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ABSTRACT

We consider the problem of estimating a pattern of faults, represented as a binary
vector, from a set of measurements. The measurements can be noise corrupted real
values, or quantized versions of noise corrupted signals, including even 1-bit (sign)
measurements. Maximum a posteriori probability (MAP) estimation of the fault pattern
leads to a difficult combinatorial optimization problem, so we propose a variation in
which an approximate maximum a posteriori probability estimate is found instead, by
solving a convex relaxation of the original problem, followed by rounding and simple
local optimization. Our method is extremely efficient, and scales to very large problem:s,
involving thousands (or more) of possible faults and measurements. Using synthetic
examples, we show that the method performs extremely well, both in identifying the
true fault pattern, and in identifying an ambiguity group, i.e., a set of alternate fault

patterns that explain the observed measurements almost as well as our estimate.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we present a method for identifying a
pattern of faults, given a set of noisy, possibly quantized
measurements of a system. The goal is to estimate the
fault pattern most likely to have occurred. An important
secondary goal is to identify a (possibly empty) set
of other fault patterns, called the ambiguity group, that
explain the measurements almost as well as the most
likely one.

If there are only 10 or so possible faults, it is possible to
search over all possible fault patterns, taking the fault
pattern with largest posterior probability as our estimate.
If only one or (for small enough problems) two faults are
likely to have occurred, the fault identification problem
can be solved by evaluating the posterior probability of all
possible single or double fault patterns, given the
measurements. We are interested in cases where these
simple methods are not practical, for example, when there
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are hundreds (or many more) of possible faults, and the
number that may have occurred is more than one or two.

We are also interested in the case when the measure-
ments are, possibly, quantized (in addition to being noise
corrupted). As an extreme case, we have 1-bit quantiza-
tion, in which a measurement tells us only that a noisy
signal lies above or below a given threshold. We will see in
examples that even crudely quantized measurements
(say, 3- or 4-bit) can be surprisingly effective in estimating
the fault pattern, using our method.

The method we describe here is based on forming a
convex relaxation of the (maximum a posteriori prob-
ability) MAP problem, which we show can be solved very
efficiently, even when the measurements are quantized.
We then round these relaxed estimates, and possibly,
perform simple local optimization, to obtain our final
estimate of the true fault, as well as our estimate of the
ambiguity group.

1.1. Prior and related work

Fault detection problems arise in most computer based
engineering systems. Examples include aerospace (e.g., jet
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engine health monitoring [1,2]), industrial process control
[3], automotive [4], telecommunications and networking
[5,6], computer systems [7], circuit fault identification [8],
and many others.

In most papers in the literature it is assumed that
faults affect measurements in an additive way. In fact
there is a whole body of research devoted to optimal
signature matrix design [9,10]. A number of publications
are concerned with the problem of fault identification
in linear dynamical systems for both parametric [2] and
binary faults [11,12]. A number of heuristics have been
proposed to tackle this problem, including variations of
least-squares [2] and methods based on Kalman filtering
[1,11]. For some general references on this kind of work
see Refs. [13-15].

The problem of fault identification with binary mea-
surements has been extensively studied by the computer
science community. The main references in this work
are [16,17], in which this problem is posed as a logical
constraint satisfaction problem and a number of heuristics
are proposed for solving it. More recent references on
this type of problem are [18,19], in which the authors
formulate this problem as a minimum set cover problem
on a graph, which they approximately solve using a
method based on Lagrangian relaxation.

The idea of using convex relaxation as the basis
for a heuristic for solving a combinatorial problem is
quite old. Some recent examples include compressed
sensing [20], sparse regressor selection [21], sparse
signal detection [22], and sparse decoding [23]. Other
applications that use convex relaxations include
portfolio optimization with transaction costs [24], con-
troller design [25], circuit design [26], sensor selection
[27], and mixed state estimation in linear dynamical
systems [28].

The fault estimation problem is (mathematically)
closely related to several detection problems arising in
communications. In multi-user detection in CDMA (code
division multiple access) systems, the received signal
plays the role of the measurements, and the transmitted
bit pattern plays the role of the fault pattern; the goal is to
estimate the transmitted bit pattern. (One important
difference is that in the detection problem, each bit
typically has an equal probability of being O or 1, whereas
in fault detection, the prior probabilities that a bit is 1 is
typically much lower.) As has been pointed out in the
literature, a good approach here is to solve a relaxed
version of the resulting combinatorial problem. For
example in [29,30] the authors propose a semidefinite
programming (SDP) relaxation of the resulting mixed
integer quadratic program. The performance of this
method is theoretically analyzed in Ref. [31], while the
authors of Ref. [32] perform an extensive experimental
comparison of this SDP relaxation with various other
heuristics.

The SDP relaxation heuristic has also been applied to
the problem of MIMO detection in communications. In
Refs. [33,34] the authors establish theoretical conditions
under which the SDP heuristic solution coincides with
the maximum likelihood solution for this problem. In
Ref. [35], the authors show that an SDP-based detector for

this problem achieves maximum diversity, when the
elements of the channel matrix are independently drawn
from a zero mean Gaussian distribution. This shows that
the performance of the SDP relaxation based detector is
the same as the maximum likelihood detector when the
SNR is high.

The method we propose for fault estimation, which is
based on linear relaxation of Boolean constraints, is less
sophisticated than the SDP relaxation. However, our
method has the advantage of easily scaling to very large
problems, and (in conjunction with a rounding and local
optimization scheme we propose) seems to give excellent
results in fault estimation. We will see that SDP relaxation
of the fault detection problem does provide better bounds
on the optimal posterior probability than the linear
relaxation; but after rounding and a simple local search,
the SDP relaxation performs no better, in terms of fault
detection, than the simple linear relaxation, which
requires far less computational effort.

Finally we mention another technique that we believe
could work well for the fault idetification problem: belief
propagation. This is an iterative message passing algo-
rithm, that has been proven to work very well in the
context of multi-user detection in CDMA systems [36-38],
as well as the problem of distributed beamforming [39].
We have not found any literature on belief propagation
applied to fault identification; but we can refer the reader
to the tutorial papers [40,41] for a general discussion of
belief propagation.

1.2. Outline

In Section 2 we describe the measurement setup and
the basic MAP approach, mostly to set our notation for
later use. In Section 3 we describe three possible convex
relaxations of the combinatorial MAP problem and we
briefly compare them in terms of effectiveness and
computational complexity. In Sections 4 and 5 we
describe our method for approximately solving the MAP
problem, and we illustrate its effectiveness in numerical
examples in Section 6. We conclude by listing some
extensions in Section 7.

2. MAP estimation

In this section we describe the model in detail, and the
basic MAP method for estimating the fault pattern.

2.1. Fault model and prior distribution

We consider a system in which any of the 2"
combinations of n potential faults can occur. (In Section
7 we show how to handle the case when there are
constraints linking the possible faults.) We encode a fault
pattern, i.e., a set of faults, as a vector x € {0, 1}", where
X; =1 means that fault j has occurred. We assume that
faults occur independently, and that fault j occurs with
known probability p;. Thus, the (prior) probability of fault
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pattern x occurring is
n X
px) =[]/ —pp'™.
j=1

The fault pattern x = 0 corresponds to the null hypoth-
esis, the situation in which no faults have occurred. This
occurs with probability p(0) = ]'[]'7:1 (1 — p;). The expected
number of faults is > 1, p;.

2.2. Measurement model

We assume that m scalar real measurements, denoted
y € R™, are available. These measurements depend on the
fault pattern x in the following way:

Y= ¢Ax +v),

where A € R™" is the fault signature matrix, v € R™ is a
vector of measurement noises, and ¢ :R™ — R™ is the
measurement nonlinearity, which acts separately on the
individual measurements:

O@) = (D1(Z1), - .., Pp(zm)),

where ¢; : R — R is the nonlinearity in the ith measure-
ment. When ¢(z) = z, we say the measurement is linear.

We assume the fault signature matrix A is known. Its
jth column a; e R™ gives the measurement, if the
measurement were linear and there were no noise, when
only fault j has occurred. For this reason g; is called the jth
fault signature. Since x is a Boolean vector, Ax is just the
sum of the fault signatures corresponding to the faults
that have occurred. So our real assumption here is only
that, without measurement noise and nonlinearity, the
measurements would be additive in the faults.

We assume the measurement noise v € R™ is random,
with v; independent of each other and x, each with
A(0,62) distribution.

2.2.1. Quantized measurements

Now we turn to the measurement nonlinearity.
In addition to the linear case (¢(z) = z), we will consider
the case in which the nonlinearities ¢; represent quanti-
zation, with threshold levels t| <ty < --- <tg_1:

wy,  zi<ty,
Giz) =< Wk, bei<zi<ty, k=2,...,K-1,
Wk, tk-1<z.

The numbers wy,...,wg are the output values of the
quantizer, typically taken to be

Wk:(t/<,1+tk)/2, k=2,....K-1,

wi =t; — 1, and wg = tx + 1. The actual values of these
numbers do not matter, as long as they are distinct; any
specific measurement simply identifies which of the K
intervals z; lies in. For example, ¢;(z;) = w; means that
Zi € (—oo,ty), i.e., zi<ty; ¢;(z;)) = w3 means that z; € (t,, t3).
If K=2° we say that the quantizer has b bits. Our
treatment of arguments that are exactly at a threshold
level (i.e, assigning ¢;(ty) =wy_; instead of wy) is
arbitrary, and statistically irrelevant.

The simplest example of a quantizer function is a 1-bit
quantizer (i.e., K = 2) with threshold level t; = 0. In this
case we have

+1 z>0,
-1 z<O0.

$i(z) = sgn(z;) = {

2.3. Posterior probability

Let p(x]y) denote the (posterior) probability of fault
pattern x, given the measurement y. We define the loss of
X, given the measurement y, as the log of the ratio of the
posterior probability of the null hypothesis to the poster-
ior probability of x, i.e.,
pOly)
ly(x) = lo
v =198 hiay)

P(O)P(VIO)>
= log|*—"——
& <p<x)p(y|x)
= logp(0) — log p(x) + log p(y|0) — log p(y|x)

=2"x+ " (log p(y;10) — log p(yilx),
i=1

where /; = log((1 — p;)/p;)- In these expressions we have
to interpret p(y;|x) and p(y;|0) carefully. When y is a linear
measurement, these are conditional densities; when y;
takes on only a finite number of values, as occurs with
quantized measurements, these are actual probabilities.

The loss tells us how improbable it is that fault x has
occurred, given the measurement y, compared to the null
hypothesis x = 0. If I,(x) = 0, the fault pattern x is just as
probable as the null hypothesis x = 0. If I,(x) = —1, the
fault pattern x is e times more probable than the null
hypothesis.

We now work out the loss function more explicitly, for
the cases of linear and quantized measurements.

2.3.1. Linear measurements
In this case the conditional density of y; given x is

1 T2
PO = s eXP(—(¥i = arxy? /262,

where g; is the ith row of A. Therefore we have

L) = 2"x+(1/26%) Y (—y? + (i — al0)?)
i=1
=%+ (1/26H)(~llyl? + 1Ax — yII?)
= (1/262x"ATAx + (/. — (1/3*)ATy)"x,

which is a convex quadratic function of x.

2.3.2. Quantized measurements

Our measurement y; tells us that a/x+ v; lies in an
interval, say, (v, tf“gh). (The index i here refers to
measurement i, not threshold level i.) In this case the
conditional probability of y; given x is

Pk = @ (‘ X + t?igh> @ (“7fo + t}"W)
i = - ’
ag

g
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where

d(z) = exp(—t?/2)dt

‘1 Z
V27T /—oo
is the cumulative distribution function of the standard
normal distribution. Thus, we have

Lo = ATx+ S log( @ g o5
O
—ilog o A o (—alxt g
p o o '

This is a complicated, but convex function of x. The first
term is linear, and the second is constant; the tricky
part is verifying convexity of each term in the third part of
l,(x). This follows from concavity, with respect to the
variable z, of

@2) = log(P(oe — 2) — D(B — 2))

1 "0—Z
=lo —/ exp(—t2/2)dt,
T . p(—t/2)

where o> f. (This is the log of the probability that a
A"(z,1) random variable lies in [$,a].) Concavity of ¢
follows from log-concavity of @(a — z) — @(f§ — z), which is
the convolution of two log-concave functions (the Gaus-
sian density and the function that is one between ff and o
and zero elsewhere). For more on log-concavity and
convolution, see Ref. [42, Section 3.5.2].

2.4. MAP estimation

To find the fault pattern x with MAP (or equivalently,
minimum loss ;(x)) we solve the problem

minimize I,(x)
subject to x; €{0,1}, j=1,...,n, (1)

with variable x. We have already seen that with linear
or quantized measurements, the objective function is
convex. The constraint is that x is a Boolean vector, so a
problem like this is sometimes called a Boolean-convex
program or a mixed-integer convex program. When the
measurements are linear, the MAP problem (1) is a convex
mixed-integer quadratic program (MIQP).

Any solution of the MAP problem (1) is a MAP estimate
of the fault pattern, i.e., a fault pattern that is most
probable, given the measurement. It is also very useful to
obtain the ambiguity group, i.e., the set of fault patterns
with loss that is near to the loss of a MAP estimate. If all
other fault patterns have a loss much larger than the MAP
estimate (i.e., the ambiguity group is empty), we can have
high confidence in our estimate. On the other hand, if
several other fault patterns have a loss similar to the MAP
loss, they explain the measurement almost as well as the
MAP estimate, and so must be considered possible values
of the true fault. One way to determine the ambiguity
group is to find the K fault patterns with least loss, i.e.,
highest posterior probability. From these ambiguity group
candidates, we can form the ambiguity group by taking
only the patterns with loss near to the MAP loss.

Unfortunately, it can be very difficult to solve the MAP
problem (1) exactly. There are, of course, 2" feasible points
for the MAP problem (1), corresponding to all possible
fault patterns. One method to solve it is to simply evaluate
ly(x) for each fault pattern. But this is feasible only for n
smaller than around 15 or so. Another approach to solving
the MAP problem (1) exactly is to use a branch and bound
algorithm [43,44]. While these methods do solve the pro-
blem exactly, their worst-case complexity is exponential,
i.e.,, the same as direct enumeration. In practice as well,
branch and bound algorithms can be very slow. But it is
not clear that solving the MAP problem (1) globally is
needed, since our real goal is to estimate the fault pattern.

Several simple heuristics have been used to find a
pattern x with low, if not lowest, loss. One approach is to
directly evaluate I,(x) for a small subset of fault patterns.
For example, we can search over all n single fault patterns,
i.e., x =e;, where e; is the ith unit vector. If n is small
enough, we can search over all n(n — 1)/2 fault patterns
with two faults. If there is a high chance that only one or
two faults have occurred, this method will work well; but
obviously it cannot work well when the expected number
of faults is more than two. A wide variety of heuristics and
local optimization methods can be used to enhance the
chance of finding a pattern with low loss, while searching
over a reasonable number of patterns. For all of these
enumeration methods, we can maintain a list of ambi-
guity group candidates, by simply keeping track of the
K best fault patterns found.

The method we present in this paper is, like
these methods, a heuristic for solving the MAP problem
(1) approximately. Our approach is based on relaxing the
original MAP problem to a convex problem and then using
the solution of this relaxed problem to generate a set of
good candidate fault patterns, whose loss we evaluate.

3. Convex relaxations

In this section we describe three different convex
relaxations of the MAP problem (1). These relaxed pro-
blems are convex, and so can be effectively (globally)
solved. They each give a lower bound on the minimum loss
value of the MAP problem, as well as a soft decision on the
fault pattern, i.e., a value between 0 and 1 for each fault.

3.1. Linear relaxation

The first relaxation of problem (1) that we look at is

minimize [,(x)
subject to 0<x;<1, j=1,...,n, (2)

with variable x € R". In (2) we allow the variables x; to
take values between 0 and 1, whereas in the MAP problem
(1), these variables must be either O or 1. The relaxed MAP
problem (2) is a convex problem and can be solved very
efficiently and reliably in many ways, e.g., via interior-
point methods [42,45]. In the case where all measure-
ments are linear, the relaxed MAP problem reduces to a
(convex) quadratic program and is easily solved [46,47].
The general relaxed MAP problem (2) is called the linear
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relaxation, since we replace the Boolean constraints with
linear ones. When the measurements are linear, the
resulting problem is a QP, in which case we refer to the
problem as the QP relaxation.

Since the feasible set for the relaxed MAP problem (2)
contains the feasible set for the MAP problem (1), the
optimal value of the relaxed MAP problem, which we
denote I, gives a lower bound on the optimal value of the
MAP problem.

Let z* be an optimal point for the relaxed MAP
problem (2), so we have I}, = l,(z*)<I,(x) for any Boolean
x. If z* is also Boolean, i.e., z* € {0, 1} for all j, we conclude
that z* is in fact optimal for the MAP problem. In other
words: When a solution to the relaxed MAP problem turns
out to have Boolean entries, it is optimal for the MAP
problem. In general, of course, this does not happen; at
least some values of z* will lie between 0 and 1.

As a special case, we conclude that when z* =0, i.e., 0
is a solution of the relaxed MAP problem, then O is a
solution of the MAP problem. In other words, the MAP
estimate is the null hypothesis; we can guess that no
faults have occurred. We can derive simple conditions
under which z= 0 solves the relaxed MAP (and hence,
MAP) problem. This occurs if and only if

V1§, (0)=0,

where the inequality is elementwise. (See, e.g., [42,
Section 4.2.3].) For the case of linear measurements, this
corresponds to
1 7

Az ﬁA y.

If this inequality is satisfied, we can immediately
conclude that the null hypothesis x = 0 maximizes the
posterior probability.

3.2. SDP relaxations for linear measurements

We now derive two convex relaxations of the
MAP problem that are restricted to the case when the
measurements are linear. Both relaxations are (or can be
expressed as) SDPs. For a general reference on SDP
relaxations of quadratically constrained quadratic pro-
grams see Ref. [48]. We start by writing the MAP problem
(1), for the case of linear measurements, as

minimize (1/26*)TrATAX) + (A — (1/62)ATy) x
subject to X = xxT
X]'J'IX]', xje{O,l},j:l,...,n, (3)

with variables X € 8" and x € R"; S" denotes the set of
symmetric n x n matrices (the constraint x; € {0,1} is
redundant; we include it to make the SDP relaxation of
this problem more natural.) Problems (1) and (3) are
equivalent, since Tr(ATAxx") = xTATAx.

We now present two SDP relaxations of problem (3).
The first one is

minimize (1/26%)TrATAX) + (A — (1/62)ATy) x
subject to X > xxT
ij:Xj, OSX]S], j:l,...,n, (4)

with variables X € 8" and x € R", while the second one is

minimize (1/26%)TrATAX) + (A — (1/62)ATy) x
subject to X = xx"
Xj=%, 0<x<1, j=1,....n,
XIqZO, k:l,...,n,j:l,...,n, (5)

again with variables X € S" and x € R". The relaxations (4)
and (5) can be expressed as SDPs, using

X =xxT X x
= xI 1

They can both be solved using interior-point methods
[42, Chapter 11]; software for solving SDPs, such as SDPT3
[47], is widely available.

|-o

3.3. Comparison of relaxations

We can compare the lower bounds obtained with each
of the three relaxations, for the case of linear measure-
ments. Let lgp, Lap, and lgp, be the optimal values of
problems (2), (4), and (5), respectively. We will now show
that

lqp Slsdp <lsdp+~ (6)

In other words, the basic SDP relaxation always gives at
least as good a lower bound on the optimal loss as the
QP relaxation, and the augmented SDP relaxation, with
the additional nonnegativity constraint, always gives the
same, or better, bound as the basic SDP relaxation.

It is easy to see why the righthand inequality in (6)
holds. Problem (5) is the same as problem (4), except for
the addition of the inequality constraints of the form
Xi;=>0. Thus the feasible set for problem (4) is smaller
than the feasible set of problem (4), which means that
lsdp<’sdp+'

To show that the lefthand inequality in (6) holds, we
first reformulate the QP relaxation (2) as the following
SDP

minimize (1/262)TrATAX) + () — (1/62)ATy) x
subject to X = xx", 0<x;<1, j=1,...,n, (7)

with variables x € R" and X € S". To see why these two
problems are equivalent it is sufficient to note that the
linear matrix inequality X > xx” holds with equality at
optimality. This is due to the fact that Tr(ATAX) is a matrix
increasing function of X [42, Section 3.6.1], so for fixed x,
the optimal choice for X is X = xx'.

The problems (4) and (2) differ only in the addition of
the constraints Xj; = x;; it follows that the feasible set of
(4) is smaller than that of (2). This implies that lqp <lsqp.
In fact this inequality holds with equality if the solution to
either problem is binary and is thus equal to the solution
of the MAP problem.

While the basic and augmented SDP relaxations give
better lower bounds that the QP relaxation, they are
considerably harder to solve. A generic interior-point
method, that does not exploit any problem structure,
requires O(n®) operations to solve the QP relaxation (2)
[42,45], but On®) operations to solve the augmented
SDP (5), since it involves both a matrix inequality and
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inequalities on the individual components. While faster
methods for solving the SDP relaxations can be developed,
we will see that, in terms of the quality of fault estima-
tion, the SDP relaxations provide no benefit over the QP
relaxation.

4. Relaxed MAP estimation
4.1. Variable threshold rounding

Let z* denote the optimal point in one of the convex
relaxations. We refer to z* as a soft decision, since its
components can be strictly between 0 and 1. The next step
is to round the soft decision z* to obtain a valid Boolean
fault pattern (or hard decision). Let 6 € (0,1) and set

X =sgn(z* — 0).

To create %, we simply round all entries of z* smaller
than the threshold 0 to zero. Thus 0 is a threshold for
guessing that a fault has occurred, based on the relaxed
MAP solution z*. As 0 varies from 0 to 1, this method
generates up to n different estimates %, as each entry in z
falls below the threshold. We can efficiently find them all
by sorting the entries of z*, and setting the values of k; to
one in the order of increasing z*.

We evaluate the loss for each of these, and can take as
our relaxed MAP fault estimate the one that has least loss,
which we denote by x™3P, We can also take the K fault
patterns with least loss as candidates for the ambiguity
group.

4.2. Local optimization

Further improvement in our estimate can sometimes
be obtained by a local optimization method, starting
from x'™aP_ We describe here the simplest possible local
optimization method. We initialize X as x™aP, We then
cycle through j =1,...,n, at step j replacing %; with 1 — X;.
If this leads to a reduction in the loss function, we accept
the change, and continue. If (as usually is the case)
flipping the jth bit results in an increase in I, we go on to
the next index. We continue until we have rejected
changes in all entries in X. (At this point we can be sure
that % is 1-OPT, which means that no change in one entry
will improve the loss function.) Numerical experiments
show that this local optimization method often has no
effect, which means that x™?P is often 1-OPT. In some
cases, however, it can lead to modest reduction of loss,
compared to x'™map,

This local optimization method can also be used to
improve our candidate ambiguity group. When we
evaluate the loss of a candidate, we insert it in our list
of K least loss fault patterns, whenever it is better than the
worst fault pattern in the list.

We refer to the procedure of convex relaxation,
followed by variable threshold rounding, and, possibly,
local optimization, as relaxed MAP (RMAP) estimation.

5. Approximate RMAP estimation

It is clearly not necessary to solve the RMAP (2) to high
accuracy, since we round the entries to form our fault
pattern estimate. In this section we describe a method for
solving problem (2) approximately, while still retaining a
guaranteed lower bound [,. The method is extremely
efficient, can scale to large problems, and produces fault
pattern estimation results of equal quality. We describe
this method for the linear relaxation (2) only; similar
methods can be derived for the SDP relaxations.

5.1. Barrier approximation

We form the optimization problem

minimize I,(x) + ki (x), (8)

with variable x, where

Y = - (logx; + log(1 — X))
j=1

is the logarithmic barrier for the constraints 0<x<1, and
k>0 is a parameter. This is a smooth convex optimization
problem, with implicit constraints 0<x; <1, and can be
solved using Newton’s method [42, Section 9.5].

The parameter k controls the accuracy with which (8)
approximates (2); for example, it can be shown that the
solution of (8) is no more than 2nx suboptimal for the
problem (2) (see, e.g., [42, Section 11.2.2]). It follows
that the optimal value of (8), minus 2nx, is a bound on
the optimal value of the original MAP problem (1).
The suboptimality is only bounded by 2nx; the true
suboptimality is often less. Moreover, since we will round
the solution, and possibly perform local optimization,
we will see that the solution of (8) yields very good
fault estimates even when « is relatively large, i.e., when
2nk is not small. The idea of approximating convex
constraints with a fixed barrier term has been applied
succesfully to a number of problems such as fast
computation of optimal contact forces [49] and fast model
predictive control [50].

5.2. Newton’s method

We use Newton’s method to solve (8), starting from the
point x =(1/2)1. At each iteration we compute the
Newton step

Axoe = —(V2L,(x) + KV2Y(x) " (VI(X) + KV ().

Then we use a backtracking line search to compute a
step size s<(0,1), and update the current point to
X + SAxpc. (See [42, Chapter 10] for all details.)

For completeness we give explicit formulas for the
gradient and Hessian of  and [,. The gradient of the
barrier function is

ZXj—l

— j=1,...,n
Xj(l*Xj) J

(Vi) =
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Its Hessian is diagonal, with diagonal entries

X2+ (1 - x)?

(VY@ =
¢ ij(l _ xj)2

, j=1,...,n

Now consider I, for the case of linear measurements. Its
gradient and Hessian are
Viy(x) = 2+ (1/6)ATAx —y), V2, x) = (1/c*)ATA,

respectively.
Now we consider the case of quantized measurements.
The gradient and Hessian of I,(x) are then given by

Viy(x) = 4 —(1/0)ATc, V2l x) = (1/*)ATDA,
where

o exp(—I? /2) — exp(—u?2/2)
! 1 exp(—t?/2)dt

U= (—a’x+ t?igh)/a,
li = (—alx+£°")/0,
fori=1,...,m. The matrix D is diagonal with

_ uexp(—u?/2) - liexp(~I}/2)
[ exp(-t?/2)dt

2

Dii + ¢j, 1=1,,m

5.3. Complexity of newton’s method

A formal upper bound on the number of steps required
by Newton’s method can be found from self-concordance
theory (see [51] or [42, Section 9.6]), but this bound does
not accurately reflect the very good practical performance
of Newton’s method for solving the approximate RMAP
problem (8). Newton's method typically requires 10 or
fewer iterations to converge to high accuracy, and rarely
more than 25 or so.

We can analyze the computational cost per iteration.
Each step requires forming V2</>(x) and computing the
Newton step, which costs on the order of mn? operations
(if m=n) or m?n operations (if m<n). In particular,
the complexity grows linearly in the larger of m and n.
This complexity analysis assumes that all calculations
are done with full (dense) matrices; if sparsity can be
exploited, the Newton step can be computed much more
efficiently. For m and n on the order of 1000, each Newton
step requires only a fraction of a second on a typical 2 GHz
personal computer; the entire approximate relaxed opti-
mization problem (8) can be solved in a few seconds. With
m and n on the order of 100, the problem can be solved in
a few milliseconds.

6. Numerical examples
6.1. Small example with linear measurements

We consider an example with m = 50 sensors, n = 100
possible faults, and linear measurements. The elements
of A are chosen randomly and independently with
Ajj~A"(0,1). We set the noise standard deviation to
o = 1. The fault probability is p; = 0.05 for all j, which

means that the expected number of faults is 5. The signal
to noise ratio (SNR) of each measurement is

E(al'x)?

5
Ev? - \[T ~22.

The problem would seem to be quite challenging, since
we have only 50 measurements, each with a signal
to noise ratio around 2, to estimate a fault pattern with
100 possible faults.

We first generate one instance of the problem, which
happens to have 4 faults. We solve the three relaxations,
to obtain the lower bounds lgp, lygp, and Ly, which are
shown in Fig. 1 as vertical lines. These were computed
using the convex optimization modeling language CVX
[46], which relies the SDP solver SDPT3 [47]. The dashed
vertical line at right shows zero loss, which corresponds
to fault patterns that are just as (un)likely as the null
hypothesis.

The figure shows the fault estimates (and ambiguity
groups) produced by searching over all single and double
fault patterns, and also for RMAP (the basic QP relaxation,
using the barrier approximation with x = 0.01), SDP, and
augmented SDP methods, all with local optimization. Each
row shows one method, with the horizontal axis giving
loss. The row labeled SDP uses the basic SDP relaxation
(4); the row labeled SDP+ uses the augmented SDP
relaxation (5). In each row, the 10 fault patterns with least
loss are shown; the filled circles show the fault patterns
with least loss.

For this problem instance, the basic RMAP and
SDP methods found the same pattern with least loss,
which happened to be the true fault pattern. (This was
suggested, but not guaranteed, by the gap in loss between
x™maP and the next best fault pattern found.) We suspect,
but do not know, that this fault pattern is the MAP
estimate, i.e., a global solution of the MAP problem (1).
The ambiguity groups produced by the three methods are
also similar.

The time required to carry out the RMAP fault
estimation, including local optimization, is a few milli-
seconds. On the other hand the time required to solve
problem (4) using SDPT3 is about half a minute, while
problem (5) requires about half an hour. (Substantial
improvement in these running times could be obtained by
developing a custom solver for these specific SDPs, but the
basic approximate RMAP method will still be far faster.)

/ qp stp lsdp+

st ! )
% o o single-fault
df !
% o oo oo o | double-fault
'map !
° o o o® | RMAP
xsdp 1
o o ® oo , SDP
P e | SDP+
. . . . 1
-20 -15 -10 -5 0

h (%)

Fig. 1. Loss of generated fault patterns for a small problem instance.
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When the same method is carried out on a large
number of instances, with the same matrix A but different
fault patterns and noise, we find that x'™2P (without local
optimization) is equal to the true fault pattern 90% of the
time, and that the true fault pattern is included in the
ambiguity group 93% of the time. When we use local
optimization, we find that our final RMAP estimate is
equal to the true fault pattern 95% of the time, and the
true fault pattern lies within the ambiguity group 98% of
the time. This shows that the local optimization method
does indeed improve our fault estimates. The performance
of RMAP seems quite surprising, since we have only half as
many measurements as faults to detect, and the SNR is
quite low.

To be sure that our soft decisions are contributing
substantially to the quality of the final estimate, after local
optimization, we run the local optimization method,
starting from the null hypothesis x = 0, instead of our
RMAP estimate. When this is done, the fraction of time the
true fault is identified is only 69%. This experiment shows
that local optimization alone performs much more poorly
than local optimization, starting from a rounded soft
decision.

We also examined the effect of the parameter x on
our RMAP fault estimation method, with and without
local optimization. To do this we generate 1000 random
instances of this problem (all with the same signature
matrix A) for 20 values of x, logarithmically spaced
between 10> and 10'. Fig. 2 shows the percentage
of times that the true fault pattern was identified, as a
function of k. The first thing to note is that RMAP works
well, even without local optimization, for x up to 0.05 or
so. This corresponds to a suboptimality bound 2nk = 10,
which corresponds to a probability ratio e'®, which
is definitely not small. So we see that our approximate
RMAP method yields good fault estimates, even when the
solution of the approximate RMAP problem (2) is not a
particularly good estimate of the solution of the RMAP
problem (2). The plots show that the performance of both
methods deteriorates for x greater than10™!, but much
less rapidly when local optimization is used.

100
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40 ¢
30
20 +
10

0 " " "
1073 1072 107" 100 10°

K
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Fig. 2. Performance of RMAP method without (solid) and with (dashed)
local optimization, versus k.

We now explore how well our RMAP method with
relaxation (2) works as the SNR varies. We let ¢ take on
30 values over a range from 0.1 to 4, and for each value,
we generate 10 000 random instances of the problem. For
each instance, we compute a set of fault patterns using
RMAP (with x = 0.01), with and without local optimiza-
tion. We then check if our fault estimate is the true one,
and whether the true one is included in our ambiguity
group of the K =10 fault patterns with least loss. The
results are shown in Fig. 3. Fig. 4 Both methods work
extremely well for SNR higher than 3, and fail to work at
all for SNR less than 1. We can see that the use of local
search improves the performance of the method, espe-
cially for the low SNR region. For example, for an SNR
of about 1.4, the top 10 hit percentage without local
optimization is 54%, while with local optimization it
is 71%.
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Fig. 3. Performance of RMAP method without (top) and with (bottom)
local optimization, versus SNR. Solid line shows top hit percentage;
dashed line shows top 10 hit percentage.
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Fig. 4. Performance of QP (solid) and SDP (dashed) relaxations.
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Finally, we compare the results obtained with the basic
QP relaxation and the basic SDP relaxation, using the same
set of experiments described above. The results, shown in
Fig. 3, and almost the same for the two relaxations. The
computational costs of the two methods, however, are
considerably different.

6.2. Small example, quantized measurements
We now consider the same example, but with

quantized measurements, with 1-4 bits per measure-
ment, using the thresholds listed in the table below.

Quantization Threshold levels

1-bit 0

2-bit 0,+2

3-bit 0,+2,+4,+6
4-bit 0,+£1,+2,...,+£7

We generated 10000 instances of the given problem,
for 30 values of ¢ linearly spaced between 0.1 and 4. For
each instance we solved the RMAP problem (with local
search) for the different quantization levels, including
full precision (i.e., linear measurements). Fig. 5 shows
the performance of the RMAP method versus SNR for all
quantization levels. As expected, the performance im-
proves with increasing numbers of bits in the quantizer.
With 1-bit quantization (i.e., sign measurements), the
performance is poor. The performance for 2-bit quantiza-
tion is surprisingly good. The RMAP method performs very
well for 3-bit measurements, while its performance with
4 bits is almost identical to the one with full precision.

For comparison, we also used an ad hoc method in
which we ignored the quantization, treating each mea-
surement as linear, using the midpoint of the quanization
interval for its value. This method performed very poorly.
Our use of the sophisticated loss function for quantized
measurements is critical to achieving such high estima-
tion performance from heavily quantized measurements.
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Fig. 5. Performance of RMAP method versus SNR for 1-4-bit quantiza-
tion, and for linear measurements.
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Fig. 6. Loss of generated fault patterns for a larger problem instance.
6.3. Larger example

We now look at a larger example, with m = 10000
measurements and n = 2000 potential faults. We choose A
to be sparse, with about 200 000 (1%) nonzero elements.
The indices of the nonzero elements are chosen at
random. Thus, each measurement is affected by around
20 faults, and each fault will affect around 100 measure-
ments. Each nonzero Aj; is chosen randomly and indepen-
dently from a .47(0,1) distribution. The noise standard
deviation is 0 = 1.5 and each fault has probability of
occurence py = 0.002, so the expected number of faults
is 4. The SNR for each measurement is

E(a]x)* 0.4
N =2 ~042.
Ev? 1.52

In this case the measurement SNR is poor, but there are five
times as many measurements as there are potential faults.

Fig. 6 shows the performance of RMAP, with local
optimization, and k set to 0.01, compared to direct
enumeration of all single fault patterns, for a given
instance of the problem. For this instance there are five
faults in the true fault pattern. Our simple Matlab
implementation, which exploits sparsity in A, requires
about 20s to run; a C implementation would have been
far faster. In this instance, x™aP corresponds to the true
fault pattern.

We generated 100 random instances of the same
problem (with the same signature matrix A but different
true faults and noise). We found that RMAP found the true
fault in 92 cases. In 98 cases, the true fault pattern was
contained in the ambiguity group.

7. Extensions
7.1. Variable misclassification cost

We have dealt with the case where the cost of
misclassification is the same for each fault, and the
same for a false positive and false negative. We can easily
extend our problem to minimize an average loss, with
different loss values associated with false positive and
false negative estimation errors, which can differ for each
fault, since the objective function will remain convex.

7.2. Mixed measurements

We have described the problem for the cases of linear
and quantized measurements separately. But in fact, we
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can easily handle the case when some measurements are
linear, and others are quantized. (The notation, however,
grows cumbersome.)

7.3. Correlated noise

Our method can be easily extended to the case where
the measurement noise is correlated, i.e., v~(0, X), and the
measurements are linear. In this case the conditional
density of y given x is

PO = 30Ty - A),

1
e

so the loss function becomes
b =5y~ A5y — A%~y Z ) + 'x,
which is again a convex quadratic function in x.

7.4. Noise distribution

We can consider the case when the noise distribution
is zero-mean Laplacian, with variance 2 = 2b?, i.e., with
density

1

fwy = \/T—bexp(*“/ﬂ/b)-

In this case the loss function for linear measurements is
1 T
L) = p IAX =yl = 1lyll) + Ax,

where |z||; denotes the ¢; norm. This loss function is
convex, so the same approach can be used.

Since the Laplacian density is log-concave, the loss
function for quantized measurements, with Laplacian
noise, will also be convex. The formula is quite cumber-
some, though, so we omit it.

7.5. Problem constraints

We take into account constraints on the occurence
of faults, by imposing linear equality and inequality
constraints on X, which are convex. For example the
constraint that fault x; occurs only if fault x; occurs can
be represented as x; <x;. To say that only one of faults 1-3
have occurred, we impose the constraint x; +x; +x3 = 1.
When we add these constraints, the rounding mechanism
and local optimization steps must be modified to conform
to them. With simple constraints like the ones described
above, this is straightforward.

We consider an example as a special case. We consider
a dynamical system, where x(t) € {0,1}" denotes the
(vector of) faults that occur at time ¢, for t=1,...,T.
We assume that each fault cannot fix itself; once a fault
occurs, it stays. In this problem, then, we are to decide
when (or if) each fault has occurred. We form the
following relaxation:

minimize I,(x)
subject to O0<x(1)<---<x(T)<1,

where the inequalities are componentwise, and 1 denotes
the vector with all entries one. Our rounding method
works as is; we can modify the local search to search over
the fault occurence time, for each fault.

8. Conclusions

In this paper we propose a new method estimating
which faults have occurred, given noise corrupted linear,
or quantized, measurements. The method is based
on approximately solving the MAP problem, using a
convex relaxation followed by rounding, and, possibly,
local optimization. The same method can also generate an
approximation of the ambiguity group, i.e., a list of other
fault patterns with nearly maximum posterior probability.
Since the method is based on convex optimization, it is
extremely efficient. Examples show that the method
is very effective in cases where simpler methods, such
as searching over all single or double faults, cannot be.
More sophisticated methods, such as those based on SDP
relaxations, produce better lower bounds on the optimal
loss, but perform no better in terms of fault estimation.
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