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ABSTRACT

This paper introduces a computationally efficent outer approxima-
tion to the Hadamard, i.e., element-wise, product of two ellipsoids.
This element-wise product corresponds to multiplicative uncer-
tainties, which arrive commonly in practice. We consider the case
where both ellipsoids describe real numbers and the case in which
the ellipsoids correspond to the direct-sum representation of com-
plex numbers.

1. INTRODUCTION

Uncertainties that are multiplicative in nature arise often in prac-
tice; consider, for example, beamforming using the amplified out-
put of an antenna array in which the gains and phases of the elec-
tronics paths that are not precisely known. This is depicted schemat-
ically in Figure 1. The gains may be known to have some a-priori
uncertainty; in other applications, these quantities are estimated in
terms of a mean vector and covariance matrix. In both cases, this
uncertainty is well described by an ellipsoid.

Assume that the range of possible values of the array manifold
is described by an ellipsoid £ = {Au + b | |ju| < 1}. Similarly
assume the multiplicative uncertainties lie within a second ellip-
soid &2 = {Cv + d | ||v|]] < 1}. The set of possible values of the
array manifold in the presence of multiplicative uncertainties is de-
scribed by the numerical range of the Hadamard i.e. element-wise
product of £; and &;.

1.1. Ellipsoid descriptions

A n-dimensional ellipsoid can be defined as the image of a n-
dimensional Euclidean ball under an affine mapping from R™ to
R% ie,

€={Au+c||ull <1}, M

where A € R**™ and ¢ € R™. The set £ describes an ellipsoid
whose center is ¢ and whose principal semiaxes are the unit-norm
left singular vectors of A scaled by the corresponding singular val-
ues. We say that an ellipsoid is flat if this mapping is not injec-
tive, i.e., one-to-one. Flat ellipsoids can be described by (1) in the
proper affine subspaces of R”. In this case, A € R**! andu € R'.
An interpretation of a flat uncertainty ellipsoid is that some linear
combinations of the data are known exactly; see [1].

Unless otherwise specified, an ellipsoid in R™ will be parame-
terized in terms of its center ¢ € R™ and a symmetric non-negative
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Fig. 1. The possible values of array manifold are contained in
ellipsoid &;; the values of gains are described by ellipsoid &;.
The design variable w need to consider the multiplicative effect
of these uncertainties.

definite configuration matrix Q € R"*™ as
£(e,Q) ={Qu+c||ull <1} @

where Q'/2 is any matrix square root satisfying Q*/2(Q'/%)T =
Q. When Q) is full rank, the non-degenerate ellipsoid £(c, Q) may
also be expressed as

EeQ={z|-0"Q ' (z-c) <1}. G3)

The first representation (2) is more natural when & is degenerate
or poorly conditioned. Using the second description (3), one may
quickly determine whether a point is within the ellipsoid.

There are two common techniques for fitting an ellipsoid to a
collection of points: finding an ellipsoid based on the first and sec-
ond order statistics of the points and finding the minimum volume
ellipsoid containing these points.

1.2. Ellipsoid computation using mean and covariance of data

The mean and covariance are calculated in the usual fashion. If the
underlying distribution is multivariate normal, the k — o ellipsoid
would be expected to contain a fraction of points equal to 1 —
x*(k?,n), where n is the dimension of the random variable. It is
prudent to examine the relationship between the scaling factor of
the ellipsoid and the fraction of points contained therein.
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1.3. Minimum volume ellipsoid (MVE)

Let S = {s1, - ,5m} € R®" be a set of samples of possible
values of the array manifold a(-). Assume that S is bounded. In the
case of a full rank ellipsoid, the problem of finding the minimum
volume ellipsoid containing the convex hull of S can be expressed
as the following semidefinite program (SDP):

minimize logdet F~!
subjectto F=FT =0 ) 4)
|Fsi—gll <1, i=1,---,m.

See Vandenberghe and Boyd [2] and Wu and Boyd [3]. Equation
(4) is a convex problem in variables F' and g. For A full rank,

{zllIFz—-gll <1} = {Autc|lull <1} ®)

with A= Flandc= Flg.

Compared to an ellipsoid based on the first and second order
statistics of the data, a minimum volume ellipsoid is robust in the
sense that it is guaranteed to cover all the data points used in the de-
scription; the MVE is not robust to data outliers. The computation
of the covering ellipsoid is relatively complex; see Vandenberghe
et al. [4].

1.4. The sum of two ellipsoids

Recall that we can parameterize an ellipsoid in R™ in terms of its
center ¢ € R™ and a symmetric non-negative definite configuration
matrix @ € R**" as

E(c,Q) = {Q"*u+c||lul <1}

where Q*/2 is any matrix square root satisfying Q'/2(QY/?)T =
Q. Letz € & = E(c1, Q1) and y € & = E(cz2, Q2). The range
of values of the geometrical (or Minkowski) sum z = z + y is
contained in the ellipsoid

E=E(c1+c2,Q(p) (6)

for all p > 0 where
Q) =(1+p NQ1+(1+p)Qx; ™

see Kurzhanski and Valyi [5]. The value of p is commonly chosen
to minimize either the determinant of Q(p) or the trace of Q(p).
Minimizing the trace of Q in equation (7) affords two computa-
tional advantages over minimizing the determinant. First, comput-
ing the optimal value of p can be done with O(n) operations; min-
imizing the determinant requires O(n®). Second, the minimum
trace calculation may be used without worry with degenerate el-
lipsoids.

An example of the geometrical sum of two ellipses for various
values of p is shown in Figure 2. .

1.5. Minimum trace

There exists an ellipsoid of minimum trace, i.e., sum of squares of
the semiaxes, that contains the sum &;(c1, Qq) + £2(c2, Q2); itis
described by £(c1 + c2, Q(p*)), where Q(p) is as in (7),

x ’I\'Ql
P =\ mon ®

and Tr denotes trace. This fact, noted by Kurzhanski and Valyia
[5, §2.5], may be verified by direct calculation.

Fig. 2. Outer approximations of the sum of two'ellips"es (center)
for different configuration matrices Q(p)

2. AN OUTER APPROXIMATION TO THE HADAMARD
PRODUCT OF TWO ELLIPSOIDS

In this section we will develop outer approximations to the Hadamard
product of two ellipsoids. In §2.2, we consider the case where
both ellipsoids describe real numbers; the case of complex values
is considered in §2.3. Prior to this, we will review some basic facts
about Hadamard products. '

2.1. Preliminaries

The Hadamard product of matrices has considerable structure; the
interested reader is referred to Horn and Johnson [6]. The Hadamard
product of vectors is the element-wise product of the entries. We
denote the Hadamard product of vectors z and y as

1%
T2Y2
Toy=
TnlYn
The Hadamard product of two matrices is similarly denoted and
also corresponds to the element-wise product. As with other oper-

ators, we shall consider the Hadamard product operator o to have
lower precedence than ordinary matrix multiplication.

Lemmal Foranyz,y € R"
(@oy)(zoy)” = (zz”) o (yy").

Lemma2 Letz € & = {Au| |lu|| £ 1} andy € & =
{Cv | ||v|| < 1}. Then the field of values of the Hadamard product
x o y is contained in the ellipsoid

Ezy = {(AAT 0 CCTY ?w | ||wl| < 1}.

Lemma3 Let & = {Au |||u|| < 1} and let d be any vector in
R™. The Hadamard product of &1 o d is contained in the ellipsoid

€ = {(AAT 0 dd™)"?u | |lu] < 1}
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Fig. 3. Samples of the Hadamard product of two ellipsoids. The
outer approximations based on the minimum volume and mini-
mum trace metrics are labeled &,y and e

2.2, Outer approximation

Let& = {Au+b|||ul| <1} and & = {Cv +d| |v] £ 1}
be ellipsoids in R™. Let  and y be n dimensional vectors taken
from ellipsoids £; and & respectively. Expanding the Hadamard
product z o y, we have

zoy = bod+ AuuTAT o Cu™CT + ©)
AuwuT AT 0 dd™ + b6 o CvvTCT.

By Lemmas 2 and 3, the field of values of the Hadamard product
zoy € {(Au+b)o(Cv+d)||lu] <1,|lv]| <1}
is contained in the geometrical sum of three ellipsoids

S = &od,AAToCCT) + (10)
E(0, AAT 0 ddT) + £(0,6T 0 CCT).

Ignoring the correlations between terms in the above expansion,
we find that S C £(bo d,Q), where

Q = (1+2)(1+2)44T0c0T+

1 +p) (1+5) AAT 0 dd™+ an
(1+p1) (1 4 p2) CCT o bbT

for all p1 > 0 and p2 > 0. The values of p; and p2 may be chosen
to minimize the trace or the determinant of Q.

As a numerical example, we consider the Hadamard product
of two ellipsoids in R2. The ellipsoid & is described by

El

A [ —0.6452

—1.5221 b= —5.0115
0.2628 »u T

2.2284 1.8832

the parameters of &, are

0.8744

o[ -Lom0
= 0.7776 9.7264

0.7919 ] de [ ~9.5254 ]

Samples of the Hadamard product of & o & are shown in Fig-
ure 3 along with the outer approximations based on the minimum
volume and minimum trace metrics, Emv and Em respectively.

2.3. The complex case

We now extend the results of §2.2 to the case of complex values. In
this section, for reasons of numerical efficiency, we will compute
the approximating ellipsoid using the minimum trace metric. As
before, we will consider complex numbers to be represented by
the direct sum of their real and imaginary components. While it
is possible to cover the field of values with a complex ellipsoid
in C™, doing so generally results in a larger ellipsoid than if the
direct sum of the real and imaginary components are covered in
R2". Let z € R®™ and y € R®" be the direct sum representations
of @ € C™ and B € C™ respectively; i.e.,

_ | Rea _ | Repg
m_[lma]’ y—[lmﬂ ’

We can represent the real and imaginary components of y = ao 3
as

N Revy | _ | ReaoRefS+ImaocIm§g
2 = Imy | | ImaocReB+ReaocImp
= Fixzo Foy+ Faz o Fuy,
(12)
where
I. 0 | o
Fl—[o 1,.]’ Fz_[In o]’
and

L |0 I
S P R e
Note that multiplications associated with matrices F1, ... , Fy cor-
respond to reordering of the calculations, not general matrix mul-
tiplies. Applying (12)toz € & = {Au+b | |ju| < 1} and
y € & ={Cv+d||v] <1} yields:

z = FiboFd+
F3bo Fud +
FAwT ATFT o F,CovTCTFT +
FLAuwuT ATFT o FaddTFF +
FibbTFT o F,Cov™ CTFY + (13)
F3AuuTATF3T ) F4C'1wTCTFf +
F3AuuTATFY o Fudd"FT +
FbbT FY o FyCovTCTFT.

The direct sum representation of the field of values of the com-
plex Hadamard product « o 3 is contained in the geometrical sum
of ellipsoids

S = E(Fibo Fad, RAATFT o F,CCTF]) +
E(Fsbo Fud, FLAATFT o Fodd" FY) +
E(0, Fibb" FT o FRCCTFY) + 14
£(0, s AATFT o F,CCTET) + (14)
£(0, AATFT o FyddTF]) +
£(0, Fsbb" FY o FyCCTFY).

As before, we compute £(c, Q) 2 S where the center of the cov-
ering ellipsoid is given by the sum of the first two terms of (13);
the configuration matrix Q is calculated by repeatedly applying (6)
and (7) to the remaining terms of (13), where p is chosen according
to (8).
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2.4. Animproved approximation

We now make use of two facts which generally lead to tighter ap-
proximations. First, the ellipsoidal outer approximation ignores
any correlation between the terms in expansion (13); hence, it is
productive to reduce the number of these terms. If, for example,
bT(AAT)™1b « dT(CCT)™1d, i.e., the relative size of the first
uncertainty region is much larger than that of the second, by chang-
ing coordinates, we may eliminate a significant term from this ex-
pansion. . .
Consider a Given’s rotation matrix of the form:

cos 6y sin 61

cos O sin 8,
T= .
~sinf _cos b

. (15)

—sinép, cos by,

The effect of premultiplying a direct sum representation of a com-
plex vector by T is to shift the phase of each of component by the
corresponding angle 6;. It is not surprising, then, that for all T;,
and T, of the form (15) we have

T T, Y (FiTez 0 FaTyy + FsToz o FaTyy) 316)
= Fiz o Foy + F3x 0 Fyy,

which does not hold for unitary matrices in general.

We now compute rotation matrices 7 and Ty such that the
entries associated with the imaginary components of products T4
and T, d respectively are set to zero. In computing T}, we choose
the values of @ in (15) according to 6; = £ (b(i)++/—1xb(n+1)).
T, is similarly computed using the values of d; i.e., §; = Z(d(¢) +
v/=1 x d(n + )). We change coordinates according to

A « TA
b — Ty
C « TC
d — Ty

The rotated components associated with the ellipsoid centers have
the form

b1 d.l
no=|b |, ma=|% |, w
0 0

zeroing the term FsTy AATTT Ff o (FyTudd™TT FY) in (13).
The desired outer approximation is computed as the geometrical
sum of outer approximations to the remaining five terms i.e.,

£(c,Q) 2 E(Fibo Fod, LAATFT 0 F,CCTFY) +
E(Fsbo Fyd, L AATFT o FoddTFT) +
£(0, FibbTFT o FRCCTFF) + 18)
£(0, RAATFT o FsCCTEY) +
£(0, FsbbTFY o F4CCTFY).

Second, while the Hadamard product is commutative, the outer
approximation based on covering the individual terms in the ex-
pansion (13) is sensitive to ordering; simply interchanging the
dyads {A, b} and {C, d} results in different qualities of approx-
imations. The ellipsoidal approximation associated with this inter-
changed ordering is given by:

E(c,Q) 2 E(Fido Fab,FiCCTFT o R AATE]) +
E(Fsd o Fab, F{CCTFT o FRbbTFT) +
E(0, Fidd" F{ o F,AATFY) + (19)
E(0,FsCCTFY o MAATFL) +
E(0, F3ddTFY o F4AATFEY).

Since our goal is to find the smallest ellipsoid covering the
numerical range of z we compute the trace associated with both
orderings and choose the smaller of the two. This determination
can be made without computing the minimum trace ellipsoids ex-
plicitly, making use of the following fact. Let & be the minimum
trace ellipsoid covering &1 + ... 4+ &;. The trace of & is given by:

) 2
’I‘r£o=(\/’1‘r£1+\/’1\-¢€z+...+ Trep) ,

which may be verified by direct calculation. Hence, determining
which of (18) and (19) yields the smaller trace can be performed in
O(n) calculations. After making this determination, we perform
the remainder of the calculations to compute the desired configu-
ration matrix Q. We then transform @ back to the original coordi-
nates according to:

Q — (T, T QT ' T HT.

3. CONCLUSIONS
Ellipsoidal calculus techniques may be used to efficiently propa-
gate uncertainty ellipsoids in the presence of multiplicative uncer-
tainties. The use of the minimum trace metric allows these com-
putations to be performed efficiently. The ideas extend readily to
the case where the ellipsoids describe complex numbers.
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