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1.1 
-entropy of a matrix

Let C 2 Cm�n. The Frobenius norm of C is de�ned as kCkF =
p
TrCC�, where C� denotes

the complex-conjugate transpose and Tr denotes trace. The spectral norm of C is de�ned

as kCk =
q
�max(CC�), where �max denotes the maximum eigenvalue.

The problem described in this chapter involves the 
-entropy, which is a convex function

of C closely related to these two norms. For 
 > 0 we de�ne the 
-entropy of C as

I
(C) =

(
�
2 log det (I � 
�2CC�) if kCk < 


1 if kCk � 


The Frobenius and spectral norms, and the 
-entropy, are unitarily invariant, and so can

be expressed in terms of the singular values �i of C (i.e., the squareroots of the eigenvalues

of CC�, ordered as �1 � �2 � � � �):

kCkF =

sX
i

�2i ; kCk = �1;

and

I
(C) =

( P
i�
2 log (1� (�i=
)

2) if �1 < 


1 if �1 � 

:
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The following facts are readily shown (see [1, x5.3.5]). The squareroot of the 
-entropy
always exceeds the Frobenius norm: q

I
(C) � kCkF ;
and as 
 becomes large, it converges to the Frobenius norm:

lim

!1

q
I
(C) = kCkF :

We also have the more complicated converse inequalityq
I
(C) �

1

�

q
� log(1� �2) kCkF ;

where � = kCk=
 < 1. Thus, the relative increase in the squareroot of the 
-entropy over

the Frobenius norm can be bounded by an expression that only depends on how close the

spectral norm is to the critical value 
. For example, if kCk � 
=2 (� � 0:5), we have

kCkF �
q
I
(C) � 1:073kCkF .

The 
-entropy arises in several contexts, for example H
1
control, in which the so-called

central controller minimizes the integral over frequency of the 
-entropy of the closed-loop

transfer matrix (see, e.g., [2, 1]). It arises as the natural self-concordant barrier for the convex

set f C j kCk � 
 g, in interior-point optimization methods (see [4, 3]). The 
-entropy also

arises in other applications, e.g., contractive matrix completion problems [5].

1.2 Stochastic interpretation

The Frobenius norm can be interpreted as the root-mean-square gain of the matrix C, as

follows. Suppose w 2 Cn is a random vector with zero mean and covariance I, i.e.,

Ew = 0; EwwT = I;

and let z = Cw. Then we have

Ekzk2 = kCk2F :
We now connect a feedback gain � 2 Cn�m around C, i.e., we consider

z = Cu; u = w +�z:

Eliminating u yields the familiar formula for the `closed-loop gain':

z = C(I ��C)�1w:

(The inverse exists if the `small-gain' condition k�k < 
 holds.) Evidently the root-mean-

square value of z is given by kC(I ��C)�1kF .
Now we assume that � is a random matrix, independent of w, such that k�k < 
 with

probability one. The mean-square value of z is then

Ekzk2 = EkC(I ��C)�1k2F :
where the expectation is over the random feedback gain �.

Our open problem can now be stated:
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Find a distribution for � (if one exists) such that the mean-square value of z is

given by I
(C), i.e., I
(C) = EkC(I ��C)�1k2F .

Evidently the distribution should be unitarily invariant, and must satisfy k�k < 
 with

probability one.

If such a distribution can be found we will have a nice interpretation of the entropy as the

mean-square value of the output of a system, with a random input and a random feedback

connected around it. The inequalities above would then show that the random feedback has

little e�ect unless the norm of the feedback is signi�cant compared to the norm of C.

1.3 The scalar case

The problem has been solved for the scalar case m = n = 1 in [1]. If � is uniformly

distributed on the disk of radius 1=
 in the complex plane, then we have

I
(C) = EkC(I ��C)�1k2F = E

���� C

1��C

����
2

:

This can be shown as follows.

E

���� C

1��C

����
2

=

2

�

Z
1=


0

Z
2�

0

���� C

1� rei�C

����
2

r d� dr

=

(
�
2 log(1� jCj2=
2) jCj < 


1 jCj � 


(the integration over � can be evaluated by residues).
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