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Abstract

A wide variety of problems in systems and control
theory can be cast or recast as convex problems that
involve linear matrix inequalities (LMIs). For a few
very special cases there are \analytical solutions" to
these problems, but in general they can be solved
numerically very e�ciently. In many cases the in-
equalities have the form of simultaneous Lyapunov
or algebraic Riccati inequalities; such problems can
be solved in a time that is comparable to the time
required to solve the same number of Lyapunov or
Algebraic Riccati equations. Therefore the computa-
tional cost of extending current control theory that is
based on the solution of algebraic Riccati equations
to a theory based on the solution of (multiple, simul-
taneous) Lyapunov or Riccati inequalities is modest.

Examples include: multicriterion LQG, synthesis of
linear state feedback for multiple or nonlinear plants
(\multi-model control"), optimal transfer matrix re-
alization, norm scaling, synthesis of multipliers for
Popov-like analysis of systems with unknown gains,
and many others. Full details can be found in the
references cited.

1. Motivation

This paper is motivated by two recent develop-
ments: the dramatic and continuing growth in com-
puter power, and the advent of very powerful algo-
rithms (and associated theory) for convex optimiza-
tion. As a result of these developments, we can now
solve very rapidly many convex optimization prob-
lems for which no traditional \analytic" or \closed-
form" solutions are known (or likely to exist). Indeed,
the solution to many convex optimization problems
can now be computed in a time which is comparable
to the time required to evaluate a \closed-form" so-
lution for a similar problem. In our opinion, this fact
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has far-reaching implications for engineers: it changes
our fundamental notion of what we should consider
as a solution to a problem. In the past, a \solution to
a problem" generally meant a \closed-form" or \an-
alytic" solution. We believe that in the future, our
concept of \solution" should be extended to include
many forms of convex programming.

As an example, a control engineering problem that
reduces to solving two algebraic Riccati equations is
now generally regarded as \solved." Our thesis is
that a control engineering problem that reduces to
solving even a large number of convex algebraic Ric-
cati inequalities (a problem which has no \analytic"
solution) should also be regarded as \solved", even
though there is no \analytic" solution.

A number of problems that arise in Systems and
Control such as optimal matrix scaling, digital �l-
ter realization, interpolation problems that arise in
system identi�cation, robustness analysis and state-
feedback synthesis via Lyapunov functions, can be
reduced to a handful of standard convex and qua-
siconvex problems that involve matrix inequalities.
Extremely e�cient interior point algorithms have re-
cently been developed for and tested on these stan-
dard problems; further development of algorithms for
these standard problems is an area of active research.
In this paper, we �rst brie
y describe these optimiza-
tion problems based on linear matrix inequalities. We
will then discuss a few examples of problems from
systems and control that can be cast as convex opti-
mization problems over LMIs.

2. Standard problems involving LMIs

A linear matrix inequality is a matrix inequality of
the form

F (x)
�
= F0 +

mX
i=1

xiFi > 0; (1)

where x 2 Rm is the variable, and Fi = FT
i 2

Rn�n; i = 0; : : : ;m are given. The set fx j F (x) >
0g is convex, and need not have smooth boundary.
(We've used strict inequality mostly as a convenience;
inequalities of the form F (x) � 0 are also readily han-
dled.)
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Multiple LMIs F1(x) > 0; : : : ; Fn(x) > 0 can be ex-
pressed as the single LMI diag(F1(x); : : : ; Fn(x)) >
0. Therefore we will make no distinction between
a set of LMIs and a single LMI, i.e., \the LMI
F1(x) > 0; : : : ; Fn(x) > 0" will mean \the LMI
diag(F1(x); : : : ; Fn(x)) > 0".

When the matrices Fi are diagonal, the LMI
F (x) > 0 is just a set of linear inequalities. Nonlinear
(convex) inequalities are converted to LMI form using
Schur complements. The basic idea is as follows: the
LMI �

Q(x) S(x)
S(x)T R(x)

�
> 0 (2)

where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) de-
pend a�nely on x, is equivalent to

R(x) > 0; Q(x)� S(x)R(x)�1S(x)T > 0: (3)

In other words, the set of nonlinear inequalities (3)
can be represented as the LMI (2).

The matrix norm constraint kZ(x)k < 1, where
Z(x) 2 Rp�q and depends a�nely on x, is represented
as the LMI �

I Z(x)
Z(x)T I

�
> 0

(since kZk < 1 is equivalent to I � ZZT > 0). Note
that the case q = 1 reduces to a general convex
quadratic inequality on x.

The constraint c(x)TP (x)�1c(x) < 1, P (x) > 0,
where c(x) 2 Rn and P (x) = P (x)T 2 Rn�n depend
a�nely on x, is expressed as the LMI�

P (x) c(x)
c(x)T 1

�
> 0:

More generally, the constraint

TrS(x)TP (x)�1S(x) < 1; P (x) > 0;

where P (x) = P (x)T 2 Rn�n and S(x) 2 Rn�p de-
pend a�nely on x, is handled by introducing a new
(slack) matrix variable X = XT 2 Rp�p, and the
LMI (in x and X):

TrX < 1;

�
X S(x)T

S(x) P (x)

�
> 0:

We often encounter problems in which the variables
are matrices, e.g.,

ATP + PA < 0 (4)

where A 2 Rn�n is given and P = PT is the vari-
able. In this case we will not write out the LMI
explicitly in the form F (x) > 0, but instead make

clear which matrices are the variables. The phrase
\the LMI ATP + PA < 0 in P" means that the ma-
trix P is a variable. (Of course, the Lyapunov in-
equality (4) is readily put in the form (1), as follows.
Let P1; : : : ; Pm be a basis for symmetric n � n ma-
trices (m = n(n + 1)=2). Then take F0 = 0 and
Fi = �ATPi � PiA.) Leaving LMIs in a condensed
form such as (4), in addition to saving notation, leaves
open the possibility of more e�cient computation.

As another related example, consider the algebraic
Riccati inequality

ATP + PA+ PBR�1BTP + Q < 0; R > 0 (5)

where A, B, Q = QT , R = RT are given matrices
of appropriate size, and P = PT is the variable. In-
equality (5) can be expressed as the LMI in P ,

�
�ATP � PA� Q PB

BTP R

�
> 0:

(Note that it can also be considered an LMI in P , Q,
and R.)

2.1. LMI feasibility problems

Given an LMI F (x) > 0, the corresponding LMI
Problem (LMIP) is to �nd xfeas such that F (xfeas) > 0
or determine that the LMI is infeasible. (By duality,
this means: �nd a nonzero G � 0 such that TrGFi =
0 for i = 1; : : : ;m and TrGF0 � 0.) Of course, this
is a convex feasibility problem. We will say \solving
the LMI F (x) > 0" to mean solving the corresponding
LMIP.

2.2. Eigenvalue problems

The eigenvalue problem (EVP) is to minimize the
maximum eigenvalue of a matrix, subject to an LMI:

minimize �

subject to �I � A(x) > 0; B(x) > 0:

Here, A and B are symmetric matrices that depend
a�nely on the optimization variable x. This is a con-
vex optimization problem.

2.3. Generalized eigenvalue problems

The generalized eigenvalue problem (GEVP) is to
minimize the maximum generalized eigenvalue of a
pair of matrices that depend a�nely on a variable,
subject to an LMI constraint. The general form of a



GEVP is:

minimize �

subject to �B(x) � A(x) > 0
B(x) > 0
C(x) > 0

where A, B and C are a�ne functions of x. This is a
quasiconvex problem.

Note that when the matrices are all diagonal, this
problem reduces to the general linear fractional pro-
gramming problem. Many nonlinear quasiconvex
functions can be represented in the form of a GEVP
with appropriate A, B, and C (see [1]).

3. LMI problems in systems and control

3.1. Matrix scaling problem

The problem of similarity-scaling a matrix to min-
imize its norm appears in several control applica-
tions [2, 3, 4] (see also [5] and [6] for a related prob-
lem). Given M 2 Cm�m , the optimal diagonally
scaled norm of M is de�ned as

�(M )
�
= inf

D 2 P



DMD�1


 ;

where P is the set of diagonal non-singular matrices
of size m.

Note that �(M ) < 
 if and only if there exists non-

singular D 2 P such that
�
DMD�1

�
�
�
DMD�1

�
<


2I; or M�D�DM < 
2D�D. Therefore,

�(M ) = inf
�


��M�PM < 
2P; P = P � > 0 2 P

	
Therefore �(M ) is the optimal value of the GEVP

minimize 


subject to P > 0; P 2 P
M�PM < 
2P

3.2. Lyapunov function search

Consider the di�erential inclusion (DI)

dx

dt
= A(t)x(t); A(t) 2 Co fA1; : : : ; ALg (6)

where Co denotes the convex hull. We ask whether
the DI is stable, i.e., whether all trajectories of the
system (6) converge to zero as t �! 1. A su�cient

condition for this is the existence of a quadratic posi-
tive function V (z) = zTPz such that dV (x(t))=dt < 0
for any trajectory of (6). Since

d

dt
V (x(t)) = x(t)T

�
A(t)TP + PA(t)

�
x(t);

a su�cient condition for stability is the existence of
P > 0 such that

A(t)TP + PA(t) < 0; A(t) 2 Co fA1; : : : ; ALg : (7)

If there exists such a P , we say the DI (6) is quadrat-
ically stable.

Condition (7) is equivalent to

P > 0; AT
i P + PAi < 0; i = 1; : : : ; L;

which is a linear matrix inequality in P (see for ex-
ample [7, 8, 9, 10]). Thus, determining quadratic sta-
bility is an LMIP.

V is sometimes called a simultaneous quadratic
Lyapunov function since it proves stability of each of
A1; : : : ; AL.

3.3. Lyapunov functions and state feedback

Consider the system (6) with state feedback:

dx

dt
= A(t)x(t) +B(t)u(t); u(t) = Kx(t) (8)

where

[A(t) B(t)] 2 Co f[A1 B1]; : : : ; [AL BL]g :

Our objective is to design the matrixK such that such
that (8) is quadratically stable. This is the \quadratic
stabilizability" problem (see [11], and [12, 13, 14]; re-
lated references are [15, 16, 17] and [18]).

System (8) is quadratically stable for some state
state-feedback K if there exist P > 0 and K such
that

(Ai + BiK)TP + P (Ai + BiK) < 0; i = 1; : : : ; L:

Note that this matrix inequality is not convex in P
and K. However, with the linear fractional transfor-

mation Y
�
= P�1, W

�
= KP�1, we may rewrite it

as

(Ai + BiWY �1)TY �1 + Y �1(Ai + BiWY �1) < 0:

Multiplying this inequality on the left and right by Y
(such a congruence preserves the inequality) we get
an LMI in Y and W :

Y AT
i +WTBT

i +AiY +BiW < 0; i = 1; : : : ; L:



If this LMIP in Y andW has a solution, then the Lya-
punov function V (z) = zTY �1z proves the quadratic
stability of the closed-loop system with state-feedback
u(t) = WY �1x(t).

In other words, we can synthesize a linear state
feedback for the DI (6) by solving a set of simultane-
ous Lyapunov inequalities. We will brie
y discuss the
implications of this result for robust control synthesis
in section 5..

Let us also note that by synthesizing a state feed-
back for the DI (6), we have also synthesized a suit-
able state feedback for the nonlinear, time-varying,
uncertain system

dx

dt
= f(x; u; t; p)

where p is some parameter vector, provided we have�
@f
@x

@f
@u

�
2 Co f[A1 B1]; : : : ; [AL BL]g

for all x, u, t, and p.

3.4. System realization

For the discrete-time LTI system

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k);

where x : Z+ ! Rn, u : Z+ ! Rnu y : Z+ ! Rny ,
and fA;B;Cg is a minimal realization, the system
realization problem is to �nd a change of state coordi-
nates x = T �x with two competing constraints: First,
the input-to-state transfer matrix, T�1(zI � A)�1B
should be \small", in order to avoid state over
ow
in numerical implementation; and second, the state-
to-output transfer matrix, C(zI � A)�1T should be
\small", in order to minimize e�ects of state quan-
tization at the output. We refer the reader to [19]
and [20]; the forthcoming book [21], by M. Gevers,
describes a number of digital �lter realization prob-
lems.

If it is known that the RMS value of the input is
bounded by � and the RMS value of the state is re-
quired to be less than, say, one, we have anH1 norm
bound on the input-to-state map:

�


T�1(zI �A)�1B




1
< 1: (9)

Next, suppose that the state quantization noise
is modeled as a unit white noise sequence w (i.e.,
Ew(k) = 0, Ew(k)w(j)T = �2�kjI) injected directly
into the state, and its e�ect on the output is mea-
sured by the total noise power appearing in the out-
put, which is just �2 times the square of the H2 norm
of the state-to-output transfer matrix:

pnoise = �2


C(zI �A)�1T



2
2
: (10)

Our problem is then to compute T to minimize the
output noise power (10) subject to the over
ow avoid-
ance constraint (9). We will show that this problem
can be expressed as an EVP.

The constraint (9) is equivalent to the existence of
P > 0 such that�

ATPA� P + T�TT�1 ATPB

BTPA BTPB � I=�2

�
< 0:

The output noise power can be expressed as

p2noise = �2TrTTWobsT;

where Wobs is the observability Gramian of the origi-
nal system fA;B;Cg, i.e., the unique solution of the
Lyapunov equation

ATWobsA�Wobs + CTC = 0:

With X = T�TT�1, the realization problem be-
comes: minimize �2TrWobsX

�1 subject to X > 0
and the LMI (in P > 0 and X)�

ATPA� P +X ATPB

BTPA BTPB � I=�2

�
< 0: (11)

This is a convex problem in X and P , and can be
transformed into the EVP

minimize TrY

subject to (11); P > 0;

"
Y �W

1=2

obs

�W
1=2

obs
X

#
> 0

More sophisticated realization problems are read-
ily reduced to LMI problems. For examples, we can
have a bound on the RMS value of each component
of the state, and minimize the maximumquantization
induced noise power of the components of the output.

We note that a very simple realization problem,
in which the over
ow constraint and the noise ob-
jective are both expressed as H2 constraints, has a
well-known \analytic" solution: T is chosen so that
the system is, except for a constant scaling, balanced.
Our point is that more sophisticated realization prob-
lems, which re
ect much more accurately the true
engineering speci�cations, are also readily solved, not
\analytically" but as LMI problems.

3.5. Inverse problem of optimal control

Given a system

d

dt
x(t) = Ax(t) + Bu(t)

z(t) =

�
Q1=2 0

0 R1=2

� �
x(t)
u(t)

�
x(0) = x0;



assuming (A;B) is stabilizable, (Q;A) is detectable
and R > 0, the LQR (\optimal control") problem is
to determine the input u that minimizes the perfor-
mance index Z

1

0

z(t)T z(t) dt:

The solution of this problem can be expressed as a
state-feedback u = Kx with K = �R�1BTP , where
P is the unique positive de�nite solution of the ARE

ATP + PA� PBR�1BTP +Q = 0:

The \inverse optimal control problem" is: given a
gainK, determine whether there exist Q � 0 andR >
0, (Q;A) being observable such that u(t) = Kx(t) is
the optimal control law corresponding to the corre-
sponding LQR problem.

This inverse optimal control problem was originally
considered in a famous paper of Kalman [22], who
gave the solution in the case of a single actuator in
terms of the loop transfer function. Anderson and
Moore [23, p. 131-133] give a solution based on the
singular-value plot of an appropriate loop transfer
matrix in the case of multiple actuators and known
matrix R.

The general inverse optimal control problem is
readily reduced to an LMI problem. It is equivalent
to �nding R > 0 and Q � 0 such that there exists a
positive P and a positive-de�nite W satisfying

(A+ BK)TP + P (A+BK) +KTRK +Q < 0;

ATW +WA < Q; and BTP +KR = 0:

This is an LMIP in P , W , R and Q.

4. Solving LMI-based problems

The most important point is:

LMIPs, EVPs, and GEVPs, are

tractable

in a sense that can be made precise from a number
of theoretical and practical viewpoints. (This is to be
contrasted with much less tractable problems, e.g.,
the general problem of robustness analysis for a sys-
tem with real parameter perturbations.)

From a theoretical standpoint:

� we can immediately write down necessary and
su�cient optimality conditions

� there is a well-developed duality theory (for
GEVPs, in a limited sense)

� these problems can be solved in polynomial time
(indeed with a variety of interpretations of the
term \polynomial-time").

The most important practical implication is that
there are e�ective and powerful algorithms for the
solution of these problems, that is, algorithms that
rapidly compute the global optimum, with non-
heuristic stopping criteria. Thus, on exit, the algo-
rithms can prove that the global optimum has been
obtained to within some prespeci�ed accuracy.

There are a number of general algorithms for the so-
lution of these problems, for example, the ellipsoid al-
gorithm (see e.g., [24, 25]). The ellipsoid method has
polynomial-time complexity, and works in practice for
smaller problems, but can be slow for larger problems.
Other algorithms speci�cally for LMI-based problems
are discussed in, e.g., [26, 27].

Recently, various researchers [28, 1, 29, 30] have
developed interior point methods for solving LMI-
based problems, based on the work of Nesterov and
Nemirovsky [31]. Numerical experience shows that
these algorithms solve LMI problems with extreme
e�ciency. In some speci�c cases (one is discussed
below) these methods can solve LMI-based problems
with computational e�ort that is comparable to that
required to \evaluate" the \analytic" solutions of sim-
ilar problems.

4.1. Multiple Lyapunov inequalities

In this section we consider a speci�c family of LMI
problems for which e�cient interior methods have
been developed and extensively tested.

Consider the EVP: minimize (over P ) TrCP sub-
ject to:

AT
i P + PAi + Bi < 0; i = 1; : : : ; L

where Ai; Bi; P 2 Rn�n.

With new primal-dual methods [29], this problem
can be solved in O(L1:2n4) operations. Of course, the
cost associated in solving the L independent Lyapunov
equations

AT
i Pi + PiAi + Bi = 0; i = 1; : : : ; L

is O(Ln3).

Thus the ratio of the cost of solving multiple simul-
taneous Lyapunov inequalities to the cost of solving
the same number of Lyapunov equations is O(L0:2n).
In other words:



the cost of solving multiple simultane-
ous Lyapunov inequalities is not much
more than solving the same number of
Lyapunov equations,

even though the former problem has no \analytic so-
lution" while the latter does. Similar statements hold
for multiple Riccati inequalities.

5. Multi-model robust control

The fact that multiple Lyapunov or Riccati inequal-
ities can be solved very e�ciently suggests the possi-
bility of extending current control theory and practice
beyond the solution of (a pair of) algebraic Riccati
equations. One practical implication is that the syn-
thesis of state-feedback for the problem discussed in
section 3.3. (or really, more useful extensions) is com-
putationally very cheap.

We describe here one possible extension. The cur-
rent paradigm for robust control is:

� Develop a model of the set of possible plants
in a speci�c form such as a nominal plant and
frequency-dependent bounds on the possible
plant perturbations. (Recent work on identi-
�cation seeks to make the development of plant
set models from empirical data more rigorous.)

� Apply various methods of \robust synthesis" to
determine a controller.

The remarks above suggest the following alterna-
tive and perhaps simpler paradigm:

� Develop many models of the real plant, perhaps
from experimental data taken at di�erent times,
under di�erent operating conditions, and so on.
This set of models is our model of the plant
set. In particular, we do not conjecture various
frequency response bounds on modeling errors
or plant perturbations.

� Use the method of section 3.3. (or really, exten-
sions of it that include bounds on actuator ef-
fort, etc.) to synthesize a state feedback that is
appropriate for the DI given by our plant mod-
els.

We suspect that a state feedback designed in this way
has a very high probability of success with the real
plant. We should note immediately an important lim-
itation: it is only for state feedback that these robust
synthesis problems can be reduced to LMI problems;
output feedback cannot be handled.

6. Conclusion

We have shown that many problems in systems
and control can be cast as convex optimization prob-
lems involving LMIs. These problems do not have
\analytic solutions" but can be solved extremely e�-
ciently. The list of problems we have presented is by
no means exhaustive. Other problems include:

� synthesis of gain-scheduled state-feedback

� linear controller design via Q-parametrization

� multi-criterion LQG

� interpolation problems involving scaling

� synthesis of Lyapunov functions with Popov
terms for nonlinearities

� synthesis of multipliers for analysis of systems
with unknown constant parameters

� analysis and design for randomly varying sys-
tems

� synthesis of quadratic Lyapunov functionals for
delay systems

� problems in robust identi�cation

We refer the reader to the forthcoming mono-
graph [33] for details.

7. History

Perhaps the most famous LMI in control is the
Lyapunov inequality for the stability of LTI sys-
tems ATP + PA < 0 (see for example, [34, p.277]),
which was originally considered about 100 years ago.
Yakubovich was the �rst to make systematic use
of LMIs along with the \S-procedure" for prov-
ing stability of nonlinear control systems (see refer-
ences [35, 36, 37, 38]). The works of Popov [39] and
Willems [40] on optimal control outlined the relation-
ship between the problem of absolute stability of au-
tomatic control, H1 theory and LMIs. Willems [41],
in particular, mentions LMIs as potentially powerful
tools for systems analysis:

The basic importance of the LMI seems to be

largely unappreciated. It would be interest-

ing to see whether or not it can be exploited

in computational algorithms, for example.

|Jan Willems, 1971.

More recent work on LMIs includes:



� Barmish, Hollot [11, 13]: quadratic stabilizabil-
ity

� Khargonekar & Rotea [16, 42]: mixed H2/H1

� Doyle, Packard & associates [18, 45, 46, 47, 46]:
LMIs, � problems and robust control

� Geromel, Peres & Bernussou [48, 49]: robust
control

� Safonov [50, 51, 52]: Km-synthesis

� Nesterov & Nemirovskii [31], Vandenberghe &
Boyd [29], Haeberly & Overton [53], Jarre [54],
Fan [55, 56]: algorithms

� Boyd, El Ghaoui, Feron & Balakrishnan [33]:
monograph in preparation
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