faster convergence. In Sec. II, we first
introduce the cost function for image reconstruction of
CBCT with consideration of the noise properties of the pro-
jection data. We then describe our compressed sensing model
and the first-order method for solving the problem. In Sec.
III, the proposed algorithm is evaluated by using a 3D
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Shepp—Logan digital phantom and an anthropomorphic head
phantom. The discussion is followed in Sec. IV. We conclude
in Sec. V.

Il. METHODS AND MATERIALS

Il.LA. CBCT sinogram noise model

In this subsection, we introduce a widely investigated
X-ray noise model**~* which is not new but makes our work
self-explanatory. The line integral of attenuation coefficients
is given by

N.
=In—, 1
Vi N, (1)

where N;, and N; is the incident photon number and the
detected photon number at detector bin i, respectively. In a
real x-ray CBCT system, the measured signal is total energy
deposit on the flat-panel detector, from which we calculate
detected photon number N;. In the following, we refer to the
value of y; as the sinogram datum at the detector bin i. Noise
in x-ray CT projection data after logarithm transform follows
approximately Gaussian distribution and the variance of the
noise can be determined by an exponential formula®~**

0_[2 — exp(yl) , (2)
N;

where y; and o'l2 are defined as the mean and the variance of

noisy sinogram datum y;, respectively. This noise model con-

siders the signal-to-noise ratio (SNR) of the line integrals.

The measurement associated with a larger SNR will contrib-

ute more to the solution, as we describe in Sec. II B.

II.B. Compressed sensing with statistically weighted
CBCT projection data

Based on the noise properties of the projection data, a cost
function in the image domain can be constructed.

D (x) = (y - Px)’S7'(y - Px), 3)

where y is the vector of sinogram data and x is the vector of
attenuation coefficients to be reconstructed. The operator P
represents the system or projection matrix. The (i,/)th entry
P[i,j] is the length of the intersection of projection ray i with
voxel j. The symbol T denotes the transpose operator, and
thus, PT is the back-projection matrix. The matrix 3 is a
diagonal matrix with ith element of af, i.e., an estimate of
the variance of noise of line integral at detector bin i which
can be calculated from the measured projection data accord-
ing to Eq. (2). The element of the diagonal matrix, which
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characterizes the contribution of each measurement, plays
the role of weighting in the weighted least square (WLS)
cost function.

For the standard least-squares formulation, we introduce
A=37"2P and b=37"2y, rewrite Eq. (3) as

D(x) = [Ax - b7 . 4)

Introducing the tolerance level of measurement inconsis-
tency €, we can formulate the image reconstruction problem
as a quadratically constrained problem

minimize  f(x)

subject to  [[Ax—bl,, =, (5)

where f is an €;-norm related regularization function de-
pending on prior assumption about the image x. The qua-
dratic constraint here can be interpreted as the Euclidian dis-
tance between the detection and estimation is not greater
than e. The Euclidian distance e quantifies the tolerable un-
certainty level about the noisy projection measurements. This
concept will be discussed in Sec. IV.

Among many possible candidates for CS penalty
function,“‘45 we select 3D TV of the reconstructed image,
i.e., f(x)=|x|lry, defined by

Wiy = 2211V +Li, oKl
ik

to form the objective function, where Vx[i,j,k] € R? is the
difference vector at each position (i,;,k) of the object image
defined by

(Dx)li.j.k]
V.X[i,j,k]= (sz)[l,],k] .
(D3x)[i’jak]

Operators Dy, D,, and D5 are the directional differences as
(Dlx)[i9j9k] = 'x[i + 17j3k:| - x[i3j7k:|7
(Dyx)i,j, k) =xli,j+ 1,k] — x[i,j,k],

(D3)C)[i,j,k] =x[i’j’k + 1] _-x[isj’k]

in x-, y-, and z-axis, respectively. Therefore, our CBCT re-
construction problem is

ik w (D), j, k],
P ET |Vl k]

|E;(Dax)[i,j,k], otherwise,
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minimize |]x||py

subject to  [[Ax—b[,, =, (6)

where we minimize the total variation of reconstructed im-
age in the sublevel set with measurement inconsistency tol-
erance £. We will discuss the advantage of the TV minimi-
zation with a quadratic constraint in Sec. IV.

Il.C. A first-order method for compressed sensing

Problems of the form Eq. (6) can be solved using a variety
of algorithms, including interior point methods, *#° projected
gradient methods,*’ homotopy methods,* Bregman iterative
regularization algorithms,‘w’49 and a first-order method based
on Nesterov’s algorithm.38’50 We describe here a first-order
method developed by Nesterov, which provides an accurate
and efficient solution to large-scale compressed sensing re-
construction problems using a smoothing tf:chniqu<338’50’51

We first rewrite the TV norm

”'XHTV= maxz <u[iajak]’vx[i7j7k]>a (7)

ueQqj jk

where u=[u,,u,,u;] is in the dual feasible set Q, if and only
if u%[i,j,k]+u§[i,j,k]+u§[i,j,k]S1 for each voxel at posi-
tion (i,7,k). With this formulation, Eq. (6) can be recast as
the following saddle point problem as:

min max >, (uli,j,k],Vx[i,j,k]), (8)

xeQuueQyjjk

where Q,, denotes the primal feasible set satisfying the data
inconsistency cost constraint, i.e., Q,={x:[|Ax~bl|,,= ¢}, for
the given tolerance level e.

Following Nesterov’s approach, we smooth the regular-
ization function as

fu=max 2 Culi K], Vali, kD = Sl )
llEQdi,j,k 2

where we can set u sufficiently small as to f, = f. Then, we
have

(Dlu,u,,l)[isjsk]
Vil j k= | (Dauy, )i, j.k] |, (10)
(D3u,u,,3)[i’j’k]

where

lf || V-x[i9j9k]||€2 < ,LL,
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for a e{1,2,3}.
Our compressed sensing reconstruction method can be
summarized as

given tolerance &€ >0, parameter u
initialize k:=0, x,=FDK(y)

while stop criterion is invalid
k:i=k+1

8k= Vf,u(xk)

L

ye+= arg min =2 — 2+ (g (e—x0)

X€E P

L k

2= arg min—Pp(x) + 2 a g, (x— x,;))

xeQp Op i=1
xe:= e+ (L=7)y, me N,
end

We update y, and z; using the Karush—Kuhn—-Tucker con-

ditions as follows:***

A \, 1
i el A

I

A 1
ATA><L—ZATb +x0— L—E Vfu(xi)>,

© 2 misk

(12)
where the Lagrange multipliers A, and A, equal to

A\, =max{0,87'|b - Agyll¢, - L.},

., =max{0,&”'b —AqZHg2 -L,},

with

1
qy=-x()_L_VCl'L‘fM(Xk),
"

LE Vafﬂ(xi)'

=Xn—
q: 0 L'u,iSk
For more details on parameter selections, see the NESTA
tech report.38

Here we use CBCT projection function call rather than the
matrix-vector product. Storing the projection matrix requires
excessive memory space which can be problematic for large-
scale CBCT imaging problems. With efficient CBCT forward
and back-projection functions, we can solve problems with
much larger numbers of variables (voxels to be determined)
and measurements (CBCT projection data) as compared to
conventional approaches. For example, when calculating
ATAx, we cast the product to PTS~'Px. The matrix-vector
product Px can be equivalently calculated by CBCT projec-
tion function call with parameter x. Also, E‘ly is the el-
ementwise product of two vectors (ofz, 0'52, ...) and y rather
than matrix-vector product. Similarly, PTy is calculated by
CBCT back-projection function call with parameter y. Simi-
lar approaches to avoid excessive memory requirement can
be found in previous works. 26253
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11.D. Evaluation

We first used a 3D Shepp-Logan phantom to evaluate the
proposed method. The size of 3 phantom is 256 X256
X 256, where the size of one voxel is assumed 1X1
X 1 mm?. The distance between the cone-beam source and
detection panel is 1500 mm and the distance between the
object image and detection panned is 500 mm. The size of
detection panel is 512X 512 mm? and the size of a projec-
tion image is 256 X 256 pixels. The code is written in MAT-
LAB (version 7.8) running on a Linux workstation with a 2.33
GHz Intel Xeon CPU and 4 GB memory.

Without any loss of generality, we can fix the weighting
matrix 3 with exponential values of the actual line integrals
which determines the principal directions of the ellipsoidal
quadratic constraint. Here we assume a constant incident
photon number N;y=N, across every bin i in the digital phan-
tom study. The quadratic constraints can be commonly fac-
torized by N,. By adjusting the infidelity tolerance level &,
the volume of the ellipsoid is set corresponding to each in-
cident photon number.

For the purpose of performance evaluation, we compare
the convergence speed of the proposed method to that of
POCS. The POCS algorithm implemented in this work relies
on the projections onto the hyperplanes with a constant step
size for the quadratic constraints and the steepest decent gra-
dient with back-tracking line search to decrease the TV
norm. For more details on the implementation of POCS al-
gorithm, we refer the readers to Ref. 26. As a criterion for
performance comparison, we incorporate an unconstrained
least absolute shrinkage and selection operator (LASSO) ex-
pressed as

frasso() =[xrv + NJAx = ]|, (13)

where N is the shrinkage parameter to control the biobjec-
tives.

An anthropomorphic phantom experiment was also car-
ried out. The experimental CBCT projection data were ac-
quired by using an Acuity simulator (Varian Medical Sys-
tems, Palo Alto, CA). The number of projections for a full
360° rotation is 680 and the total time for the acquisition
about 1 min. The dimension of each acquired projection im-
age is 397 X298 mm?, containing 1024 X 768 pixels.

We use two protocols for the performance comparison.
For the low-dose CBCT protocol, the x-ray tube current was
set at 10 mA and the duration of the x-ray pulse at each
projection view was 10 ms during the projection data acqui-
sition. For the high-dose CBCT protocol, the tube current
was set at 80 mA and the duration of the x-ray pulse was set
at 10 ms. The tube voltage was set to 125 kVp for both
protocols. The projection data were acquired in full-fan
mode with a bowtie filter. The distance of source-to-axis is
100 cm and source-to-detector distance of 150 cm. The size
of reconstructed image is 700 X 700 X 16 voxels, where the
voxel size is 0.320 X 0.320X0.320 mm>.
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lll. RESULTS
lllLA. Digital phantom study

We first reconstruct 3D Shepp-Logan phantom from 32
projection views along a circular orbit uniformly distributed
in [0,27]. In this case, the number of beamlet measurements
is only 1/8 of the number of voxels to be determined. Com-
pressed sensing based on statistically weighted least square
(CS-WLS) reconstruction results are compared to the tradi-
tional reconstruction using FDK algorithm.11 Several repre-

5117

sentative slices of the original phantom and reconstructed
images are shown in Fig. 1. To further illustrate the edge
information, Fig. 2 shows 1D profiles of the original phan-
tom and reconstructed images in x, y, and z directions. It is
seen that CS-WLS recovers the object image with high fidel-
ity from the highly sparse and noiseless projection data.
However, the same is not true for FDK algorithm.

The convergence speed of the proposed method and the
existing POCS method is shown in Fig. 3 in term of the
number of iterations. For 500 iterations, the proposed

FiG. 1. Representative axial/frontal/sagittal slices of the digital phantom, CS-WLS reconstruction, and FDK reconstruction. For CS-WLS and FDK-based
reconstructions, 32 noiseless projection views are used. (a) Original phantom (axial); (b) CS-WLS (axial); (c) FDK algorithm (axial); (d) original phantom
(frontal); (e) CS-WLS (frontal); (f) FDK algorithm (frontal); (g) original phantom (sagittal); (h) CS-WLS (sagittal); and (i) FDK algorithm (sagittal). Display

window: [0,0.1] mm™.

Medical Physics, Vol. 37, No. 9, September 2010
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Fic. 2. 1D profiles of the digital phantom, CS-WLS reconstruction, and
FDK-based reconstruction. For CS-WLS and FDK reconstructions, 32
noiseless projection views are used. (a) Horizontal profiles of the axial
slices; (b) vertical profiles of the axial slices; and (c) longitudinal profiles
along with the lines in the sagittal slices in Fig. 1.

method and POCS took about 25 643 and 25 196 s, respec-
tively. To evaluate the vicinity to the optimal solution, we
estimate the normalized difference between fi asso(x*') the
LASSO regression value at each iteration and f yg5o LASSO
regression value for the digital phantom for each iteration.
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FiG. 3. Convergence comparison between POCS and Nesterov in the first
500 iterations. For fair comparison, POCS algorithm uses a back-tracking
line search rather than constant step size. The compared criterion f is the
unconstrained LASSO regression value and f* is the LASSO value with the
digital phantom.

Using the noise model introduced in Sec. II, the noise
simulation results for the digital phantom are shown in Figs.
4 and 5. We assume the incident photon number is constant,
i.e., Njy=N,, for all bin i, and the N, takes 10°, 10%, 10°, and
100, respectively, to simulate clinical CBCT radiation
intensity.”‘42 As expected from the noiseless results, FDK
results from 32 noisy projection views show very poor im-
ages (Fig. 4) and failed to hold the piecewise constant prop-
erty of the digital phantom as seen in the 1D profiles in Fig.
5. On the other hand, compressed sensing shows the robust-
ness even for the high level of noise with Ny=10*. It is useful
to mention that the clinical noise level is generally ~10°,
indicating the validity of the proposed method in a practical
situation. We acknowledge here that the effects of the bowtie
filter and the compound Poisson sampling due to the polyen-
ergetic spectrum were omitted in the simulation studies.

Table I lists the contrast-to-noise ratio (CNR) of soft tis-
sue and inner objects for different incident photon numbers.
It can be observed that the CNR increase with the incident
photon number in both reconstruction algorithms. The CNR
of the image reconstructed using compressed sensing re-
mains high with Ny=10*

lll.B. Experimental phantom study

Figures 6 and 7 show a representative slice of the recon-
structed head phantom images based on the projection data
of Acuity measurements. The reconstructed images based on
the low-dose and high-dose protocol using FDK and CS al-
gorithms are shown in Figs. 6 and 7, respectively. As can be
seen from the figures, the CS technique efficiently suppresses
noise in the low-dose protocol resulting in images with
sharper edges compared to the FDK reconstruction. Figure 8
compares a region of interest (ROI) in the images recon-
structed using CS-WLS and the conventional FDK algo-
rithms. The CS-WLS result clearly preserves the edge even
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FiG. 4. Comparison of representative slices of the digital phantom recon-
structed by FDK and CS-WLS using 32 projection views with different
incident photon numbers. (a) FDK reconstruction with Ny=10%; (b) CS-
WLS reconstruction with Ny=103; (¢) FDK reconstruction with Ny=10%; (d)
CS-WLS reconstruction with Ny=10* (e) FDK reconstruction with N,
=10°; (f) CS-WLS reconstruction with Ny=10% (g) FDK reconstruction
with Ny=10% and (h) CS-WLS reconstruction with Ny=10°. Display win-
dow: [0,0.1] mm™.

when reconstructed from undersampled and noisy projection
data. Figure 9 shows the central 1D profiles of the slices in x
and y directions. The results are very close to that obtained
using high-dose protocol. Compressed sensing thus provides
a useful method to reduce effectively the imaging dose with
minimal compromise in the resultant image quality. The
CNRs for the anthropomorphic phantom study are listed in
Table II.
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IV. DISCUSSION

The classical Shannon—-Nyquist sampling theorem speci-
fies that to avoid losing information when capturing a signal,
one must sample at least two times faster than the signal
bandwidth. In many applications, including digital image and
video cameras, the Nyquist rate is so high that too many
samples result, making samples compressible for efficient
storage or transmission. In other applications, such as medi-
cal imaging systems and high-speed analog-to-digital con-
verters, increasing the sampling rate is either impractical or
too expensive. Recently, an alternative theory of compressive
sampling or compressed sensing has emerged, which shows
that super-resolved signals and images can be reconstructed
from far fewer data/measurements than what is usually con-
sidered necessary.“f45

Briefly, compressed sensing is a technique for acquiring
and reconstructing a signal that is known to be sparse or
compressible. A mathematical manifestation of a sparse sig-
nal is that it contains many coefficients close to or equal to
zero, when represented in some appropriate transform do-
main, such as Fourier domain, total-variation norm, and
wavelet domain. Effective utilization of this type of prior
knowledge of the system can potentially reduce the required
number of measurement samples determined by the
Shannon—Nyquist theorem. Most CT images represented by
the x-ray attenuation coefficients are sparse, and thus, CT
imaging recovery is a good application of compressed sens-
ing. The x-ray attenuation coefficient often remains (almost)
constant within organs and sharp variations are usually con-
fined to the borders of internal tissue structure so that images
have sparse gradient-magnitude images.26

Even though solving a sparsity problem is mathematically
NP-hard, it is shown that a good approximate approach for a
sparse recovery problem can be obtained using a convex op-
timization of an ¢, norm.* ¢ A variety of algorithms have
been proposed for solving problems in the form of least-
squares plus €; norm, including interior point methods,**4°
projected gradient methods,*’ homotopy methods,*® and
first-order methods.””*****! In CBC imaging literature, a
POCS algorithm has been widely used.”* In the imple-
mented first-order method, we calculate the next step using
the previous step as well as the decent gradient of the current
point. An advantage of this two-step method compared to the
one-step method is that it converges to the optimal solution
much faster with similar memory requirement.38’50’51 Nester-
ov’s algorithm is a well-known two-step method and the re-
quired_number of the iterations to reach lfx)-f|=e is
O(1/ve),”**" whereas one-step methods based on the steep-
est decent gradient require O(1/¢) iterations in general.*® A
fast convergence speed is highly desirable in solving large-
scale problems. The cost for the proposed two-step method
in improving the convergence speed is the additional regis-
ters to store the history of some of previous iterations regard-
less of the size of the problem.3 83051 1t has been proved that
this additional memory requirement can be reduced into just
one more register while holding the same order of conver-
gence speed.so’51
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FiG. 5. 1D profiles of the digital phantom, CS-WLS reconstruction, and FDK-based reconstruction with different incident photon numbers. (a) Vertical profiles
with Ny=10% (b) vertical profiles with Ny=10%; (c) vertical profiles with Ny=10°; and (d) vertical profiles with Ny=10°.

A few algorithms based on regularized least-squares have
been applied to solving the image reconstruction problem
presented.39 Such quadratic penalty simply encourages the
equivalence between neighbors without considering discon-
tinuities in the image and may lead to oversmoothing around
sharp edges or boundaries.*® In the presented compressed
sensing technique, we use a total variation to consider the
potential inequivalence of the neighbors. In general, total
variation can remove much of the noise, while preserving
any possible rapid variation in the original signal.46 Com-
pressed sensing is known as a tool for robust denois** and
the study here strongly supports the conclusions drawn from
the previous investigation in noise reduction. In the digital

phantom study, the piecewise constant images were recov-
ered accurately from sparse and noisy projection views with
Ny=10* In reality, the incident x-ray intensities with 80 mA
tube current and 10 ms pulse time are in the order of 10°
across the field of view™** and the noise simulation results
support the robustness of compressed sensing against noise.
The robust denoising property becomes clearer in the anthro-
pomorphic head phantom study. High quality was achieved
even when the tube current and number of projection views
were reduced by factors of 1/8 and 1/2, respectively. The
result with our low-dose protocol setting shows the efficacy
of the proposed method. It is interesting to point out that the
same amount of dose reduction may be achieved by reducing

TaBLE I. CNRs of the soft tissue and inner objects in the digital phantom study.

Ny 10° 10* 10° 10° Noiseless
FDK 0.60 0.60 0.60 0.60 0.60
CS-WLS 1.34 2.96 3.38 341 3.46

Medical Physics, Vol. 37, No. 9, September 2010
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FiG. 6. Comparison of representative slices of the anthropomorphic head phantom reconstructed by FDK and CS-WLS using 10 mA tube-current projection
data. (a) FDK reconstruction using 56 projection views; (b) CS-WLS reconstruction using 56 projection views; (c) FDK reconstruction using 113 projection
views; (d) CS-WLS reconstruction using 113 projection views; (e) FDK reconstruction using 226 projection views; (f) CS-WLS reconstruction using 226
projection views; (g) FDK reconstruction using 339 projection views; (h) CS-WLS reconstruction using 339 projection views; (i) FDK reconstruction using
678 projection views; and (j) CS-WLS reconstruction using 678 projection views. Display window: [0,0.045] mm™".
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FiG. 7. Comparison of representative slices of the anthropomorphic head phantom reconstructed by FDK and CS-WLS using 80 mA tube-current projection
data. (a) FDK reconstruction using 56 projection views; (b) CS-WLS reconstruction using 56 projection views; (c) FDK reconstruction using 113 projection
views; (d) CS-WLS reconstruction using 113 projection views; (e) FDK reconstruction using 226 projection views; (f) CS-WLS reconstruction using 226
projection views; (g) FDK reconstruction using 339 projection views; (h) CS-WLS reconstruction using 339 projection views; (i) FDK reconstruction using
678 projection views; and (j) CS-WLS reconstruction using 678 projection views. Display window: [0,0.045] mm™".
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FiG. 8. Comparison of ROIs in Figs. 6 and 7. (a) and (b) show the FDK and CS-WLS reconstructions using 339 projection views with 10 mA tube current,
respectively. (c) and (d) show the FDK and CS-WLS reconstructions using 678 projection views with 80 mA tube current, respectively. Display window:

[0,0.045] mm™.

the number of projection views by a factor of 1/16 while
maintaining the tube current at 80 mA. In reality, fewer pro-
jection views with high tube current can be an inefficient
strategy in the sense of SNR.

TV-based CBCT reconstructions based on the minimiza-
tion of TV norm with a quadratic constraints have been
reportc:d.26’27 However, these projection-based algorithms
with a constant step size are incapable of utilizing the statis-
tical weights across the measurement data since it is not
straightforward to incorporate the statistical weights into
each hyperplane projection. In this work, a statistically

Medical Physics, Vol. 37, No. 9, September 2010

weighted quadratic constraint is directly used for calculating
the decent direction according to the relative importance of
the consistency (or fidelity) of the measurements. This for-
mulation makes the determination of the system parameter
easy: The physical meaning of the measurement inconsis-
tency tolerance & can be perceived in terms of the inconsis-
tency level of the normalized sinogram which has a chi-
square distribution. The constrained least-squares can be
interpreted as a sublevel set in the form of a solid ellipsoid.
The volume of the ellipsoid is directly related to the mea-
surement inconsistency tolerance level e. The proposed
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FiG. 9. Central 1D profiles of anthropomorphic head slice images recon-
structed using 339 projection views with 10 mA tube current (low-dose
protocol) and 678 projection views with 80 mA tube current (high-dose
protocol): (a) Horizontal profiles of the axial slices and (b) vertical profiles
of the axial slices.

method explores the ellipsoid by minimizing the €, norm.
Here, we choose & by the noise level of the sinogram data,
which is estimated based on our experiment settings since
the tolerance is associated with the variance of the sinogram.

Despite intense efforts in the developments of iterative
CBCT reconstruction algorithms over the years and all the
potential benefits of these new algorithms, FDK/FBP based
algorithms remain the workhorse in clinical CT scanner
mainly for their computational efﬁciency.27 The widespread
adoption of compressed sensing based reconstruction will be

TaBLE II. CNRs in the anthropomorphic phantom study.
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difficult, if not impossible, without a dramatic improvement
in its computational efficiency. The improvement in conver-
gence behavior and memory usage from this work represents
a valuable incremental step in reducing the gap between the
state-of-the-art research and clinical practice. Combined with
technical advancements in computer hardware, such as the
GPU-based computing, it is foreseeable that compressed
sensing based large-scale CBCT reconstruction will enter the
routine clinical applications, at least for some special appli-
cations, in the not too distant future.

V. CONCLUSION

A compressed sensing technique using a first-order
method has been developed for CBCT image reconstruction
with sparse and potentially noisy low-dose projection data.
In this method, the weight for each measurement was chosen
based on sinogram datum variance. By eliminating the inter-
mediate step of mapping CBCT projection data to the Fou-
rier domain, the proposed method allows high quality recon-
struction of object. The performance of the proposed method
is demonstrated by both simulation and experimental phan-
tom studies. It is demonstrated that compressed sensing out-
performs the traditional algorithm when dealing with sparse
CBCT projection views in the presence of relatively high
noise due to low tube current. The results indicate that it is
possible to reduce CBCT radiation dose by more than an
order of magnitude without loss of useful information for
radiotherapy.
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