
Available online at www.sciencedirect.com

Systems & Control Letters 53 (2004) 65–78
www.elsevier.com/locate/sysconle

Fast linear iterations for distributed averaging
Lin Xiao∗, Stephen Boyd

Information Systems Laboratory, Stanford University, Stanford, CA 94305-9510, USA

Received 21 March 2003; received in revised form 24 February 2004; accepted 25 February 2004

Abstract

We consider the problem of !nding a linear iteration that yields distributed averaging consensus over a network, i.e., that
asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the
problem of !nding the fastest converging linear iteration can be cast as a semide!nite program, and therefore e"ciently and
globally solved. These optimal linear iterations are often substantially faster than several common heuristics that are based
on the Laplacian of the associated graph.
We show how problem structure can be exploited to speed up interior-point methods for solving the fastest distributed

linear iteration problem, for networks with up to a thousand or so edges. We also describe a simple subgradient method that
handles far larger problems, with up to 100 000 edges. We give several extensions and variations on the basic problem.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Distributed consensus; Linear system; Spectral radius; Graph Laplacian; Semide!nite programming

1. Introduction

We consider a network (connected graph)
G=(N;E) consisting of a set of nodesN={1; : : : ; n}
and a set of edges E, where each edge {i; j} ∈E is an
unordered pair of distinct nodes. The set of neighbors
of node i is denotedNi = {j|{i; j} ∈E}.
Each node i holds an initial scalar value xi(0)∈R,

and x(0)=(x1(0); : : : ; xn(0)) denotes the vector of the
initial node values on the network. (We can think of
xi(0) as the amount of a certain resource allocated to
node i.) The network gives the allowed communica-
tion between nodes: two nodes can communicate with

∗ Corresponding author.
E-mail addresses: lxiao@stanford.edu (L. Xiao),

boyd@stanford.edu (S. Boyd).

each other, if and only if they are neighbors. We are
interested in computing the average of the initial val-
ues, (1=n)

∑n
i=1 xi(0), via a distributed algorithm, in

which the nodes only communicate with their neigh-
bors. (If we think of the node values as the amount
of a resource, then the average is a fair or uniform
allocation of the resource across the network.)
Distributed averaging can be done in many ways.

One straightforward method is #ooding. Each node
maintains a table of the initial node values of all the
nodes, initialized with its own node value only. At
each step, the nodes exchange information from their
own tables and the tables of their neighbors. After a
number of steps equal to the diameter of the network,
every node knows all the initial values of all the nodes,
so the average (or any other function of the initial
node values) can be computed.

0167-6911/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.sysconle.2004.02.022

mailto:boyd@stanford.edu
mailto:lxiao@stanford.edu

66 L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78

In this paper, we only consider distributed linear
iterations, which have the form

xi(t + 1) =Wiixi(t) +
∑

j∈Ni

Wijxj(t); i = 1; : : : ; n;

where t=0; 1; 2; : : : is the discrete time index, and Wij
is the weight on xj at node i. Setting Wij = 0 for j "∈
Ni, this iteration can be written in vector form as

x(t + 1) =Wx(t): (1)

The constraint on the sparsity pattern of the matrix W
can be expressed as W ∈S, where

S= {W ∈Rn×n|Wij = 0 if {i; j} "∈ E and i "= j}:
The distributed averaging problem arises in the

context of coordination of networks of autonomous
agents, in particular, the consensus or agreement
problem among the agents. Distributed consensus
problems have been studied extensively in the com-
puter science literature (see, e.g., [23]). Recently, it
has found a wide range of applications, in areas such
as formation #ight of unmanned air vehicles and clus-
tered satellites, and coordination of mobile robots.
The recent paper [33] studies linear and nonlinear
consensus protocols in these new applications with
!xed network topology. Related coordination prob-
lems with time-varying topologies have been studied
in [21] using a switched linear systems model, and in
[27] using set-valued Lyapunov theory.
In previous work, the edge weights used in the

linear consensus protocols are either constant or only
dependent on the degrees of their incident nodes. With
these simple methods of choosing edge weights, many
concepts and tools from algebraic graph theory (e.g.,
[5,17]), in particular the Laplacian matrix of the as-
sociated graph, appear to be very useful in the con-
vergence analysis of consensus protocols (see, e.g.,
[33] and Section 4 of this paper). The graph Laplacian
has also been used in control of distributed dynamic
systems (e.g., [13,14,25]).
This paper is concerned with general conditions on

the weight matrix W for the linear iteration (1) to
converge to the average at each node, and how we
chooseW to make the convergence as fast as possible.

1.1. Fastest distributed linear averaging problem

The linear iteration (1) implies that x(t) =Wtx(0)
for t=0; 1; 2; : : : . We want to choose the weight matrix

W so that for any initial value x(0), x(t) converges to
the average vector

$x = (1Tx(0)=n)1= (11T=n)x(0);

i.e.,

lim
t→∞

x(t) = lim
t→∞

Wtx(0) =
11T

n
x(0): (2)

(Here 1 denotes the vector with all coe"cients one.)
This is equivalent to the matrix equation

lim
t→∞

Wt =
11T

n
:

Assuming this holds, we de!ne the asymptotic con-
vergence factor as

rasym(W) = sup
x(0) %= $x

lim
t→∞

(
‖x(t)− $x‖2
‖x(0)− $x‖2

)1=t
;

and the associated convergence time

!asym =
1

log(1=rasym)
; (3)

which gives the (asymptotic) number of steps for the
error to decrease by the factor 1=e.
Another measure of the speed of convergence is the

per-step convergence factor which is de!ned as

rstep(W) = sup
x(t)%= $x

‖x(t + 1)− $x‖2
‖x(t)− $x‖2

:

We can also de!ne the associated convergence time
!step, as in (3).
In this paper we consider the following problem:

!nd the weight matrix W ∈S, consistent with the
given network, that makes the convergence as fast
as possible. In terms of the asymptotic convergence
factor, this can be posed as the following optimization
problem:

minimize rasym(W)

subject to W ∈S; lim
t→∞

Wt = 11T=n:
(4)

Here W is the optimization variable, and the network
is the problem data. A similar optimization problem
can be formulated by replacing the objective func-
tion rasym(W) with the per-step convergence factor
rstep(W). We call problem (4) (and in general its

L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78 67

variations, e.g., with the objective function rstep(W),
or additional constraints on the weight matrix)
the fastest distributed linear averaging (FDLA)
problem.
The FDLA problem (4) is closely related to the

problem of !nding the fastest mixing Markov chain
on a graph [9]; the only di%erence in the two problem
formulations is that in the FDLA problem, the weights
can be (and the optimal ones often are) negative, hence
faster convergence could be achieved compared with
the fastest mixing Markov chain on the same graph.
Despite the similarity in the problem formulations,
this paper gives new results on convergence condi-
tions for the weights without non-negative constraint,
considers the per-step convergence factor, discusses
in detail how to exploit structure in an interior-point
method for solving the associated semide!nite
programms, and introduces several interesting
extensions.

1.2. Outline

In Section 2, we give necessary and su"cient con-
ditions for a distributed linear iteration to converge to
the average vector, and characterize the asymptotic
and per-step convergence factors. In Section 3, we
formulate the FDLA problem (with asymptotic con-
vergence factor) as a spectral radius minimization
problem, and the FDLA problem, with per-step con-
vergence factor, as a spectral norm minimization
problem. We then show that a variation on the
FDLA problem, in which the weights are assumed
to be symmetric, can be formulated as a semidef-
inite program (SDP). We also show how to for-
mulate the FDLA problem, with per-step conver-
gence factor, as an SDP. In Section 4, we describe
some simple heuristics for the FDLA problem,
based on the graph Laplacian, which at least guar-
antee convergence. In Section 5, we give some
numerical examples, and show that the optimal
weights often result in substantially faster convergence
than those obtained from the simple heuristics. In Sec-
tion 6, we show how to exploit structure in solving the
symmetric FDLA problem (or the per-step FDLA
problem) by an interior-point method, and also give a
simple subgradient method that handles large-scale
problems. In Section 7, we describe several exten-
sions of the FDLA problem.

2. Convergence conditions

As we have seen, the distributed linear iteration (1)
converges to the average, i.e., Eq. (2) holds, for any
initial vector x(0)∈Rn, if and only if

lim
t→∞

Wt =
11T

n
: (5)

We have the following necessary and su"cient con-
ditions for this matrix equation to hold.

Theorem 1. Eq. (5) holds, if and only if

1TW = 1T; (6)

W1= 1; (7)

"(W − 11T=n)¡ 1; (8)

where "(·) denotes the spectral radius of a matrix.
Moreover,

rasym(W) = "(W − 11T=n); (9)

rstep(W) = ‖W − 11T=n‖2: (10)

(Here ‖ ·‖ 2 denotes the spectral norm, or maximum
singular value.)

Before proving the theorem, we !rst give some
interpretations:

• Eq. (6) states that 1 is a left eigenvector of W asso-
ciated with the eigenvalue one. This condition im-
plies that 1Tx(t+1)= 1Tx(t) for all t, i.e., the sum
(and therefore the average) of the vector of node
values is preserved at each step.

• Eq. (7) states that 1 is also a right eigenvector ofW
associated with the eigenvalue one. This condition
means that 1 (or any vector with constant entries)
is a !xed point of the linear iteration (1).

• Together with the !rst two conditions, condition (8)
means that one is a simple eigenvalue of W , and
that all other eigenvalues are strictly less than one
in magnitude.

• If the elements of W are nonnegative, then (6) and
(7) state that W is doubly stochastic, and (8) states
that the associated Markov chain is irreducible
and aperiodic.

68 L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78

Proof. First we prove su"ciency. If W satis!es
conditions (6) and (7), then

Wt − 11T=n=Wt
(
I − 11T=n

)

=Wt
(
I − 11T=n

)t

=
(
W

(
I − 11T=n

))t

=
(
W − 11T=n

)t
; (11)

where in the second equality, we use the fact that I −
11T=n is a projection matrix. Now applying condition
(8) leads to the desired convergence (5).
To prove necessity, we use the fact that limt→∞Wt

exists (such matrices are called semi-convergent) if
and only if, there is a nonsingular matrix T such that

W = T

[
I# 0

0 Z

]

T−1;

where I# is the #-dimensional identity matrix
(06 #6 n) and Z is a convergent matrix, i.e.,
"(Z)¡ 1. (This can be derived using the Jordan
canonical form; see [32,26].) Let u1; : : : ; un be the
columns of T and vT1 ; : : : ; v

T
n be the rows of T−1. Then

we have

lim
t→∞

Wt = lim
t→∞

T

[
I# 0

0 Zt

]

T−1

= T

[
I# 0

0 0

]

T−1 =
#∑

i=1

uivTi : (12)

Since each uivTi is a rank-one matrix and their sum∑n
i=1 uiv

T
i =TT−1=I has rank n, the matrix

∑#
i=1 uiv

T
i

must have rank #. Comparing Eqs. (5) and (12) gives
#=1 and u1vT1 =11

T=n, which implies that both u1 and
v1 are multiples of 1. In other words, one is a simple
eigenvalue of W and 1 is its associated left and right
eigenvectors, i.e., Eqs. (6) and (7) hold. Moreover,

"

(

W − 11T

n

)

= "

(

T

[
0 0

0 Z

]

T−1

)

= "(Z)¡ 1;

which is precisely condition (8).

Finally Eqs. (9) and (10) can be derived directly
from the error dynamics

x(t + 1)− $x=

(

W − 11T

n

)

x(t)

=

(

W − 11T

n

)

(x(t)− $x):

In other words, the asymptotic convergence fac-
tor rasym is the spectral radius of W − 11T=n, and
the per-step convergence factor rstep is its spectral
norm.

3. Fastest distributed linear averaging problems

Using Theorem 1, the FDLA problem (4) can be
formulated as the following spectral radius minimiza-
tion problem:

minimize "(W − 11T=n)

subject to W ∈S; 1TW = 1T; W1= 1;
(13)

with optimization variable W .
Even though the constraints in problem (13) are lin-

ear equalities, the problem in general is very hard. The
reason is that the objective function, i.e., the spectral
radius of a matrix, is not a convex function; indeed
it is not even Lipschitz continuous (see, e.g., [35]).
Some related spectral radius minimization problems
are NP-hard [6,29].
We can also formulate the FDLA problem, with

per-step convergence factor, as the following spectral
norm minimization problem:

minimize ‖W − 11T=n‖2
subject to W ∈S; 1TW = 1T; W1= 1:

(14)

In contrast to the spectral radius formulation (13),
this problem is convex, and can be solved e"ciently
and globally.
Now suppose we add the additional constraint that

weights are symmetric, i.e.,Wij=Wji for all {i; j} ∈E.
In this case the spectral radius minimization prob-
lem (13) and the spectral norm minimization prob-
lem (14) coincide (since the spectral norm of a sym-
metric matrix is also its spectral radius). In this case,

L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78 69

both problems can be cast as

minimize "(W − 11T=n)

subject to W ∈S; W =W T; W1= 1;
(15)

which is a convex problem. We refer to this problem
as the symmetric FDLA problem.
The problem of minimizing the per-step conver-

gence factor, i.e., the spectral norm minimization
problem (14), can be expressed as an SDP, by in-
troducing a scalar variable s to bound the spectral
norm ‖W − 11T=n‖2, and expressing the norm bound
constraint as a linear matrix inequality (LMI):

minimize s

subject to

[
sI W − 11T=n

W T − 11T=n sI

]

¡ 0;

W ∈S; 1TW = 1T; W1= 1:

(16)

Here the symbol ¡ denotes matrix inequality, i.e.,
X ¡ Y means that X − Y is positive semide!-
nite. For background on SDP and LMIs, see, e.g.,
[1,2,11,12,16,41–43]. Related background on eigen-
value optimization can be found in, e.g., [10,22,36].
Similarly, the symmetric FDLA problem (15) can

be expressed as the SDP

minimize s

subject to −sI 4 W − 11T=n 4 sI;

W ∈S; W =W T; W1= 1;

(17)

with variables s∈R and W ∈Rn×n.

4. Heuristics based on the Laplacian

There are some simple heuristics for choosing
W ∈S that guarantee convergence of the distributed
linear averaging iteration, and sometimes give rea-
sonably fast convergence. These heuristics are based
on the Laplacian matrix of the associated graph and
assign symmetric edge weights. To describe these
heuristics, we !rst need to introduce the incidence
matrix of the graph and an alternative representation
of the FDLA problem based on it.
Suppose the graph has m edges, which we label

1; : : : ; m. We arbitrarily assign a reference direction

for each edge. (We will see later that this choice has
no e%ect on the weight assignment, analysis, or algo-
rithm.) The incidence matrix A∈Rn×m is de!ned as

Ail =






1 if edge l starts from node i;

−1 if edge l ends at node i;

0 otherwise:

The Laplacian matrix of the graph is de!ned as L=
AAT (and does not depend on the choice of refer-
ence directions). The Laplacian matrix is a useful tool
in algebraic graph theory, and its eigenstructure re-
veals many important properties of the graph (see,
e.g., [17,24]). We note for future use that L is posi-
tive semide!nite, and since our graph is assumed con-
nected, L has a simple eigenvalue zero, with corre-
sponding eigenvector 1.
We can use the incidence matrix to derive an alter-

native representation of the symmetric FDLA prob-
lem. Since we consider symmetric weights, each edge
l of the graph is associated with the single weight
wl = Wij = Wji, where edge l is incident to nodes i
and j, which we denote l ∼ {i; j}. We let w∈Rm de-
note the vector of weights on the edges. Using this
notation, the matrix W can be written as

W = I − A diag(w)AT: (18)

The advantage of expressingW in the form (18) is that
it automatically satis!es the constraints W ∈S, W =
W T, and W1 = 1. Therefore the (symmetric) FDLA
problem (15) can be expressed as the unconstrained
minimization problem

minimize ‖I − A diag(w)AT − 11T=n‖2; (19)

with variable w∈Rm. This representation will also be
used in the discussion of computational methods in
Section 6.

4.1. Constant edge weights

The simplest approach is to set all the edge weights
(for neighboring nodes) equal to a constant $; the
self-weights on the nodes are then chosen to satisfy
the condition W1 = 1. This corresponds to w = $1,
and the associated weight matrix

W = I − $AAT = I − $L; (20)

70 L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78

which can be expressed as

Wij =






$; {i; j} ∈E;

1− di$; i = j;

0; otherwise;

where di is the degree of node i (i.e., the number of
neighbors of the node i). Distributed linear averaging
with this weight matrix is thus equivalent to the fol-
lowing commonly used iteration (see, e.g., [33]):

xi(t + 1) = xi(t) + $
∑

j∈Ni

(xj(t)− xi(t));

i = 1; : : : ; n:

Since L is positive semide!nite, wemust have $¿ 0
for the convergence condition "(W − 11=n)¡ 1 to
hold. From Eq. (20), we can express the eigenvalues
of W in terms of those of L:

%i(W) = 1− $%n−i+1(L); i = 1; : : : ; n;

where %i(·) denotes the ith largest eigenvalue of a
symmetric matrix. In particular, the eigenvalue zero
of L corresponds to the eigenvalue one of W (i.e.,
%n(L)=0, %1(W)=1). The spectral radius ofW−11T=n
can then be expressed as

"(W − 11T=n) =max{%2(W);−%n(W)}

=max{1−$%n−1(L); $%1(L)−1}: (21)

From this we can determine the range of $ over which
convergence is obtained: we have "(W − 11T=n)¡ 1,
if and only if

0¡$¡
2

%1(L)
: (22)

The choice of $ that minimizes (21) is given by

$∗ =
2

%1(L) + %n−1(L)
: (23)

This gives the best possible constant edge weight.
There are some simple bounds that give choices for

$ that do not require exact knowledge of the Laplacian
spectrum. For example, we have the following bounds:

%1(L)6 max
{i; j}∈E

(di + dj);

with equality if and only if the graph is bipartite
and semiregular (see, e.g., [17,24]). It follows that

distributed linear averaging (with constant edge
weight $) converges for $ in the range

0¡$¡
2

max{i; j}∈E(di + dj)
: (24)

In particular, convergence is guaranteed if $∈
(0; 1=dmax), where dmax is the maximum degree over
the nodes in the network. In fact, convergence is
guaranteed using the maximum-degree weights,

$md =
1
dmax

; (25)

provided the graph is not bipartite.
Compared with the optimal weights, the maximum-

degree weights often lead to much slower convergence
when there are bottle-neck links in the graph. In [8],
we give an example of two complete graphs connected
by a bridge, where the optimal weight matrix W ∗ can
perform arbitrarily better than the maximum-degree
weights, in the sense that the ratio (1 − r∗asym)=
(1 − rmdasym) can be unbounded as n (the number of
nodes in the graph) increases.

4.2. Local-degree weights

Another simple method is to assign the weight on
an edge based on the larger degree of its two incident
nodes:

wl =
1

max{di; dj}
; l ∼ {i; j}:

We call these weights the local-degree weights, since
they depend only on the degrees of the incident nodes.
This method comes from the Metropolis–Hastings
algorithm, used to simulate a Markov chain with uni-
form equilibrium distribution; see, e.g., [9]. Similar
to the maximum-degree weights, the local-degree
weights guarantee convergence provided the graph is
not bipartite.

5. Examples

We !rst consider the small network, with 8 nodes
and 17 edges, shown in Fig. 1. For this network,
the best constant edge weight, found from (23), is
$∗ = 0:227. By solving the SDP (17), we found the
optimal symmetric edge weights, which are labeled in

L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78 71

0.2

0.2

0.2

0.2

0.2 0.20.2 0.2

0.2
0.2

0.2 0.2

0.2
0.2

0.2

0.2

0.2

0.20.2
0.2

0.4

0.4

−0.1

−0.1

−0.1

Fig. 1. A small graph with 8 nodes and 17 edges. Each edge and
node is labeled with the optimal symmetric weights, which give
the minimum asymptotic convergence factor.

Fig. 1. Note that the optimal symmetric weights for
the two middle nodes, and the edge connecting them,
are negative. To say the least, this is not an obvious
choice of weights.
The asymptotic convergence factors and con-

vergence times of the four choices of weights are
summarized in Table 1. For this example the
maximum-degree and local-degree weights result in
the slowest convergence, with the optimal symmet-
ric weights substantially faster than the best constant
weight.

5.1. A larger network

Next we consider the graph shown in Fig. 2, which
has 50 nodes and 200 edges. This graph was ran-
domly generated as follows. First we randomly gener-
ate 50 nodes, uniformly distributed on the unit square.

Table 1
Convergence factors/times of di%erent weights for the graph in Fig. 1

Maximum-degree Local-degree Best constant Optimal symmetric

"(W − 11T=n) 0.746 0.743 0.655 0.600
! = 1=log(1=") 3.413 3.366 2.363 1.958

Table 2
Convergence factors/times of di%erent weights for the graph in Fig. 2

Maximum-degree Local-degree Best constant Optimal symmetric

"(W − 11T=n) 0.971 0.949 0.947 0.902
! = 1=log(1=") 33.980 19.104 18.363 9.696

Fig. 2. A randomly generated network with 50 nodes and
200 edges.

Two nodes are connected by an edge if their distance
is less than a speci!ed threshold. Then we increase the
threshold until the total number of edges is 200. (The
resulting graph is connected.)
The asymptotic convergence factors and conver-

gence times, for the four di%erent sets of weights, are
summarized in Table 2. It can be seen that the conver-
gence with the optimal symmetric weights is roughly
twice as fast as with the best constant edge weight and
the local-degree weights, and is more than three times
faster than the maximum-degree weights.
Fig. 3 shows the eigenvalue distribution for the

four weight matrices. Each of the distributions has
a single eigenvalue at one. The convergence of the

72 L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

5 maximum-degree weights

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

5 local-degree weights

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

5 best constant edge weight

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

5 optimal symmetric weights

Fig. 3. Distribution of the eigenvalues of W with four di%erent strategies. The dashed lines indicate ±"(W − 11T=n).

maximum-degree method is determined by its second
eigenvalue, although it has a negative eigenvalue.
For the local degree weights, the second eigenvalue
is smaller, and the smallest eigenvalue is more neg-
ative, but still not enough to a%ect the convergence
factor. The best constant edge weights always make
"(W − 11T=n) = %2(W) = −%n(W), as shown in
the !gure. For the optimal symmetric weights, the
eigenvalues (other than 1) have an approximately
symmetric distribution, with many at or near the
two critical values ±"(W − 11T=n). Fig. 4 shows
the distribution of the optimal symmetric edge and
node weights. It shows that many of the weights
are negative.
We also solved problem (16) to !nd the op-

timal (possibly asymmetric) weights that mini-
mize the per-step convergence factor; We found
that r∗step = 0:902, and the solution W ∗ also turned
out to be symmetric (the solution is non-unique).
Our computational experience shows that allowing
asymmetric weights usually does not lead to mean-
ingful improvement of the per-step convergence
factor.

6. Computational methods

6.1. Interior-point method

Standard interior-point algorithms for solving SDPs
work well for problems with up to a thousand or
so edges (see, e.g., [1,12,31,41–44]). The particular
structure of the SDPs encountered in FDLA problems
can be exploited for some gain in e"ciency, but prob-
lems with more than a few thousand edges are prob-
ably beyond the capabilities of current interior-point
SDP solvers.
We consider a simple primal barrier method, with

the standard log-determinant barrier function (see,
e.g., [12, Chapter 11]); the same techniques can
be used to compute the search directions in other
interior-point methods (e.g., primal–dual). In the pri-
mal barrier method, at each step we need to compute
a Newton step for the problem of minimizing the
function

&(s; w) = 's− log det(sI +W − 11T=n)

− log det(sI −W + 11T=n); (26)

L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78 73

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

12

Fig. 4. Distribution of the optimal symmetric edge and node weights, found by solving the SDP (17). Note that many weights are negative.

where '¿ 0 is a parameter and W denotes I −
A diag(w)AT. The main e%ort is in forming the
Hessian matrix H = ∇2&(s; w), the gradient vector
g = ∇&(s; w), and then computing the Newton step
−H−1g. We will show that the Hessian and gradient
can be formed e"ciently, by exploiting the structure
of W , namely,

W = I − A diag(w)AT = I −
m∑

l=1

wlalaTl

= I −
m∑

l=1

wl(ei − ej)(ei − ej)T; (27)

where ei denotes the ith standard unit vector, and
al = ei − ej, with l ∼ {i; j}, is the lth column of the
incidence matrix A.
We index the entries of the gradient vector from

0 to m, with g0 denoting the derivative with respect
to s. Similarly, we index the rows and columns of
the Hessian H from 0 to m, with index 0 referring to
the variable s. Each Newton step can be computed as
follows:

1. Compute the matrices

U = (sI +W − 11T=n)−1;

V = (sI −W + 11T=n)−1:

Since the matrices to be inverted are positive de!-
nite, they can be computed by dense Cholesky fac-
torization and back substitution. This costs (5=3)n3

#ops per inversion, so the total cost of this step is
(10=3)n3 #ops. (Alternatively, we can exploit the
structure of the matrices, which are sparse plus a
rank one matrix, to formU and V more e"ciently.)

2. Form the gradient and Hessian of & as follows:

g0 = ' − trU − trV;

gl = tr(UalaTl)− tr(ValaTl)

=(Uii + Ujj − 2Uij)− (Vii + Vjj − 2Vij);

l ∼ {i; j}; l= 1; : : : ; m;

H00 = trU 2 + trV 2;

H0l =−tr(UalaTl U) + tr(ValaTl V)

=−
(
(U 2)ii + (U 2)jj − 2(U 2)ij

)

+
(
(V 2)ii + (V 2)jj − 2(V 2)ij

)
;

l ∼ {i; j}; l= 1; : : : ; m;

Hll′ = tr(UalaTl Ual′a
T
l′) + tr(Vala

T
l Val′a

T
l′)

= (Uii′ + Ujj′ − Uij′ − Ui′j)2

+(Vii′ + Vjj′ − Vij′ − Vi′j)2;

l ∼ {i; j}; l′ ∼ {i′; j′};

l= 1; : : : ; m; l′ = 1; : : : ; m:

These formulas are derived using Eq. (27). The
structure exploited here is similar to the methods
used in the dual-scaling algorithm for large-scale
combinatorial optimization problems, studied in
[3]. The total costs of this step (number of #ops)
is on the order of m2 (negligible compared with
steps 1 and 3).

74 L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78

3. Compute the Newton step −H−1g by Cholesky
factorization and back substitution. The cost of this
step is (1=3)m3 #ops.

The primal barrier method usually !nds the optimal
solution within 20–80 N steps, at a cost of (10=3)n3+
(1=3)m3 #ops per step.

6.2. Subgradient method

We now give a simple subgradient method that can
solve the symmetric FDLA problem on a large-scale
graph, with 100 000 or more edges. The disadvan-
tage, compared to interior-point methods, is that this
algorithm is relatively slow, and has no simple stopp-
ing criterion that guarantees a certain level of sub-
optimality.
Again consider problem (19), repeated here as

minimize r(w) = ‖I − A diag(w)AT − 11T=n‖2:

Here r represents rasym or rstep, which are the same
for symmetric weight matrices. The objective function
r(w) is a nonsmooth convex function.
A subgradient of r at w is a vector g∈Rm that

satis!es the inequality

r(w̃)¿ r(w) + gT(w̃ − w)

for any vector w̃∈Rm. If r is di%erentiable at w, then
g=∇r(w) is the only subgradient; but when r is not
di%erentiable at w, it can have multiple subgradients.
Subgradients play a key role in convex analysis, and
are used in several algorithms for convex optimization
(see, e.g., [4,7,20,38,40]).
We can compute a subgradient of r at w as follows.

If r(w)=%2(W) and u is the associated unit eigenvec-
tor, then a subgradient g is given by

gl =−(ui − uj)2; l ∼ {i; j}; l= 1; : : : ; m:

Similarly, if r(w)= %n(W) and v is a unit eigenvector
associated with %n(W), then

gl = (vi − vj)2; l ∼ {i; j}; l= 1; : : : ; m:

A more detailed derivation of these formulas can be
found in [9]. For large sparse symmetric matrices
W , we can compute a few extreme eigenvalues and
their corresponding eigenvectors very e"ciently using
Lanczos methods (see, e.g., [37,39]). Thus, we can
compute a subgradient of r very e"ciently.

The subgradient method is very simple:

given a feasible w(1) (e.g., from the maximum-degree
or local-degree heuristics)

k := 1
repeat
1. Compute a subgradient g(k) of r at w(k),
and set w(k+1) = w(k) − (kg(k)=‖g(k)‖.

2. k := k + 1.

Here the stepsize (k is nonnegative and satis!es the
diminishing stepsize rule:

lim
k→∞

(k = 0 and
∞∑

k=1

(k =∞:

The convergence of this algorithm is proved in [40,
Section 2.2]. Some closely related methods for solv-
ing large-scale SDPs and eigenvalue problems are the
spectral bundle method [19] and a prox-method [30];
see also [34].
To demonstrate the subgradient method, we apply

it to a large-scale network with 10 000 nodes and
10 0000 edges. The graph is generated as follows.
First we generate a 10 000 by 10 000 symmetric ma-
trix R, whose entries Rij, for i6 j, are independent
and uniformly distributed on the interval [0; 1]. Then
we choose a threshold value)∈ [0; 1], and construct
the graph by placing an edge between nodes i and j
if Rij6). We choose) such that there are precisely
100 000 edges (this graph is connected).

0 50 100 150 200
Iteration number

250 300 350 400
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
λ2(w)
λn(w)

Fig. 5. Progress of the subgradient method for FDLA problem on
a large network with 10 000 nodes and 100 000 edges.

L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78 75

We applied the subgradient method with stepsize
(k =1=(4

√
k), starting with the local-degree weights,

which has convergence factor r=0:730. Fig. 5 shows
the progress of the algorithm, plotting the magnitude
of the two extreme eigenvalues %2 and %n of the matrix
W . After 400 iterations, the algorithm gives a conver-
gence factor r=0:473, which is a signi!cant reduction
compared with the local-degree weights.

7. Extensions

In this section we describe several extensions of the
basic FDLA problems described above.

7.1. Central weights

It is possible to consider criteria other than the
asymptotic convergence factor or per-step factor in
the selection of the weight matrix. Here we describe
one simple example: we de!ne the central weights as
those that result in asymptotic convergence and min-
imize the logarithmic barrier function

log det(I − 11T=n+W)−1

+log det(I + 11T=n−W)−1: (28)

(The terminology follows control theory; see, e.g.,
[28].) In terms of the eigenvalues %i of W , the central
weights minimize the objective
n∑

i=2

log
1

1− %2i

(subject to |%i|¡ 1; i=2; : : : ; n); in contrast, the fastest
converging symmetric weights minimize the objective
function

max
i∈{2;:::; n}

|%i|=max{%2;−%n}:

The weight design problem with objective (28) is an
unconstrained smooth convex minimization problem,
readily solved using Newton’s method.

7.2. Sparse graph design

An interesting variation on the FDLA problem is
to !nd a sparse subgraph of the given graph, while
guaranteeing a certain convergence factor. In other
words, we seek an edge weight vector with as many

zero entries as possible, subject to a prescribed max-
imum for the convergence factor. This is a di"cult
combinatorial problem, but one very e%ective heuris-
tic to achieve this goal is to minimize the ‘1 norm
of the vector of edge weights; see, e.g., [18] and [12,
Chapter 6]. For example, given the maximum allowed
asymptotic convergence factor rmax, the ‘1 heuristic
for the sparse graph design problem (with symmetric
edge weights) can be posed as the convex problem

minimize
m∑

l=1

|wl| (29)

subject to

−rmaxI 4 I − A diag(w)AT − 11T=n 4 rmax I:

It is also possible to assign weights to the edges,
to achieve (hopefully) some desired sparsity pattern.
More sophisticated heuristics for sparse design and
minimum rank problems can be found in, e.g., [15].
To demonstrate this idea, we applied the ‘1 heuris-

tic (29) to the example described in Section 5.1. We
set the guaranteed convergence factor rmax = 0:910,
which is only slightly larger than the minimum factor
0:902. The resulting edge weight vector is relatively
sparse; the number of edges with non-zero weights
is reduced from 200 to 96: 1 This is illustrated in
Fig. 6. Fig. 7 shows the distribution of the edge and
node weights for the sparse network, and should be
compared to the distribution shown in Fig. 4.

7.3. Distributed redistribution

In this section we consider a distributed redistri-
bution problem, which is a generalization of the dis-
tributed averaging problem. Here we are interested in
rearranging the scalar values at the nodes of a network
to some desired distribution via distributed linear iter-
ations, while maintaining a !xed weighted sum of the
values at the nodes.

1 In the numerical solution, a weight is considered zero if its
magnitude is smaller than 10−3. Actually there are only three
weights with magnitude between 10−3 and 10−6, and all remaining
101 weights have magnitudes less than 10−6. We substituted the
sparse weights (ignoring weights with magnitude less than 10−3)
back to compute the corresponding convergence factor, and we
got exactly 0:910 as required.

76 L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78

Fig. 6. Sparse network design with guaranteed convergence factor
0:910. The dotted lines show edges that are not used. The number
of edges used (i.e., with non-zero edge weights) is reduced from
200 to 96.

More speci!cally, let d∈Rn be the desired distri-
bution vector and c∈Rn be a speci!ed weight vec-
tor. We will assume that cTd "= 0. Then we want to
!nd the distributed linear iteration x(t + 1) = Wx(t)
such that starting with any x(0)∈Rn, the vector x(t)
converges to *d, where the constant * should satisfy
cTx(0)=cT(*d), i.e., *=cTx(0)=(cTd). In other words,
we want to !nd W ∈S such that

lim
t→∞

x(t) = lim
t→∞

Wtx(0) =
dcT

cTd
x(0)

for all x(0)∈Rn. This is equivalent to the matrix
equation

lim
t→∞

Wt =
dcT

cTd
: (30)

−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

120

Fig. 7. Distribution of edge and node weights found by the ‘1 heuristic for sparse network design, with guaranteed convergence factor 0.910.

Similar to Theorem 1, we have the following nec-
essary and su"cient conditions for the convergence
of the distributed redistribution:

Theorem 2. Eq. (30) holds, if and only if

cTW = cT; Wd= d; "(W − dcT=(cTd))¡ 1:

Moreover, we have

rasym(W) = "(W − dcT=(cTd));

rstep(W) = ‖W − dcT=(cTd)‖2:

Similar to the distributed averaging problem, we
can formulate the fastest distributed redistribution
problem (minimizing the asymptotic convergence
factor) as

minimize "(W − dcT=(cTd))

subject to W ∈S; cTW = cT; Wd= d;
(31)

where W is the optimization variable. As before, this
problem is, in the general case, very hard. If, however,
we minimize the spectral norm of W − dcT=(cTd),
which gives the per-step convergence factor, the prob-
lem is convex and can be expressed as an SDP similar
to (16).
Finally we consider a special case of problem (31)

that can be converted into a convex optimization prob-
lem. This special case is motivated by the fastest mix-
ing reversible Markov chain problem studied in [9].
Speci!cally, we assume that

cidi ¿ 0; i = 1; : : : ; n;

L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78 77

and de!ne a matrix T and a vector q as follows:

T = diag
(√

d1=c1; : : : ;
√
dn=cn

)
;

q= Tc = T−1d=
(√

c1d1; : : : ;
√
cndn

)
:

We also restrict the weight matrixW to have the form
W = TW̃T−1, where W̃ ∈S and W̃ = W̃ T. Evidently
W and W̃ have the same eigenvalues, and q is the
eigenvector of W̃ associated with the eigenvalue one.
We formulate a spectral radius minimization prob-

lem with the symmetric matrix W̃ as the variable:
minimize "(W̃ − qqT)

subject to W̃ ∈S; W̃ = W̃ T; W̃ q= q:

This problem is convex and can be expressed as an
SDP similar to (17). For any optimal solution W̃ ∗

to this problem, the matrix W = TW̃ ∗T−1 satis!es
(30) and has the same convergence factor, i.e., "(W −
dcT=(cTd)) = "(W̃ ∗ − qqT).

Acknowledgements

The authors are grateful to Persi Diaconis who ini-
tiated our research on the fastest mixing Markov chain
problem, which motivated the research in this paper.
We also thank Pablo Parrilo for helpful discussions on
exploiting graph symmetry in solving these problems.

References

[1] F. Alizadeh, Interior point methods in semide!nite
programming with applications to combinatorial optimization,
SIAM J. Optim. 5 (1995) 13–51.

[2] A. Ben-Tal, A. Nemirovski, Lectures on Modern Convex
Optimization, Analysis, Algorithms, and Engineering
Applications, MPS/SIAM Series on Optimization, SIAM,
Philadelphia, PA, 2001.

[3] S. Benson, Y. Ye, X. Zhang, Solving large-scale sparse
semide!nite programs for combinatorial optimization, SIAM
J. Optim. 10 (2000) 443–461.

[4] D.P. Bertsekas, Nonlinear Programming, 2nd Edition, Athena
Scienti!c, Belmont, MA, 1999.

[5] N. Biggs, Algebraic Graph Theory, 2nd Edition, Cambridge
University Press, Cambridge, 1993.

[6] V. Blondel, J.N. Tsitsiklis, NP-hardness of some linear
control design problems, SIAM J. Control Optim. 35 (1997)
2118–2127.

[7] J.M. Borwein, A.S. Lewis, Convex Analysis and Nonlinear
Optimization, Theory and Examples, Canadian Mathematical
Society Books in Mathematics, Springer, New York, 2000.

[8] S. Boyd, P. Diaconis, P. Parrilo, L. Xiao, Symmetry
analysis of reversible Markov chains, Submitted to Internet
Mathematics, December 2003, Also available online at:
http://www.stanford.edu/∼boyd/symmetry.html.

[9] S. Boyd, P. Diaconis, L. Xiao, Fastest mixing Markov
chain on a graph, SIAM Review, in press, Available at:
http://www.stanford.edu/∼boyd/fmmc.html.

[10] S. Boyd, L. El Ghaoui, Method of centers for minimizing
generalized eigenvalues, Linear Algebra Appl. 188 (1993)
63–111.

[11] S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear
Matrix Inequalities in System and Control Theory, SIAM,
Philadelphia, 1994.

[12] S. Boyd, L. Vandenberghe, Convex Optimization,
Cambridge University Press, Cambridge, 2003, Available at
http://www.stanford.edu/∼boyd/cvxbook.html.

[13] A. Fax, R.M. Murray, Graph Laplacians and vehicle formation
stabilization, in: Proceedings of the 15th IFAC World
Congress on Automatic Control, Barcelona, Spain, July 2002.

[14] A. Fax, R.M. Murray, Information #ow and cooperative
control of vehicle formations, in: Proceedings of the 15th
IFAC World Congress on Automatic Control, Barcelona,
Spain, July 2002.

[15] M. Fazel, H. Hindi, S. Boyd, A rank minimization heuristic
with application to minimum order system approximation, in:
Proceedings American Control Conference, Vol. 6, Arlington,
VA, June 2001, pp. 4734–4739.

[16] L. El Ghaoui, S.-I. Niculescu (Eds.), Advances on Linear
Matrix Inequality Methods in Control, SIAM, Philadelphia,
1999.

[17] C. Godsil, G. Royle, Algebraic Graph Theory, Graduate Texts
in Mathematics, Vol. 207, Springer, Berlin, 2001.

[18] A. Hassibi, J. How, S. Boyd, Low-authority controller design
via convex optimization, AIAA J. Guidance Control Dynam.
22 (6) (1999) 862–872.

[19] C. Helmberg, F. Rendl, A spectral bundle method for
semide!nite programming, SIAM J. Optim. 10 (3) (2000)
673–696.

[20] J.-B. Hiriart-Urruty, C. Lemar&echal, Convex Analysis and
Minimization Algorithms, Springer, Berlin, 1993.

[21] A. Jadbabaie, J. Lin, A.S. Morse, Coordination of groups
of mobile autonomous agents using nearest neighbor rules,
IEEE Trans. Autom. Control 48(6) (2003) 988–1001.

[22] A.S. Lewis, M.L. Overton, Eigenvalue optimization, Acta
Num. 5 (1996) 149–190.

[23] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann,
San Francisco, CA, 1996.

[24] R. Merris, Laplacian matrices of graphs: a survey, Linear
Algebra Appl. 197 (1994) 143–176.

[25] M. Mesbahi, On a dynamic extension of the theory of
graphs, in: Proceedings of the American Control Conference,
Anchorange, AL, May 2002.

[26] C.D. Meyer, R.J. Plemmons, Convergence powers of a matrix
with applications to iterative methods for singular linear
systems, SIAM J. Num. Anal. 14 (4) (1977) 699–705.

http://www.stanford.edu/~boyd/cvxbook.html
http://www.stanford.edu/~boyd/symmetry.html
http://www.stanford.edu/~boyd/fmmc.html

78 L. Xiao, S. Boyd / Systems & Control Letters 53 (2004) 65–78

[27] L. Moreau, Stability of multi-agent systems with time-
dependent communication links, IEEE Trans. Automat.
Control, in press.

[28] D. Mustafa, K. Glover, Minimum Entropy H∞ Control,
Lecture Notes in Control and Information Sciences, Vol. 146,
Springer, Berlin, 1990.

[29] A. Nemirovskii, Several NP-hard problems arising in robust
stability analysis, Math. Control Signals Systems 6 (1993)
99–105.

[30] A. Nemirovskii, Prox-method with rate of convergence
O(1=t) for Lipschitz continuous variational inequalities and
smooth convex-concave saddle point problems, Personal
communication, 2003.

[31] Y. Nesterov, A. Nemirovskii, Interior-Point Polynomial
Algorithms in Convex Programming, SIAM Studies in
Applied Mathematics, SIAM, Philadelphia, PA, 1994.

[32] R. Oldenburger, In!nite powers of matrices and characteristic
roots, Duke Math. J. 6 (1940) 357–361.

[33] R. Olfati-Saber, R.M. Murray, Consensus protocols for
networks of dynamic agents, in: Proceedings of American
Control Conference, Denver, CO, June 2003.

[34] M.L. Overton, Large-scale optimization of eigenvalues, SIAM
J. Optim. 2 (1992) 88–120.

[35] M.L. Overton, R.S. Womersley, On minimizing the spectral
radius of a nonsymmetric matrix function—optimality

conditions and duality theory, SIAM J. Matrix Anal. Appl.
9 (1988) 473–498.

[36] M.L. Overton, R.S. Womersley, Optimality conditions and
duality theory for minimizing sums of the largest eigenvalues
of symmetric matrices, Math. Programming 62 (1993)
321–357.

[37] B.N. Parlett, The Symmetric Eigenvalue Problem,
Prentice-Hall, Englewood Cli%s, NJ, 1980.

[38] R.T. Rockafellar, Convex Analysis, Princeton University
Press, Princeton, NJ, 1970.

[39] Y. Saad, Numerical Methods for Large Eigenvalue Problems,
Manchester University Press, Manchester, UK, 1992.

[40] N.Z. Shor, Minimization Methods for Non-di%erentiable
Functions, Springer Series in Computational Mathematics,
Springer, Berlin, 1985.

[41] M. Todd, Semide!nite optimization, Acta Num. 10 (2001)
515–560.

[42] L. Vandenberghe, S. Boyd, Semide!nite programming, SIAM
Rev. 38 (1) (1996) 49–95.

[43] H. Wolkowicz, R. Saigal, L. Vandengerghe (Eds.), Handbook
of Semide!nite Programming, Theory, Algorithms, and
Applications, Kluwer Academic Publishers, Dordrecht, 2000.

[44] Y. Ye, Interior Point Algorithms: Theory and Analysis,
Wiey-Interscience Series in Discrete Mathematics and
Optimization, Wiley, New York, 1997.

	Fast linear iterations for distributed averaging
	Introduction
	Fastest distributed linear averaging problem
	Outline

	Convergence conditions
	Fastest distributed linear averaging problems
	Heuristics based on the Laplacian
	Constant edge weights
	Local-degree weights

	Examples
	A larger network

	Computational methods
	Interior-point method
	Subgradient method

	Extensions
	Central weights
	Sparse graph design
	Distributed redistribution

	Acknowledgements
	References

