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ABSTRACT
We present a new approach for inference about a univariate log-concave distribution: Instead of using the
method of maximum likelihood, we propose to incorporate the log-concavity constraint in an appropriate
nonparametric con!dence set for the cdf F. This approach has the advantage that it automatically provides
a measure of statistical uncertainty and it thus, overcomes a marked limitation of the maximum likelihood
estimate. In particular, we show how to construct con!dence bands for the density that have a !nite sample
guaranteed con!dence level. The nonparametric con!dence set for F which we introduce here has attractive
computational and statistical properties: It allows to bring modern tools from optimization to bear on this
problem via di"erence of convex programming, and it results in optimal statistical inference. We show that
the width of the resulting con!dence bands converges at nearly the parametric n− 1

2 rate when the log
density is k-a#ne. Supplementary materials for this article are available online.
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1. Introduction

Statistical inference under shape constraints has been the subject
of continued considerable research activity. Imposing shape
constraints on the inference about a function f , that is, assuming
that the function satis!es certain qualitative properties, such
as monotonicity or convexity on certain subsets of its domain,
has two main motivations: First, such shape constraints may
directly arise from the problem under investigation and it is
then desirable that the result of the inference re"ects this fact.
The second reason is that alternative nonparametric estimators
typically involve the choice of a tuning parameter, such as the
bandwidth in the case of a kernel estimator. A good choice for
such a tuning parameter is usually far from trivial. More impor-
tantly, selecting a tuning parameter injects a certain amount
of subjectivity into the estimator, and the resulting choice may
prove quite consequential for relevant aspects of the inference.
In contrast, imposing shape constraints o#en allows to derive
an estimator that does not depend on a tuning parameter while
at the same time exhibiting a good statistical performance,
such as achieving optimal minimax rates of convergence to the
underlying function f .

This article is concerned with inference about a univariate
log-concave density, that is, a density of the form

f (x) = exp φ(x),

where φ : R → [−∞, ∞) is a concave function. It was
argued in Walther (2002) that log-concave densities represent
an attractive and useful nonparametric surrogate for the class
of Gaussian distributions for a range of problems in inference
and modeling. The appealing properties of this class are that
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it contains most commonly encountered parametric families of
unimodal densities with exponentially decaying tails and that
the class is closed under convolution, a$ne transformations,
convergence in distribution and marginalization. In a similar
vein as a normal distribution can be seen as a prototypical model
for a homogenous population, one can use the class of log-
concave densities as a more "exible nonparametric model for
this task, from which heterogenous models can then be built for
example, via location mixtures. Historically such homogeneous
distributions have been modeled with unimodal densities, but
it is known that the maximum likelihood estimate (MLE) of a
unimodal density does not exist; see, for example, Birgé (1997).
In contrast, it was shown in Walther (2002) that the MLE of a
log-concave density exists and can be computed with readily
available algorithms. Therefore, the class of log-concave den-
sities is a su$ciently rich nonparametric model while at the
same time it is small enough to allow nonparametric inference
without a tuning parameter.

Due to these attractive properties there has been a consid-
erable research activity in the last 15 years about the statistical
properties of the MLE, computational aspects, applications in
modeling and inference, and the multivariate setting. Many of
the key properties of the MLE are now well understood: Exis-
tence of the MLE was shown in Walther (2002), consistency was
proved by Pal, Woodroofe, and Meyer (2007), and rates of con-
vergence in certain uniform metrics was established by Düm-
bgen and Ru!bach (2009). Balabdaoui, Ru!bach, and Well-
ner (2009) provided pointwise limit distribution theory, while
Doss and Wellner (2016) and Kim and Samworth (2016) gave
rates of convergence in the Hellinger metric, and Kim, Gun-
tuboyina, and Samworth (2018) proved adaptation properties.
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Accompanying results for the multivariate case are given in, for
example, Cule, Samworth, and Stewart (2010), Schuhmacher
and Dümbgen (2010), Seregin and Wellner (2010), Kim and
Samworth (2016), and Feng et al. (2021).

Computation of the univariate MLE was initially approached
with the Iterative Convex Minorant Algorithm, see Walther
(2002), Pal, Woodroofe, and Meyer (2007), and Ru!bach (2007),
but it appears that the fastest algorithms currently available are
the active set algorithm given in Dümbgen, Hüsler, and Ru!bach
(2007) and the constrained Newton method proposed by Liu
and Wang (2018).

Overviews of some of these results and other work involving
modeling and inference with log-concave distributions are given
in the review papers of Walther (2009), Saumard and Wellner
(2014), and Samworth (2018).

Notably, the existing methodology for estimating a log-
concave density appears to be exclusively focused on the
method of maximum likelihood. Here we will employ a di%erent
methodology: We will derive a con!dence band by intersecting
the log-concavity constraint with a goodness-of-!t test. One
important advantage of this approach is that such a con!dence
band satis!es a key principle of statistical inference: an estimate
needs to be accompanied by some measure of standard error
in order to be useful for inference. There appears to be no
known method for obtaining such a con!dence band via
the maximum likelihood approach. Balabdaoui, Ru!bach,
and Wellner (2009) construct pointwise con!dence intervals
for a log-concave density based on asymptotic limit theory,
which requires to estimate the second derivative of log f (x).
Azadbakhsh, Jankowski, and Gao (2014) compare several
methods for estimating this nuisance parameter and they report
that this task is quite di$cult. An alternative approach is given
by Deng, Han, and Sen (2020). In Section 5 we compare the
con!dence bands introduced here with pointwise con!dence
intervals obtained via the asymptotic limit theory as well as
with the bootstrap. Of course, pointwise con!dence intervals
have a di%erent goal than con!dence bands. The pointwise
intervals will be shorter but the the con!dence level will not
hold simultaneously across multiple locations. In contrast, the
method we introduce here comes with strong guarantees in
terms of !nite sample valid coverage levels across locations.

2. Constructing a Con!dence Band for a Log-Concave
Density

Given data X1, . . . , Xn from a log-concave density f we want
to !nd functions "̂(x) = "̂(x, X1, . . . , Xn) and µ̂(x) =
µ̂(x, X1, . . . , Xn) such that

Pf
{
"̂(x) ≤ f (x) ≤ µ̂(x) for all x ∈ R

}
≥ 1 − α

for a given con!dence level 1−α ∈ (0, 1). It is well known that in
the case of a general density f no nontrivial con!dence interval
("̂(x), µ̂(x)) exists, see, for example, Donoho (1988). However,
assuming a shape-constraint for f such as log-concavity allows
to construct pointwise and uniform con!dence statements as
follows:

Let Cn(α) be a 1 − α con!dence set for the distribution
function F of f , that is,

PF {F ∈ Cn(α)} ≥ 1 − α. (1)

Such a nonparametric con!dence set always exists, for example,
the Kolmogorov-Smirnov bands give a con!dence set for F
(albeit a nonoptimal one). De!ne

"̂(x) := inf
f is log-concave and F∈Cn(α)

f (x) (2)

and de!ne µ̂(x) analogously with sup in place of inf. If f is log-
concave then (1) and (2) imply

Pf
{
"̂(x) ≤ f (x) ≤ µ̂(x)

}
≥ 1 − α,

so we obtain a 1 − α con!dence interval for f (x) by solving the
optimization problem (2). Moreover, if we solve (2) at multiple
locations x1, . . . , xm, then we obtain

Pf
{
"̂(xi) ≤ f (xi) ≤ µ̂(xi) for all i = 1, . . . , m

}
≥ 1 − α. (3)

So the coverage probability is automatically simultaneous across
multiple locations and comes with a !nite sample guarantee,
since it is inherited from the con!dence set Cn in (1). Likewise,
the quality of the con!dence band, as measured for example, by
the width µ̂(x)− "̂(x), will also derive from Cn, which therefore,
plays a central role in this approach. Finally, the log-concavity
constraint allows to extend the con!dence set (3) to a con!dence
band on the real line, as we will show in Section 2.4.

Hengartner and Stark (1995), Dümbgen (1998), Dümbgen
(2003), and Davies and Kovac (2004) employ the above
approach for inference about a unimodal or a k-modal density.
Here we introduce a new con!dence set Cn(α) for F. This
con!dence set is adapted from methodology developed in the
abstract Gaussian White Noise model by Walther and Perry
(2019) for optimal inference in settings related to the one
considered here. Therefore, this con!dence set should also
prove useful for the works about inference in the unimodal
and k-modal setting cited above.

The key conceptual problem for solving the optimization
problem (2) is that f is in!nite dimensional. We will overcome
this by using the log-concavity of f to relax Cn(α) to a !nite
dimensional superset, which makes it possible to compute (2)
with fast optimization algorithms. We will address these tasks
in turn in the following sections.

2.1. A Con!dence Set for F

Given X1, . . . , Xn iid from the continuous cdf F we set sn :=
'log2 log n( and

xi := X(1+(i−1)2sn ), i = 1, . . . , m :=
⌊n − 1

2sn

⌋
+ 1, (4)

where X(j) denotes the jth order statistic. Our analysis will use
only the subset {xi} of the data, that is, the set containing every
log nth order statistic; see Remark 3 for why this is su$cient.

Translating the methodology of the “Bonferroni scan” devel-
oped in Walther and Perry (2019) from the Gaussian White
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Noise model to the density setting suggests employing a con-
!dence set of the form

Cn(α) :=
{

F : cjkB ≤ F(xk) − F(xj) ≤ djkB for all (j, k) ∈ I =
⋃

B
IB

}

.

with cjkB, djkB, I given below. The idea is to choose an index
set I that is rich enough to detect relevant deviations from the
empirical distribution, but which is also sparse enough so that
the |I| constraints can be combined with a simple weighted
Bonferroni adjustment and still result in optimal inference. The
second key ingredient of this construction is to let the weights
of the Bonferroni adjustment depend on j − i in a certain way.
See Walther and Perry (2019) for a comparison of the !nite
sample and asymptotic performance of this approach with other
relevant calibrations, such as the ones used in the works cited
above.

Note that the con!dence set Cn(α) checks the probability
content of random intervals (xj, xk), which automatically adapt
to the empirical distribution. This makes it possible to detect rel-
evant deviations from the empirical distribution with a relatively
small number of such intervals, which is key for making the
Bonferroni adjustment powerful as well as for e$cient computa-
tion. Moreover, using such random intervals makes the bounds
cjkB, djkB distribution-free since F(xk) − F(xj) ∼ Beta((k −
j)2sn , n + 1 − (k − j)2sn), see chap. 3.1 in Shorack and Wellner
(1986).

The precise speci!cations of cjkB, djkB, I are as follows:

I :=
Bmax⋃

B=0
IB, where Bmax := *log2

n
8 + − sn

IB :=
{
(j, k) : j = 1 + (i − 1)2B, k = 1 + i2B

for i = 1, . . . , nB :=
⌊n − 1

2B+sn

⌋}

cjkB := cB := qBeta
( α

2(B + 2)nBtn
, 2B+sn , n + 1 − 2B+sn

)

djkB := dB := qBeta
(

1 − α

2(B + 2)nBtn
, 2B+sn , n + 1 − 2B+sn

)

where tn := ∑Bmax
B=0

1
B+2 and qBeta (α, r, s) denotes the α-

quantile of the beta distribution with parameters r and s. The
term 1

B+2 is a weighting factor in the Bonferroni adjustment
which results in an advantageous statistical performance, see
Walther and Perry (2019). It follows from the union bound that
PF(F ∈ Cn(α)) ≥ 1 − α whenever F is continuous.

Remark. 1. An alternative way to control the distribution of
F(xk) − F(xj) is via a log-likelihood ratio type transformation
and Hoe%ding’s inequality, see Rivera and Walther (2013) and
Li et al. (2020). This results in a loss of power due to the slack
in Hoe%ding’s inequality and the slack from inverting the log-
likelihood ratio transformation with an inequality. Simulations
show that the above approach using an exact beta distribution
is less conservative despite the use of Bonferroni’s inequality to
combine the statistics across I .

2. The inference is based on the statistic F((xj, xk)), that is,
the unknown F evaluated on the random interval (xj, xk), rather
than on the more commonly used statistic Fn(I), which eval-
uates the empirical measure on deterministic intervals I. The

latter statistic follows a binomial distribution whose discreteness
makes it di$cult to combine these statistics across I using Bon-
ferroni’s inequality without incurring substantial conservatism
and hence, loss of power. This is another important reason for
using random intervals (xj, xk) besides the adaptivity property
mentioned above. Moreover, a deterministic system of intervals
would have to be anchored around the range of the data and
this dependence on the data is di$cult to account for and is
therefore, typically glossed over in the inference.

3. The de!nition of xi in (4) means that we do not consider
intervals (X(j), X(k)) with k − j < log n. Thus, as opposed to the
regression setting in Walther and Perry (2019) we omit the !rst
block1 of intervals. This derives from the folklore knowledge in
density estimation that at least log n observations are required in
order to obtain consistent inference simultaneously across such
intervals. Indeed, this choice is su$cient to yield the asymptotic
optimality result in Theorem 1.

We further simplify the construction in Walther and Perry
(2019) by restricting ourselves to a dyadic spacing of the indices
k − j since we already obtain quite satisfactory results with this
set of intervals.

2.2. Bounds for
∫ b

a f when f is Log-Concave

The con!dence set Cn(α) describes a set of plausible distribu-
tions in terms of

∫ xk
xj

f (t) dt for in!nite dimensional f . In the
special case when f is log-concave it is possible to construct a
!nite dimensional superset of Cn(α) by deriving bounds for this
integral in terms of functions of a !nite number of variables:

Lemma 1. Let f be a univariate log-concave function. For given
x1 < · · · < xm write "i := log f (xi), i = 1, . . . , m. Then there
exist real numbers g2, . . . , gm−1 such that

"j ≤ "i + gi (xj − xi) for all i ∈ {2, . . . , m − 1}, j ∈ {i − 1, i + 1}

and

(xi+1 − xi) exp("i) E("i+1 − "i) ≤
∫ xi+1

xi
f (t) dt

≤
{

exp("i)(xi+1 − xi) E
(
gi(xi+1 − xi)

)
, i ∈ {2, . . . , m − 1}

exp("i+1)(xi+1 − xi) E
(
gi+1(xi − xi+1)

)
, i ∈ {1, . . . , m − 2}

where

E(s) :=
∫ 1

0
exp(st) dt =

{ exp(s)−1
s if s ,= 0

1 if s = 0

is a strictly convex and in!nitely o#en di%erentiable function.

The proof of Lemma 1 is given in the Appendix, supplemen-
tary materials. Importantly, the bounds given in the lemma are
convex and smooth functions of the gi and "i, despite the fact
that these variables appear in the denominator in the formula
for E. This makes it possible to bring fast optimization routines
to bear on the problem (2).

1We also shift the index B to let it start at 0 rather than at 2. This results in a
simpler notation but does not change the methodology.
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2.3. Computing Pointwise Con!dence Intervals

We are now in position to de!ne a superset of Cn(α) by relaxing
the inequalities cB ≤

∫ xk
xj

f (t) dt ≤ dB in the de!nition of Cn(α).
To this end de!ne for i = 1, . . . , m − 1 the functions

Li(x, !) := (xi+1 − xi) exp("i) E("i+1 − "i)

Ui(x, !, g) :=






exp("i)(xi+1 − xi)
E
(
gi(xi+1 − xi)

)
, i = m − 1

exp("i+1)(xi+1 − xi)
E
(
gi+1(xi − xi+1)

)
, i ∈ {1, . . . , m − 2}

Vi(x, !, g) :=






exp("i)(xi+1 − xi)
E
(
gi(xi+1 − xi)

)
, i ∈ {2, . . . , m − 1}

exp("i+1)(xi+1 − xi)
E
(
gi+1(xi − xi+1)

)
, i = 1

where x = (x1, . . . , xm), ! = ("1, . . . , "m), g = (g1, . . . , gm−1)
and E(·) is de!ned in Lemma 1.

Given the subset x1 < . . . < xm of the order statistics de!ned
in (4), we de!ne C̃n(α) to be the set of densities f for which there
exist real g1, . . . , gm−1 such that "i := log f (xi), i = 1, . . . , m,
satisfy (5)–(8):

"j ≤ "i + gi(xj − xi) for all i ∈ {2, . . . , m − 1}, j ∈ {i − 1, i + 1}.
(5)

For B = 0, . . . , Bmax :

cB ≤
k−1∑

i=j
Ui(x, !, g) for all (j, k) ∈ IB (6)

cB ≤
k−1∑

i=j
Vi(x, !, g) for all (j, k) ∈ IB (7)

k−1∑

i=j
Li(x, !) ≤ dB for all (j, k) ∈ IB. (8)

Now we can implement a computable version of the con-
!dence bound (2) by optimizing over C̃n(α) rather than over
Cn(α). Note that if f is log-concave then it follows from Lemma 1
that f ∈ Cn(α) implies f ∈ C̃n(α). This proves the following key
result:

Proposition 1. If f is log-concave then Pf {f ∈ C̃n(α)} ≥
1 − α. Consequently, if we de!ne pointwise lower and upper
con!dence bounds at the xi, i = 1, . . . , m, via the optimization
problems

"̂(xi) := min "(xi) (9)
subject to f ∈ C̃n(α), that is, subject to (5)–(8)

µ̂(xi) := max "(xi)

subject to f ∈ C̃n(α), that is, subject to (5)–(8),

then the following simultaneous con!dence statement holds
whenever f is log-concave:

Pf
{

exp("̂(xi)) ≤ f (xi) ≤ exp(µ̂(xi)) for all i = 1, . . . , m
}

≥ 1 − α.

It is an important feature of these con!dence bounds that
they come with a !nite sample guaranteed con!dence level 1−α.
On the other hand, it is desirable that the construction is not
overly conservative (i.e., has coverage not much larger than
1 − α) as otherwise it would result in unnecessarily wide con-
!dence bands. This is the motivation for deriving a statistically
optimal con!dence set in Section 2.1 and for deriving bounds
in Lemma 1 that are su$ciently tight. Indeed, it will be shown
in Section 4 that the above construction results in statistically
optimal con!dence bands.

2.4. Constructing Con!dence Bands

The simultaneous pointwise con!dence bounds
(
"̂(xi), µ̂(xi)

)
,

i = 1, . . . , m, from the optimization problem (9) imply a
con!dence band on the real line due to the concavity of log f .
In more detail, we can extend the de!nition of "̂ to the real line
simply by interpolating between the "̂(xi):

"̂(x) :=






"̂(xi) + (x − xi)
"̂(xi+1)−"̂(xi)

xi+1−xi
if x ∈ [xi, xi+1),

i ∈ {1, . . . , m − 1}
−∞ otherwise.

(10)
Then log f (xi) ≥ "̂(xi) for i = 1, . . . , m implies log f (x) ≥ "̂(x)

for x ∈ R since log f is concave and "̂ is piecewise linear. (In fact,
it follows from (9) that "̂ is also concave.)

In order to construct an upper con!dence bound note that
concavity of log f together with "̂(xi) ≤ log f (xi) ≤ µ̂(xi) for all
i ∈ {1, . . . , m} implies for x > xk with k ∈ {2, . . . , m}:

log f (x) − µ̂(xk)

x − xk
≤ log f (x) − log f (xk)

x − xk

≤ min
j∈{1,...,k−1}

log f (xk) − log f (xj)

xk − xj

≤ min
j∈{1,...,k−1}

µ̂(xk) − "̂(xj)

xk − xj
=: Lk

and likewise for x < xk with k ∈ {1, . . . , m − 1}:

µ̂(xk) − log f (x)

xk − x ≥ max
j∈{k+1,...,m}

"̂(xj) − µ̂(xk)

xj − xk
=: Rk.

Hence, log f is bounded above by

µ̂(x) :=






µ̂(xi+1) + Ri+1(x − xi+1) if x ∈ (xi, xi+1),
i ∈ {0, 1},
where x0 := −∞

Mi(x) if x ∈ [xi, xi+1),
i ∈ {2, . . . , m − 2}

µ̂(xi) + Li(x − xi) if x ∈ [xi, xi+1),
i ∈ {m − 1, m},
where xm+1 := ∞

with
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Mi(x) := min
(
µ̂(xi) + Li(x − xi), µ̂(xi+1) + Ri+1(x − xi+1)

)

=
(
µ̂(xi) + Li(x − xi)

)
1(x ∈ [xi, x̄i))

+
(
µ̂(xi+1) + Ri+1(x − xi+1)

)
1(x ∈ [x̄i, xi+1))

where x̄i := µ̂(xi+1)−µ̂(xi)+Lixi−Ri+1xi+1
Li−Ri+1

.
Thus, we proved:

Proposition 2. If f is log-concave then

Pf
{

exp("̂(x)) ≤ f (x) ≤ exp(µ̂(x)) for all x ∈ R
}

≥ 1 − α.

The upper bound µ̂(x) need not be concave but it is minimal
in the sense that it can be shown that for every real x there exist
a concave function g with "̂(xi) ≤ g(xi) ≤ µ̂(xi) for all i ∈
{1, . . . , m} and g(x) = µ̂(x).

As an alternative to exp(µ̂(x)) we tried a simple interpola-
tion between the points (xi, exp(µ̂(xi))). This interpolation will
result in a smoother bound than exp(µ̂(x)), but the coverage
guarantee of Proposition 2 does not apply any longer. However,
the di%erence between exp(µ̂(x)) and the interpolation will
vanish as the sample size increases (or by increasing the number
m of design points xi in (4) for a given sample size n), and
the simulations in Section 5 show that the empirical coverage
exceeds the nominal level in all cases considered. Therefore, we
also recommend this interpolation as a simple and smoother
alternative to exp(µ̂(x)).

Finally, we point out that the computational e%ort can be
lightened simply by solving the optimization problem (9) for
a subset of {xi, 1 ≤ i ≤ m} and then constructing "̂ and µ̂

as described above based on that smaller subset of xi. Such a
con!dence band will still satisfy Proposition 2, but it will be
somewhat wider at locations between those design points xi as it
is based on fewer pointwise con!dence bounds. Hence, there is
a tradeo% between the width of the band and the computational
e%ort required. While a larger subset of the xi will result in a
somewhat reduced width of the band between the xi, there are
diminishing returns as the width at the xi will not change. It fol-
lows from Theorem 1 that solving the optimization problem (9)
for {xi, 1 ≤ i ≤ m} with m given in (4) is su$cient to produce
statistically optimal con!dence bands in a representative setting.

3. Solving the Optimization Problem

Next we describe a method for computing the pointwise con!-
dence intervals ("̂(xi), µ̂(xi)), i = 1, . . . , m, from observations
Xi, i = 1, . . . , n, by e$ciently solving the optimization prob-
lems (9). Constructing the con!dence band is then straightfor-
ward with the post-processing steps given in Section 2.4.

Inspecting the optimization problems (9), we see that these
problems possess some interesting structure: The criterion func-
tions are linear, and the constraints (5) and (8) are convex.
However, the constraints (6) and (7) are nonconvex. Finding the
global minimizer of a nonconvex optimization problem (even
a well-structured one) can be challenging; instead, we focus
on a method for !nding critical points of the problems (9).
Taking a closer look at the nonconvex constraints (6) and (7), we

make the simple observation that they may be expressed as the
di%erence of two convex functions (namely, a constant function
minus a convex function). This property puts the problems (9)
into the special class of nonconvex problems commonly referred
to as di!erence of convex programs (Hartman 1959; Tao 1986;
Horst and Thoai 1999; Horst, Pardalos, and Van Thoai 2000),
for which a critical point can be e$ciently found. The class
of di%erence of convex programs is quite broad, encompassing
many problems encountered in practice, with a good amount
of research into this area continuing on today. Important ref-
erences include Hartman (1959), Tao (1986), Horst and Thoai
(1999), Horst, Pardalos, and Van Thoai (2000), Yuille and Ran-
garajan (2003), Smola, Vishwanathan, and Hofmann (2005),
and Lipp and Boyd (2016).

A natural approach to !nding a critical point of a di%erence
of convex program is to linearize the nonconvex constraints,
then solve the convexi!ed problem using any suitable o%-the-
shelf solver, and repeating these steps as necessary. This strategy
underlies the well-known convex–concave procedure in Yuille
and Rangarajan (2003), a popular heuristic for di%erence of
convex programs. In more detail, the convex–concave iteration
as applied to the problems (9) works as follows: Given feasi-
ble initial points, we !rst replace the (nonconvex) constraints
(6) and (7) by their !rst-order Taylor approximations centered
around the initial points. Formally, letting !(K) and g(K) denote
the log-densities and subgradients on iteration K, respectively,
we form

Ûi(x, !, g; !(K), g(K)) := Ui(x, !(K), g(K))

+
〈
∇Ui(x, !(K), g(K)), (!, g) − (!(K), g(K))

〉

(13)

V̂i(x, !, g; !(K), g(K)) := Vi(x, !(K), g(K))

+
〈
∇Vi(x, !(K), g(K)), (!, g) − (!(K), g(K))

〉
,

(14)

for i = 1, . . . , m − 1. We then solve the convexi!ed problems
(using the constraints (13), (14) instead of (6), (7)) with any
o%-the-shelf solver. Then we recompute the approximations
using the obtained solutions to the convexi!ed problems and
repeat these steps until an appropriate stopping criterion has
been satis!ed (e.g., some predetermined maximum number of
iterations has been reached, the change in criterion values are
smaller than some speci!ed tolerance, the sum of the slack
variables is less than some tolerance, and/or we have that τK ≥
τmax). From this description, it may be apparent to the reader
that the convex–concave procedure is actually a generalization
of the majorization–minimization class of algorithms (which
includes the well-known expectation-maximization algorithm
as a special case).

We give a complete description of the convex-concave proce-
dure as applied to the optimization problems (9) in Algorithm 1
appearing above, along with one important modi!cation that we
explain now. In practice it is not easy to obtain feasible initial
points for the problems (9). Therefore, the penalty convex-
concave procedure, a modi!cation to the basic convex–concave
procedure that was introduced by Le Thi and Dinh (2014),
Dinh and Le Thi (2014), and Lipp and Boyd (2016), works
around this issue by allowing for an (arbitrary) infeasible initial
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Algorithm 1 Penalty convex-concave procedure for computing pointwise con!dence intervals for a log-concave density
Input: Subset of observations xt , t = 1, . . . , m; collection of interval endpoints I = ⋃

B IB; initial points !(0), g(0); initial penalty
strength τ0 > 0; penalty growth factor κ > 1; maximum penalty strength τmax > τ0; maximum number of iterations Kmax
For t = 1, . . . , m, K = 0, . . . , Kmax:

Convexify the constraints (6) and (7), by forming the linearizations, for i = 1, . . . , m − 1,

Ûi(x, !, g; !(K), g(K)) = Ui(x, !(K), g(K)) +
〈
∇Ui(x, !(K), g(K)), (!, g) − (!(K), g(K))

〉

V̂i(x, !, g; !(K), g(K)) = Vi(x, !(K), g(K)) +
〈
∇Vi(x, !(K), g(K)), (!, g) − (!(K), g(K))

〉
.

Solve the pair of convexi!ed problems

"
(K+1)
t = min "t + τK ·

Bmax∑

B=0

∑

(j,k)∈IB

sB,j,k (11)

subject to (5), (8), and
For B = 0, . . . , Bmax :

cB −
k−1∑

i=j
Ûi(x, !, g; !(K), g(K)) ≤ sB,j,k for all (j, k) ∈ IB

cB −
k−1∑

i=j
V̂i(x, !, g; !(K), g(K)) ≤ sB,j,k for all (j, k) ∈ IB

sB,j,k ≥ 0 for all (j, k) ∈ IB

µ
(K+1)
t = max "t − τK ·

Bmax∑

B=0

∑

(j,k)∈IB

sB,j,k (12)

subject to (5), (8), and
For B = 0, . . . , Bmax :

cB −
k−1∑

i=j
Ûi(x, !, g; !(K), g(K)) ≤ sB,j,k for all (j, k) ∈ IB

cB −
k−1∑

i=j
V̂i(x, !, g; !(K), g(K)) ≤ sB,j,k for all (j, k) ∈ IB

sB,j,k ≥ 0 for all (j, k) ∈ IB.

Update the penalty strength, by setting τK+1 = min{κ · τK , τmax}.
Output: Pointwise con!dence intervals ("

(K)
t µ

(K)
t ), t = 1, . . . , m.

point and then gradually driving the iterates into feasibility
by adding a penalty for constraint violations into the criterion
that grows with the number of iterations (explaining the word
“penalty” in the name of the procedure), through the use of slack
variables.

Standard convergence theory for the (penalty) convex-
concave procedure (see, e.g., Section 3.1 in Lipp and Boyd
(2016) as well as Theorem 10 in Sriperumbudur and Lanckriet
(2009) and Proposition 1 in Khamaru and Wainwright (2018)
tells us that the criterion values (11) and (12) generated by
Algorithm 1 converge. Moreover, under regularity conditions
(see Section 3.1 in Lipp and Boyd 2016), the iterates generated
by Algorithm 1 converge to critical points of the problems (9).
At convergence, the pointwise con!dence intervals generated

by Algorithm 1 can be turned in con!dence bands as described
in Section 2.4.

Finally, we mention that although not necessary, additionally
linearizing the (convex) constraints (8) around the previous
iterate, that is, forming

Li(x, !(K)) +
〈
∇Li(x, !(K)), ! − !(K)

〉
,

i = j, . . . , k − 1, (j, k) ∈ IB, B = 0, . . . , Bmax,

on iteration K, can help circumvent numerical issues. Further-
more, as all the constraints in the problems (11) and (12) are now
evidently a$ne functions, this relaxation has the added bene!t
of turning the problems (11) and (12) into linear programs, for
which there (of course) exist heavily optimized solvers.
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Figure 1. Con"dence bands (shaded in gray) generated by Algorithm 1 and linear interpolation as described in Section 2.4, for a Gaussian density. The left column shows
the bands for the log density, while the right column shows the bands for the density. The solid black line marks the underlying (log)density. Top, middle and bottom rows
show results for sample sizes n = 100, 1000, and 10,000, respectively. At the bottom of each plot, the observations Xi are indicated in blue (short lines), while the points
xi , i = 1, . . . , m are marked in red (long lines).

Table 1. Empirical coverages, average widths at the sample quartiles (denoted Q1,
Q2, and Q3), and average runtimes in seconds, for the con"dence bands generated
by Algorithm 1 with linear interpolation and nominal coverage levels 90% and 95%,
when applied to n ∈ {100, 1000} observations drawn from four di!erent underlying
densities (Gaussian, uniform, Chi-squared, and exponential).

Nominal coverage 90% Nominal coverage 95%

Distribution n Coverage Width Coverage Width Time

Q1 Q2 Q3 Q1 Q2 Q3 (secs.)

Gaussian 100 0.96 0.58 0.65 0.61 0.98 0.66 0.74 0.70 5.6
1000 0.95 0.24 0.28 0.24 0.97 0.27 0.31 0.27 151.2

Uniform 100 0.93 0.08 0.07 0.08 0.96 0.09 0.08 0.09 5.1
1000 0.91 0.03 0.03 0.03 0.97 0.03 0.03 0.03 128.8

Chi-squared 100 0.94 0.36 0.28 0.19 0.98 0.41 0.33 0.23 5.4
1000 0.94 0.16 0.12 0.07 0.97 0.18 0.13 0.08 132.5

Exponential 100 0.93 0.94 0.69 0.44 0.96 1.06 0.77 0.51 5.7
1000 0.91 0.38 0.25 0.15 0.97 0.43 0.29 0.17 140.4

NOTE: All results are based on 1000 simulations. The runtimes for the nominal
coverage of 90% are similar to the case of 95% and are not displayed.

4. Large Sample Statistical Performance

The large sample performance of the log-concave MLE has been
studied intensively; see, for example, Dümbgen and Ru!bach
(2009), Kim and Samworth (2016), and Doss and Wellner
(2016). The main message is that the MLE attains the optimal
minimax rate of convergence of O

(
n−2/5) with respect to

various global loss functions. Recently, Kim, Guntuboyina, and
Samworth (2018) have shown that the MLE can achieve a faster
rate of convergence when the log density is k-a$ne, that is,
when log f consists of k linear pieces . They show that the MLE
is able to adapt to this simpler model, where it will converge
with nearly the parametric rate, namely with O

(
n−1/2 log5/8 n

)
.

Here we show that the construction of our con!dence band via
the particular con!dence set Cn(α) will also result in a nearly
parametric rate of convergence for the width of the con!dence
band in that case. To this end, we !rst consider the case where
some part of f is log-linear:
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Figure 2. Con"dence bands (shaded in gray) generated by Algorithm 1 and linear interpolation as described in Section 2.4, for a uniform density. The left column shows
the bands for the log density, while the right column shows the bands for the density. The solid black line marks the underlying (log)density. Top, middle and bottom rows
show results for sample sizes n = 100, 1000, and 10,000, respectively. At the bottom of each plot, the observations Xi are indicated in blue (short lines), while the points
xi , i = 1, . . . , m are marked in red (long lines).

Theorem 1. Let f be a log-concave density and suppose log f is
linear on some interval J. (So J may be a proper subset of the
support of f ). Then on every closed interval I ⊂ int J:

Pf

{

sup
x∈I

∣∣∣û(x) − f (x)
∣∣∣ ≤ C

√
log log n

n

}

→ 1

for some constant C, and the same statement holds for "̂ in place
of û. In particular, the width of the con!dence band satis!es
maxx∈I

(
û(x)−"̂(x)

)
≤ 2C

√
log log n

n with probability converging
to 1.

If there are k such intervals, then the theorem holds for the
maximum width over the k intervals. This includes k-a$ne log
densities as a special case. The proof of Theorem 1 is given in
the Appendix, supplementary materials.

We conjecture that the width of the con!dence band will
likewise achieve the optimal minimax rate if log f is smooth
rather than linear.

5. Some Examples

Finally, we present some numerical examples of our method-
ology, highlighting the empirical coverage and widths of our
con!dence bands as well as the computational cost of computing
the bands, for a number of di%erent distributions.

To calculate coverage, we !rst simulated n ∈ {100, 1000}
observations from a (i) standard normal distribution, (ii) uni-
form distribution on [−10, 10], (iii) chi-squared distribution
with three degrees of freedom, and (iv) exponential distribution
with parameter 1. Then, we computed our con!dence bands
from the data by running the penalty convex–concave proce-
dure described in Algorithm 1 and then computing exp("̂(x))

and exp(µ̂(x)) as discussed in Section 2.4, where exp(µ̂(x)) was



1434 G. WALTHER ET AL.

Figure 3. Con"dence bands (shaded in gray) generated by Algorithm 1 and linear interpolation as described in Section 2.4, for a chi-squared density. The left column shows
the bands for the log density, while the right column shows the bands for the density. The solid black line marks the underlying (log)density. Top, middle, and bottom rows
show results for sample sizes n = 100, 1000, and 10,000, respectively. At the bottom of each plot, the observations Xi are indicated in blue (short lines), while the points
xi , i = 1, . . . , m are marked in red (long lines).

computed by linearly interpolating between the (xi, exp(µ̂(xi))).
We repeated these two steps (simulating data and computing
bands) 1000 times. We calculated the empirical coverage for
each density f by evaluating the band at 10,000 points {tj},
evenly spaced across the range of the data, to check whether
exp("̂(tj)) ≤ f (tj) ≤ exp(µ̂(tj)) for all j, and then computed
the empirical frequency of this event across the 1000 repetitions.
In order to calculate the widths of the bands, we averaged the
widths at the sample quartiles over all of the repetitions. We
calculated the computational e%ort by averaging the runtimes,
obtained by running Algorithm 1 on a workstation with four
Intel E5-4620 2.20GHz processors and 15 GB of RAM, over all
the repetitions. To speed up the computation for n ≥ 1000,
we ran Algorithm 1 on a subset of 30% of the points xi, i =
1, . . . , m, as discussed at the end of Section 2.4; the coverages
and widths were virtually indistinguishable from those obtained
using the full set of points xi, i = 1, . . . , m.

Algorithm 1 requires a few tuning parameters, which are
important for assuring quick convergence. In general, we found

that the initial penalty strength τ0, the maximum penalty
strength τmax, and the penalty growth factor κ had the greatest
impact on convergence. In our experience, setting τ0 to a
small value and τmax to a large value worked well; we used
τ0 ∈ {10−5, 10−4, 10−3} and τmax ∈ {103, 104, 105}, with the
most suitable values depending on the characteristics of the
problem. We experimented with various penalty growth factors
κ ∈ {1, 2, . . . , 10}, !nding that the best value of κ again varied
with the problem setup. We always set the maximum number
of iterations Kmax = 50 as our method usually converged
a#er around 20–30 iterations across all problem settings. We
initialized the points !(0), g(0) randomly. Finally, we set the
miscoverage level α = 0.1 but we also report results for
α = 0.05.

Table 1 summarizes the results. The table (reassuringly)
shows us that the bands achieve coverage at or above the
nominal level. In Figures 1–5 we present a visualization of the
bands, from a single repetition chosen at random, for each of
the four underlying densities as well as for a density that is
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Figure 4. Con"dence bands (shaded in gray) generated by Algorithm 1 and linear interpolation as described in Section 2.4, for an exponential density. The left column
shows the bands for the log density, while the right column shows the bands for the density. The solid black line marks the underlying (log)density. Top, middle and bottom
rows show results for sample sizes n = 100, 1000, and 10,000, respectively. At the bottom of each plot, the observations Xi are indicated in blue (short lines), while the
points xi , i = 1, . . . , m are marked in red (long lines).

proportional to exp(−x4). In addition, we depict the bands for
the case of a larger sample with n = 10,000. The !gures and
Table 1 show that while the bands are naturally wider when
the sample size is small (n = 100), they quickly tighten as the
sample size grows (n ∈ {1000, 10,000}).

As for the computational cost, we found that around 20–30
iterations of Algorithm 1 were enough to reach convergence, for
each point xi, i = 1, . . . , m. Table 1 shows that this translates
into just a few seconds to compute the entire band when n =
100, and a couple of minutes when n = 1000. We found that
Algorithm 1 converged to the exact same solutions even when
started from a number of di%erent initial points, suggesting
that it is in fact !nding the global minimizers of the problems
(9). Therefore, these runtimes appear to be reasonable, as it is
worth bearing in mind that Algorithm 1 is e%ectively solving a
potentially large number of nonconvex optimization problems
(precisely: 13, 39, and 188 such problems, corresponding to
n ∈ {100, 1000, 10,000}, respectively). Moreover, we point out

that the computation in Algorithm 1 can easily be parallelized,
for example, across the points xi, i = 1, . . . , m.

In order to compare the con!dence band with pointwise
con!dence intervals, we performed these experiments also with
two methods that compute pointwise con!dence intervals for
log-concave densities. Azadbakhsh, Jankowski, and Gao (2014)
compare several such methods and report that no one approach
appears to uniformly dominate the others and that each method
works well only in a certain range of the data. The !rst group of
methods examined by Azadbakhsh, Jankowski, and Gao (2014)
is based on the pointwise asymptotic theory developed in Balab-
daoui, Ru!bach, and Wellner (2009) and requires estimating a
nuisance parameter, for which Azadbakhsh, Jankowski, and Gao
(2014) investigate several options. We picked the option that
they report works best, namely their method (iv) in their Sec-
tion 4. This method is called “Asymptotic theory with approx-
imation” in Table 2. The second group of methods analyzed
by Azadbakhsh, Jankowski, and Gao (2014) concerns various
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Figure 5. Con"dence bands (shaded in gray) generated by Algorithm 1 and linear interpolation as described in Section 2.4, for a density proportional to exp(−x4). The
left column shows the bands for the log density, while the right column shows the bands for the density. The solid black line marks the underlying (log)density. Top, middle
and bottom rows show results for sample sizes n = 100, 1000, and 10,000, respectively. At the bottom of each plot, the observations Xi are indicated in blue (short lines),
while the points xi , i = 1, . . . , m are marked in red (long lines).

Table 2. Empirical coverages, average widths at the sample quartiles (denoted Q1, Q2, and Q3), and average runtimes in seconds, for the con"dence bands obtained from
pointwise asymptotic theory and approximation (iv) in Azadbakhsh, Jankowski, and Gao (2014) and by the bootstrap, with nominal level 90% in the same settings as in
Table 1.

Asymptotic theory with approximation Bootstrap

Distribution n Coverage Width Time Coverage Width Time

Q1 Q2 Q3 (secs.) Q1 Q2 Q3 (secs.)

Gaussian 100 0.22 0.13 0.20 0.13 1.4 0.37 0.16 0.16 0.12 98.2
1000 0.08 0.04 0.08 0.04 6.4 0.15 0.04 0.07 0.03 194.8

Uniform 100 0.32 0.03 0.03 0.03 1.4 0.01 0.02 0.01 0.02 97.4
1000 0.15 0.01 0.01 0.01 6.5 0.11 0.01 0.01 0.01 184.5

Chi-squared 100 0.06 0.08 0.04 0.02 1.4 0.52 0.04 0.03 0.02 97.2
1000 0.00 0.02 0.01 0.00 6.6 0.31 0.02 0.01 0.01 191.0

Exponential 100 0.37 0.04 0.02 0.01 1.4 0.05 0.07 0.05 0.03 95.7
1000 0.15 0.01 0.01 0.01 6.5 0.04 0.02 0.01 0.01 180.0

bootstrapping schemes, and we chose the one that they report to
have the best performance, namely the ECDF-bootstrap, listed
as (v) in their Section 4, which we use with 250 bootstrap
repetitions. This method computes the MLE for each bootstrap
sample and then computes the bootstrap percentile interval at a

point x0 based on the 250 bootstrap replicates of the MLE at x0.
We used the R function logConCI produced by Azadbakhsh,
Jankowski, and Gao (2014) for implementing both methods.
With each of the two methods we compute the pointwise 90%
con!dence interval for each point x0 in the grid of points that
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we use to evaluate empirical coverage. Since these are pointwise
90% con!dence intervals, we expect that the coverage for the
band (i.e., the simultaneous coverage across all x0 in the grid)
is smaller than 90%, but that the intervals are narrower than
those for a simultaneous con!dence band. This is con!rmed by
the results in Table 2, which show that both methods seriously
undercover. The bootstrap is also seen to be signi!cantly more
computationally intensive than the method based on asymptotic
theory as well as Algorithm 1.

6. Discussion

The article shows how to construct con!dence bands for a log-
concave density by intersecting the log-concavity constraint
with an appropriate nonparametric con!dence set. This
approach has three strong points: First, it produces con!dence
bands with a !nite sample guaranteed con!dence level. Our
simulations have shown that this guaranteed con!dence level is
not overly conservative. Second, the approach allows to bring
modern tools from optimization to bear on this problem. This
aspect is particularly important in a multivariate setting where
it is known that computing the MLE is very time consuming.
We expect that the key ideas of the univariate construction
introduced here can be carried over to the multivariate setting
and we are working on implementing this program in the
multivariate setting. Third, it was shown that this approach
results in attractive statistical properties, namely that the
con!dence bands converge at nearly the parametric n− 1

2 rate
when the log density is k-a$ne. We conjecture that the width
of these con!dence bands will likewise achieve the optimal
minimax rate if log f is smooth rather than piecewise linear,
and we leave the proof of such a result as an open problem.

Supplementary Materials

Appendix.pdf contains the mathematical proofs for Lemma 1 and of Theo-
rem 1, and log_ccv_conf_int-master.zip contains the code. The code is also
available at github https://github.com/cvxgrp/log_ccv_conf_int.
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