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Robust Control Design for Ellipsoidal Plant Set

Ming K. Lav*t  STEPHEN BoyD*

Abstract This paper presents a control design method
for continuous-time plants whose uncertain parameters in
the output matrix are only known to lie in an ellipsoidal
set. The desired control is chosen to minimize the maxi-
mum linear quadratic regulator (LQR) cost from all the
plants with parameters in the given set. Although no par-
ticular form is assumed for the minimax control, it turns
out that it is the LQR control for one of the plants in
the set, the worst-case plant. By defining an appropriate
mapping, which maps an element from the given ellip-
soidal set to an element of the same set, the existence of
this worst-case plant is proved. A simple heuristic algo-
rithm used to compute the worst-case plant is also given.

1 Introduction

A problem of great interest in control theory is the design
of a controller which can guarantee some level of perfor-
mance in the presence of plant parameter uncertainty.
Kharitonov’s theorem provides a necessary and sufficient
analysis test for determining the robust stability of poly-
nomials with perturbed coefficients, however, there are
few results that exploit Kharitonov’s theorem for synthe-
sizing robust controllers, e.g., [7] and [12]. Another ap-
proach to this problem is to define a set of nominal values
of the uncertain parameters and consider deviations from
these nominal values. A comprehensive survey of the dif-
ferent parameter space methods for robust control design,
as opposed to frequency domain methods, can be found
in [23].

The technique of solving control problems as minimax
optimization problems is the basis of the so-called “Heo
optimal control theory.” In the standard Ho, problem,
the control input is chosen to minimize the norm of the
output and the exogenous input is chosen to maximize it
[2]. Along this line, the structured singular value (1) syn-
thesis method is used to find controllers which minimize
a Ho, objective subject to plant perturbations, e.g., see
(8], [9], and references therein. In [20], a game theoretic
approach is used, where the control, restricted to a func-
tion of the measurement history, plays against adversaries
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composed of the process and measurement disturbances,
and the initial states. Another example of solving control
problems as minimax problems is [18], which presents a
controller design method to minimize the weighted sum
of the maximum linear quadratic gaussian (LQG) per-
formance objectives over a set of worst plant parameter
changes.

The approach of using set-membership to describe
plant parameter uncertainty has gained popularity in re-
cent years, e.g., [14], [16], [26], [3], [17], and references
therein. This approach of parameter identification is orig-
inated from early works of [22] and [5], where the set of
possible system states compatible with the observations is
shown to be an ellipsoid. Motivated by ellipsoidal bounds
on plant parameters, we pose the following robust control
problem: given that the unknown parameters in the out-
put matrix of the plant are known to lie in an ellipsoid,
find the control which minimizes the maximum LQR cost
from all plants with parameters in the given set. Viewed
in terms of game theory, the control and plant uncertainty
are strategies employed by opposing players in a game,
where the control is chosen to minimize the LQR cost
and the plant uncertainty is chosen to maximize it. As a
special case of our problem, finding the finite-horizon con-
trol for a discrete finite-impulse response (FIR) plant, was
solved in [15]. In that case, it was shown that the mini-
mization is a convex optimization problem. In this paper,
we are generalizing the robust control design problem to
find the infinite-horizon controls for continuous plants.

The assumption that the output matrix in the plant de-
scription contains all the uncertainty deserves further dis-
cussion. First, this is a natural extension of the discrete
FIR finite-horizon problem solved in [15]. In the discrete
case, FIR model sets can be identified from input-output
data of a plant, i.e., the coefficients of the FIR model are
identified to belong to a set. This is particularly attrac-
tive when a bounded noise model, often a more realis-
tic assumption than a statistical noise model, is used in
the identification [19]. In the continuous case, Laguerre
models can be used so that the identification is reduced
to estimating the Laguerre coefficients [25]. Uncertainty
in the Laguerre coefficients can then be described by set
membership of the output matrix. ‘Second, by limiting
uncertain parameters to the output matrix, we simplify
the analysis and gain more insights into the nature of the
solution.

The paper is organized as follows, after stating the
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problem in the next section, the minimax control is
proved in section 3 to be the LQR control designed for the
worst-case plant from the given ellipsoidal set. By defin-
ing an appropriate mapping, which maps an element of
the given set to an element of the same set, the existence
of this worst-case plant is proved. In section 4, a simple
algorithm used to compute the worst-case plant is given.
A two-mass-one-spring example is used in section 5 to il-
lustrate the ideas presented. The paper concludes with
some remarks in section 6.

2 Problem Formulation

Consider the following family of systems

2(t) = Az(t)+bu(t), 2(0) =z
ut) = cTa(),

where A, b, and z¢ are fixed and given, and

(1)
2

c€®={6:(6-0.)"R(-6.)<1, R=RT>0}.
3)
For a given control, u : IRy — IR, and a fixed ¢ € O, the
LQR cost is defined to be

oo
J(u,c) 2 / [ru(t)? + y(t)?] dt. (4)
0

We assume that (A, b) is controllable (or at least stabiliz-
able) and (¢, A) is observable (or at least detectable) for
all ¢ in ©. The robust control design problem is to find a
control u : IRy — IR that solves the following minimax
problem:

()

Since no particular form is assumed for the control , such
as linear state-feedback, the minimization in (5) is over
all possible u’s. Note also that we chose the initial time
t = 0 for convenience only, the problem can be posed at
any initial time ¢ = t;. Therefore, one can design a new
controller each time © gets updated.

nhlnrcneaéc.](u,c).

The cost objective in (4) and the ellipscidal set in (3)
lead to another interesting interpretation for the minimax
problem in (5) once we rewrite (4) as

=]
J(u,c) = / [ru(t)? + 27 (t)ecT z(t)] dt. (6)
0
Now, instead of saying that we are designing a controller
for a set of uncertain plants described by (1) through
(3), we can also say that we are designing a controller
for a set of uncertain objective functions. (This interpre-
tation contrasts with the standard LQR design where a
controller is obtained for fixed weighting matrices.) Note
that cTz(t) is a dot product, so it depends on the an-
gle between c and z(t). Geometrically, the set © sweeps
out a “cone” (with a curved base) of possible ¢’s. Thus,

we can interpret © as a set of “view angles” from which
we calculate the cost. The minimax control from (5) is
therefore robust to all these “view angles.” This interpre-
tation is interesting since in practice we seldom look at
performance from just one angle.

3 Minimax Solution

To solve the minimax problem in (5), recall from [6, pages
274-282] that (u*,c*) is a saddle point if

J(u,¢) < J(u*,c") < J(u,c) (™

forallu: Ry — IR and ¢ € ©. In that case, we have

* *y : — .
(u*,c") = argxr:‘lmzleag(.](u,c) = argrcréaéxn}‘lnj(u,c).

®)
Our goal in this section is to prove that there always exists
such (u*,¢*) for (5).

From LQR control theory, the second inequality in (7)
is true if

@)

where uzgr(c*) denotes the LQR control designed for the
plant in (1) with ¢ = ¢* in (2). It follows that the first
inequality in (7) is also true if

u* = urgr(c*),

¢* = argmaxJ (urgr(c*),c). (10)
<

Thus, if ¢* exists for (10), the minimax problem in (5) is

solved by (9). Note that the existence of ¢* is not obvious

because ¢* must have the property that when urgr(c*)

is applied to each e € ©, the maximum cost occurs at ¢*.

We now express the LQR cost in (10) in a more con-
venient form. Since (A, b) is stabilizable and (¢, A) is
detectable for all ¢ in ©, for each ¢ € © there is an asso-
ciated state-feedback control upgr(c) given by

urQr(c) = — K.z, (11)
where )
K, = ;bTPc (12)
and P, satisfies the algebraic Riccati equation
ATP.4+ PA— PP e =0, (13)

We will use X, to denote the solution of the associated
Lyapunov equation,
(A—bK)X. 4+ X (A—bK)T 4+ 2ozl =0,  (14)

where

X, = /oo e(A_bKC)'zgzge(A“bxc)T' dt. (15)
0
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The LQR cost in (10) can now be expressed as
J(uLqr(c*),¢)
=2
/ [1'u;,qn(c“)2 + yz] dt
OOO
/o [rK.;-:czTKZ‘.

00
/ rK o e(A"0Ke )'zozg'e(A'bK“ )TtK;"l dt
0

+ cT:c:tTc] dt

o0 T
+ / cTe(A—bK¢.)tZOzg'e(A—bK¢.) te di
0
rKeeXeo KL + ¢ Xeec. (16)

For a given ¢*, K. X.+KZ% in (16) is fixed. Thus, the
maximization in (10) becomes

¢t = argmca.chXc.c. (17
Note that the feedback gain K.« does not depend on the
initial condition zg, but the Lyapunov solution X.. does.
Therefore, the solution ¢* is a function of zo. However,
this dependence on zo can be removed if we start with
the assumption that zo is a random vector with known
mean m and covariance C and the objective in (4) is an
expectation over zg. In that case, X is the solution of
(14) with zoz] replaced by C +mm”.

Our ultimate goal is to find ¢* in (17), but we must first
prove that such c* always exists. To do that, we define
the mapping f: CEO - €O,

f@) é

argmaxc’ Xzc,
¢

>l

(18)

where X satisfies the Lyapunov equation associated with
¢ as in (14). It was shown in [15] that the solution of (18)
is given by .

é=TA" 3240, €Oy, (19)

where
R = TATT (20)
: = (Q-An7'B (21)
A = max) ([ _gﬂq' _QI ]) (22)
Q = RFXx.R°% (23)
B = —R %X, (24)
(S {6:(0~06:"R(6—0.)=1} (25)

(© is the boundary of ©.) Therefore, the mapping f con-
sists of two parts. First, it takes the given ¢ and produces
X¢ via equations (12) through (14). Then ¢ is given by
(19).

To show that c* exists in (17) is equivalent to showing
that a fixed point c* exists for f, i.e.,

f(e*) =¢" (26)

To do that, we need a lemma extracted from {11} and a
simple form of Brouwer’s Theorem [13, pages 366-367].

Lemma 1 If (A, b) is stabilizable, then over any region
where (c, A) is detectable, the algebraic Riccati equation
solution P, in (13) is continuous in cc.

Proof of Lemma 1 Consider the matrix-valued func-
tional
1

g (P,ccT)=ATP+ PA- ;PbbTP +ect.  (27)
For any c, P, satisfies (13), so g (P.,cc”) = 0. Asa
quadratic function in P and a linear function in ccT, the
functional g is infinitely differentiable, and its derivative
with respect to P at the point (P;,ccT) is the linear op- -
erator given for any matrix Z by

Dgo(Z)=(A-bK:)" Z+ Z(A-bK.). (28)
Since K, is stabilizing, the operator Dg, is nonsingu-
lar by Lyapunov’s equation. Therefore, from the implicit
function theorem (see, e.g., [21, pages 375-380]), there ex-
ists an infinitely differentiable matrix-valued function ¥
such that

P. = ¥(cch). (29)
Thus, P, is continuous in ceT. o

Theorem 2 (Brouwer’s Theorem) Let C be a com-
pact, convez subset of R". Then any continuous function
f:C — C has at least one point ¢* such that f(c*) = c*.

The existence of ¢* in (17) can now be guaranteed by
the following theorem.

Theorem 3 (Fixed Point) The mapping f defined in
(18) is continuous in € and it has e fized point.

Proof of Theorem 3 First, we need to show that the
mapping from ¢ to Xz is continuous.

1. Let ¢ = ¢ in (12) through (14). By Lemma 1, P of
(13) is continuous in &7 . Since each element of et
is simply a product of elements from ¢, &¢7 is contin-
uous in ¢. By the continuity of composite functions,
P; is continuous in ¢.

. K5 of (12) is continuous in P, thus it is continuous
in €.

. By the implicit function theorem (similar to the proof
of Lemma 1), X; is continuous in K. By the con-
tinuity of composite functions, Xz is continuous in

C.
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Second, we need to show that the mapping from X; to é
is also continuous.

1. Both Q and 8 in (23) and (24) are continuous in X;.
Since each eigenvalue of a matrix is continuous in
the elements of the matrix (see, e.g., [10, pages 191-
192)), Xin (22) is continuous in X;. Thus, by the
continuity of composite functions, X is continuous in

C.

. Each element of (Q — AI)~! is given by its cofactor
divided by det(Q2—AI). The cofactors and det(Q2—AT)
are sums of products of elements of Q — M. Thus,
(2 — AI)~! is continuous in & which implies # in
(21) is continuous in ¢ also. (Exception is when Q —
Al is singular, which is treated in [15]. However,
continuity is not affected.)

3. éin (19) is continuous in .

Therefore, the mapping f from ¢ to ¢ is continuous, and
by Brouwer’s Theorem it has at least one fixed point. O

The existence of a saddle-point solution for the mini-
max problem in (5) is stated in the following theorem.

Theorem 4 (Existence) There ezists at least one
(u*,c*) such that (7) is true and the minimaz problem
in (5) has a saddle-point solution. If there are more than
one (u,c) which satisfy (7), then their associated LQR
costs must be equal and any one of the solutions is equally
valid.

Proof of Theorem 4 From Theorem 3, we know that
(10) has at least one fixed point. Therefore, (7) has at
least one saddle-point solution. To show that two fixed
points of (10) must have the same LQR cost, assume that
there exist (u1,c¢1) and (ug, c2) such that

J(u1,¢) < J(ur, 1) < J(u,e1), Yu,c (30)

and
J(u2)c) < J(u27c'-’) < J(ua 62)7

Then let ¢ = c; and u = uy in (30), we get

Yu, c

(31)

J(u1,¢2) < J(u1,c1) < J(uz,01) < J(ua,c2)  (32)
or
J(u1,¢1) < J(uz,c2). (33)
Similarly, let ¢ = ¢; and u = u; in (31), we get
J(uz, 1) < J(ug,c2) < J(ug,e0) < J(uy,c1)  (34)
or
J(uz,c2) < J(uy,e1). (35)
Therefore, (33) and (35) imply
J(u1,c1) = J(uz, c2). (36)

0

This section can be summarized as follows: a fixed-
point solution ¢* exists for (10) and the solution to the
minimax problem in (5) is given by (9). We now turn to
the computation of c*.

Oy

N=14

Figure 1: Candidate points used in calculating ¢4, and
ék+].

4 Fixed-Point Computation

Before describing our simple heuristic algorithm, we
should point out that there exist many algorithms to
compute Brouwer fixed points (see e.g., [1] and [24].)
Although these algorithms can guarantee that the fixed
points will be found, they are known to have combina-
torial complexity. In comparison, we have no guarantee
that our algorithm will converge, but in many cases that
we have tried, it usually converges in less than 10 itera-
tions.

The goal of the iterative algorithm below is to find ¢
such that the distance between & and & = f(Cr), as de-
fined in (18), is small, i.e., a fixed point. Given ¢ and &
at the kth iteration, steps 6 through 8 below are designed
to find C41 and éx41. The algorithm accomplishes this by
doing a local minimization over a set of candidate points,
{pi, i=1,...,N}. Let {pi, i =1,...,N} be N -1
equally-spaced points between ¢; and é, with py = &
(see Figure 1). Vectors are then drawn from . to each

p;, until they intersect ©; at points {pi, ¢ = 1,...,N},
where
i = w0, (37)
{1
pi — 6.
w = BTl (39)
llp: — 6ell,

Next, we compute p; = f(7;) in step 7. After comparing

294



the distances ||p; — Bi||,, the §; and f; with the minimum
distance become x41 and &1, respectively.

A Heuristic Algorithm

1. Define the mapping f from ¢ to é:

compute Xz in (18) using (13), (12), and (14) then
compute é using (19);

k—0;

. Let & be a random point on Oy;

. Compute & = f(¢1);

k—k+1;

. Compute {fi;, i =1,..., N} on © using (37);

o N o O A~ W N

. Compute p; = f(p;) fori=1,...,N;
. Compute
j = argmin||p: — pill, (40)
then
Cky1 = B (41)
Gy = Bj (42)

9. If ||ék 41 — Er41[l; > €, go to step 5.

Note that there is no guarantee that ||éx —Ckfl, <
lék+1 — Ex+1ll5, S0 we don’t have a convergence proof for
this algorithm. However, with ¢ = 0.001, this algorithm
usually converges in less than 10 iterations.

5 Example

We will use the two-mass-one-spring system described in
[4] in our example. This system, shown in Figure 2, can
be represented in state-space form as

) 0 107 [m
29 _ 0 0 0 1 Z9
i!a - —""l:—l mi‘k 00 I3
Iy ;:—, —a 00 T4
0
+ i u (43)
m1
0
y=c'z (44)

where z; and z, are the positions of masses 1 and 2, and
z3 and z4 are the velocities of masses 1 and 2, respectively.
We use masses m; = ma = 1 kg and spring coefficient
k =1 N/m for this system.

1 T2
u .
e my _M— my
k

Figure 2: Two-mass-one-spring system.

The initial conditionis zo=[ 1 —1 0 0", which
means the masses are displaced toward each other. For
the ellipsoidal set in (3), weuse . = [0 1 0 1 ]T
and R = I. Thus, the output y is nominally the sum of
the position and velocity of the second mass, but ¢ can
still be anywhere within the unit ball. We choose r = 1in
the objective and N = 4 in the fixed-point algorithm. For
the stopping criterion, e = 0.001 is used. The algorithm
converges in 5 iterations.

Table 1 shows the cost matrix for this example, where
cLQR is the element in O which maximizes the cost for
u = urgr(f:). As expected, the control u = urgr(fe)
applied to ¢ = . gives the lowest cost for this control,
5.6, but its cost can be quite high at other c’s such as
cLgr and ¢*. In comparison, the control u = urgr(c*)
applied to ¢ = 0, gives a slightly higher cost (but this
may not be the lowest cost for this control as it is likely
that another ¢ achieves the minimum) while keeping the
maximum cost to 13.4, as compared to a maximumof 17.1
for u = urqr(fc). Therefore, this example illustrates that
by giving up some performance at the nominal plant &,
we gain some performance back for other plants in the
set.

i [c=8.[c=crqr]c=c"|
u= ULQR(OC) 5.6 17.1 16.9
u= uLQR(c*) 7.3 13.3 13.4

Table 1: Cost matrix for different u’s and ¢’s.

6 Conclusion

We presented a controller design method for continuous-
time plants whose uncertain parameters in the output
matrix are known to lie in an ellipsoidal set.” This de-
sign problem is posed as a minimax problem, where the
control and plant uncertainty can be viewed as strategies
employed by opposing players in a game, in which the
control is chosen to minimize the LQR cost and the plant
uncertainty is chosen to maximize it. Without restricting
the form of this minimax control, we proved that it is the
LQR control for one of the plants in the ellipsoidal set,
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the worst-case plant. We then proved that this worst-case
plant always exists as a fixed point for a certain map-
ping. A simple heuristic algorithm for computing this
fixed point was also given.
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