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1.1 ~-entropy of a matrix

Let C' € C™ ™. The Frobenius norm of C is defined as ||C||r = v TrCC*, where C* denotes
the complex-conjugate transpose and Tr denotes trace. The spectral norm of C' is defined
as [|C]] = y/Amax(CC*), where Ap.x denotes the maximum eigenvalue.

The problem described in this chapter involves the y-entropy, which is a convex function
of C' closely related to these two norms. For v > 0 we define the y-entropy of C' as
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The Frobenius and spectral norms, and the y-entropy, are unitarily invariant, and so can
be expressed in terms of the singular values o; of C' (i.e., the squareroots of the eigenvalues
of CC*, ordered as o1 > g9 > - ++):
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The following facts are readily shown (see [1, §5.3.5]). The squareroot of the y-entropy

always exceeds the Frobenius norm:
VI (C) = |IC||F,

and as v becomes large, it converges to the Frobenius norm:

lim \/Z,(C) = |||
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We also have the more complicated converse inequality

V() < /= log(1 — a?) ]l

where oo = ||C||/y < 1. Thus, the relative increase in the squareroot of the vy-entropy over
the Frobenius norm can be bounded by an expression that only depends on how close the
spectral norm is to the critical value 7. For example, if ||C]] < v/2 (a < 0.5), we have

1Clr < /I, (C) < 1.073][C|p.

The y-entropy arises in several contexts, for example H,, control, in which the so-called
central controller minimizes the integral over frequency of the y-entropy of the closed-loop
transfer matrix (see, e.g., [2, 1]). It arises as the natural self-concordant barrier for the convex
set { C' | ||C|| <7 }, in interior-point optimization methods (see [4, 3]). The y-entropy also
arises in other applications, e.g., contractive matrix completion problems [5].

1.2 Stochastic interpretation

The Frobenius norm can be interpreted as the root-mean-square gain of the matrix C, as
follows. Suppose w € C" is a random vector with zero mean and covariance I, i.e.,

Ew =0, Eww! =1,

and let z = Cw. Then we have
E[z|* = [|CI.

We now connect a feedback gain A € C™*™ around C), i.e., we consider
z = Clu, u=w+ Az.
Eliminating u yields the familiar formula for the ‘closed-loop gain’:
z=C(I - AC) tw.

(The inverse exists if the ‘small-gain’ condition ||A|| < v holds.) Evidently the root-mean-
square value of z is given by ||C(I — AC)™!|r.

Now we assume that A is a random matrix, independent of w, such that ||A|| < v with
probability one. The mean-square value of z is then

E|z||* = E|C(I — AC) I3

where the expectation is over the random feedback gain A.
Our open problem can now be stated:



Find a distribution for A (if one exists) such that the mean-square value of z is
given by L,(C), ie., L,(C) = E||C(I — AC)™||3.

Evidently the distribution should be unitarily invariant, and must satisfy [|A|| < v with
probability one.

If such a distribution can be found we will have a nice interpretation of the entropy as the
mean-square value of the output of a system, with a random input and a random feedback
connected around it. The inequalities above would then show that the random feedback has
little effect unless the norm of the feedback is significant compared to the norm of C.

1.3 The scalar case

The problem has been solved for the scalar case m = n = 1 in [1]. If A is uniformly
distributed on the disk of radius 1/ in the complex plane, then we have
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This can be shown as follows.
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(the integration over 6 can be evaluated by residues).
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