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Abstract

An important problem in Hoo-control is the design
of a controller that minimizes the Ho,-norm of a
closed-loop transfer matrix, multiplied by a suitable
weighting function which reflects different perfor-
mance requirements over different frequency bands.
Often, these are competing requirements, and in
this paper, we show how we may efficiently compute
tradeofls between them using a simple application
of tangential Hermite-Fejér interpolation theory.

Keywords: Frequency weighted H,,; tradeoffs;
tangential Hermite-Fejér interpolation theory.
1 Introduction

Consider the feedback system shown in figure 1.
P is a linear time-invariant (LTI) plant. K is an
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Figure 1: Hoo-optimal controller design framework

LTI controller to be designed so that the closed-
loop system is internally stable, with the (stable)
closed-loop transfer matrix H from w to z satisfy-
ing some performance requirements. (In the sequel,
we will use the term stable transfer matrices to re-
fer to those that are analytic and bounded in the
closed right half complex plane C,.) One common
design requirement leads to the frequency-weighted
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Figure 2: A typical frequency-weighting function

H,-control problem:

Design K so that 1)
Omax (H(jw)) < vb(w) forallw € R,

where omay (Q) denotes the maximum singular
value of the matrix Q, b(w) : R — R, with
b(-w) = b(w) for all w, is the “frequency-weighting”
function, and ¥ > 0. A common choice of b is shown
in figure 2; this is the frequency-weighting function
that we will consider throughout the sequel.

We will call the quantity M(< 1) the in-band to
out-band rejection ratio, since it is the ratio of the
in-band to out-band levels of the weighting function
b. We will refer to wp as the bandwidth, and v as
the out-band level A small M is usually desirable,
reflecting the requirement that the closed-loop sys-
tem reject low-frequency noise. The bandwidth wB
is desired to be large, so that the system rejects noise
over as wide a frequency spectrum as possible. v is
desired to be small so as to reject high-frequency
disturbances from w to 2.

It should be intuitively clear that the require-
ments above, that is, “small M”, “small ¥” and
“large wp” are competing requirements: For in-
stance, if problem (1) is feasible for M = M, and
¥ = 7o, then it is feasible for all M > M, and
Y = Yo. In this paper, we will study the tradeoffs



between M, v and wg, by a simple application of
tangential Hermite-Fejér interpolation theory.

A number of researchers have studied this and
related problems. Zames and Francis [2, 3] have
studied the effect of right-half plane transmission ze-
ros of the plant on the weighted sensitivity transfer
function for single-input single-output transfer func-
tions. Freudenberg and Looze [4] study the Bode in-
tegral for such systems. O’Young and Francis [5, 6]
consider the same problem that we consider in this
paper for the special case when H = (I + P, K)™1,
the sensitivity transfer function matrix (Pyy is the
plant transfer matrix from u to y). Their solution
uses the matriz Nevanlinna-Pick algorithm. The ap-
proach in this paper is using the tangential Hermite-
Fejér interpolation algorithm, and is more general.

2 Frequency-weighted
H_-control problem as an
interpolation problem

It is well-known [7, 8, 9, 10] that the set H of all
achievable stable closed-loop transfer matrices from
w to z, i.e., the set of all transfer matrices in figure 1
achievable over all stabilizing controllers K may be
parametrized affinely via the Youla parameter Q as

H= {T] - T2QT; ' Q stable} s

where Ty, T; and T3 are stable transfer matrices, of
sizes n, X ny, n; XNy and ny X 0y, (B, is the number
of components of the (vector) signal w of figure 1,
etc.). We will refer to H € H as a “closed-loop
map”.

We will make a number of assumptions about the
system:

1. We assume that ny, > n, and n, > n;, and
that T>(s) and T3(s) are full rank matrices for
almost all 5 in C,.. These assumptions, roughly
speaking, mean that we have in effect more sen-
sors than exogenous inputs w and more actua-
tors than controlled variables z.

2. We assume that T2(s) and T3(s) are of full rank
as s — 0o. Thus T3 and T3 may not have trans-
mission zeros at infinity.

3. We assume that 75 and T3 share no zeros in
C;.

Let ay,...,a, be the transmission zeros of T3 in
C., with geometric multiplicities u;, ..., up respec-
tively. The a;s are not necessarily distinct. Then,

there exist vectors u;; € C™, i = 1,...,p, | =
1,...,u; such that

1 - -k
k= “i,k(ﬁﬁTél i) =0,
I=1,...,p,i=1,...,p,

where we have used Té') to denote the lth derivative
of T. The set of vectors

{u.-,g, l= 1,...,/1,'}

is referred to as a left-null chain of H at o; [11].

Let B1,...,8, be the transmission zeros of T3 in
C,, with geometric multiplicities v, ..., v, respec-
tively. The ;s are not necessarily distinct, but
they are distinct from the a; as assumed, that is,
a; # B, i=1,...,p, I = 1,...,q. Then, there
exist vectors z;; € C™, i=1,...,¢, I =1,...,y
such that

Tiat (f_liﬁngl-k)(ﬁi)xi.k =0,
I=1,...,p4,i=1,...,q.
The set of vectors
{zit, 1=1,...,1}

is referred to as a right-null chain of H at §; [11].
Since @ is stable, H 2 Ty — T>QT3 must satisfy,
for l=1,...,p,i=1,...,p,

1 * -
Thar v HOF ()

Tier 2 HO R (B2

-
Yip

(2)

Yil

where

e

! . -
2k=1 “i,bthliﬁTl( k)(ai),

e

Ties U:lEﬁTx('_k)(ﬁs)zi,k-

Conversely, it can be shown that if H satisfies (2),
then there exists a stable transfer matrix @ of size
ny X ny such that H = T — T5QT5. Thus (2) pro-
vides an interpolation characterization of the set H.
Conditions (2) are referred to as “tangential inter-
polation conditions” in the literature, to contrast
them from matrix interpolation conditions [11].

In view of the interpolation characterization (2)
for H, the frequency weighted Ho.-control prob-
lem (1) becomes

Yil

Find H that salisfies (2) with 3
e (H(jw)) < 1b(w) for allw e R. 3
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Figure 3: Definition of 6(ws,s), r*(ws,s) and
r~(ws, 8)

We may solve this problem using the classical
Hermite-Fejér interpolation theory. As a first step,
we construct an analytic function W with W and
W~1 stable, satisfying |W(s)] — b(w) as s — jw
for almost all w € R: W(s) is uniquely given [12)
by €9, where

1 [ 1 jus—1
G =+ / log b(jw) Jus
00

T+t ju—s @ @

It may be verified that equation (4) yields the fol-
lowing formula for G: Given s € Cy, let 6(wp, 5)
be the angle subtended at s by the line segment
[~jws, jwp] in the complex plane, and let r+(wg, s)
and r~(wp,s) be the distance between s and the
points jwp and —jwp respectively (see figure 3).
Then, it may be verified that

RG(s) = ﬂ“’f_’) log M, (5)
and
o+
QG(s) = %]og ('_E%j—))-) log M. (6)

Then, e€(*) = M#(ws.) where
- 0(“5 ] B) j 1‘+ (UB) 3)
¢(“’B» 3) = _'_ + ; log m . (7)

Returning to problem (3), suppose that there ex-
ists H that satisfies the modified interpolation con-
ditions: For I=1,...,p,i=1,...,p,

l.li’l g C-G(a')v;'l,

The Wia mEA ) =

Thes 2 HOD(B) 21

~ A _ro
Gig = e~ Gy,

(8)
with oy (}.I(Jw)) < v for all w € R. Then

H(s) = eS) [ (5) solves problem (3). Conversely, if

H solves problem (3), then H(jw) must satisfy (8)
and the condition that oay (ff (jw)) < v for all

w E€R.

Thus, we have reduced the frequency-weighted
H-optimal control problem to the standard two-
sided Hermite-Fejér interpolation problem [11]:

Find H that satisfies (8) with o
Omax (f{(]w)) <+v forallweR. ©)

3 Computing tradeoffs
efficiently

We first state the condition for the existence of a
solution to problem (9) in a form that will be most
useful to us: There exists a solution to problem 9)
if and only the solution N to the Lyapunov equation

V'V -0~ (V'X - U'}")

AN+NA= 7(X‘l7—}."U) VX*X -Y*Y

satisfies N > 0, where A = diag(A;, A,),

A= diag (—JE—;,MN .. .,—JB‘;,“.) ’
A2 =dlag (Jﬂl,v“"'r']ﬂqv”ﬂ !
AR
l-/i=[6il e i, i=1,..0,p,

Yi=[a - 9a), i=1,...,q.

(We have used Ja,m to denote a Jordan block of
size m and eigenvalue \.) N is a “generalized” Pick
matrix. Though the above condition for the exis-
tence of a solution to problem (9) does not appear
anywhere in the literature, it is a straightforward
extension of the results in [11).

With
V=V V], Y=[1; -.- Y],
Vi=lva ov,), i=1,...,p,
Yi=lva - w), i=1,..,q,
and

D, = diag (e=C®Vp,,, ... 6@, ),
D, = diag (e=¢#)p,, | .. e 66, ),

where I, denotes the m x m identity matrix, we
observe that

V= VD,, Y = YD,.
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Note that using (7), D; and D, may be expressed
in terms of M and wp as

Dy = M~%@s) and D, = M~%2(w8)  (10)
where
®,(wp) = diag (¢(wn, 1) Ly,, - -, $(wn, Ty, ) ,
&;(wp) = diag ($(ws, Bi) v, - - -, $(wp, Be)]s, ) -
(11)

(The notation aP with a scalar a and a diagonal
matrix B denotes a diagonal matrix with diagonal
entries aP+.)

Therefore, we conclude that a solution to prob-
lem (9) exists if and only if the solution N to the
Lyapunov equation

. _[pve [ Div ]
ananas| 2 ] [ . ]

_[ e 1
D3y Diy*
satisfies N > 0.

We may further simplify the expression for N.
Let us define two Gramians W, and W,;; via

(12)

- : _ VvV vV*X
A VVm+VVmA - X‘V Xer ])
uv vy (13)
A Wour + WowA = [ YU Y*Y ]
Then, it is easily verified that
_IDy 0 | D1 0
N“[ 0 ‘rf]w‘"[ 0 'rf}
(14)

yI 0 v ¢
'[o D;]W“‘[O D, |-
Thus in summary, given M, ¥ and wg, the exis-

tence of a solution to the problem

Find H that satisfies (2) with
Omax (H(jw)) < 9b(w) forallw €R

may be checked with the following steps:
1. Compute Wi, and W, using equations (13).
2. Form D; and D; using equations (10) and (11).

3. Check if N, computed using equation (14), sat-
isfies N > 0.

Thus, the main contribution of the paper is the
following observation:

Given M, ¥ and wp, we may check if problem (1)
is feasible by essentially an eigenvalue computation.

This observation enables us to compute efficiently
the tradeoffs between M, ¥ and wp. Suppose that
for for fixed M and wp, we wish to compute the
smallest value of v for which (9) has a solution (let
us denote this value of ¥ by yopt). We start by
computing Wi, and W, by solving the Lyapunov
equations (13). Then, v,p: may be computed by
a simple bisection scheme, every iteration of which
requires:

1. The evaluation of D; and D, (using equa-
tions (10) and (11)),

2. Computing N (using equation (14)), and

3. Checking if the minimum eigenvalue of N is
nonnegative.

Thus each bisection iteration requires essentially an
eigenvalue computation. By computing vop: for var-
ious values of M, we may compute the tradeoff be-
tween M and v for fixed wp. The above remarks
hold for the computation of tradeoffs between other
quantities as well.

We note that instead of a bisection scheme, we
may also use more sophisticated methods such as
the Newton-Raphson method to compute yop;. We
will not discuss the details here.

4 A simple example

We demonstrate the results of the previous section
on a simple example. We consider an example where
the set of achievable stable closed-loop transfer ma-
trices for system in figure 1 are given by

H= {T1 - ThQT; | Q stable} N

where

T =

T=| (6+1?
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1
s+1
(s-1)
(s+1)°
A stable transfer matrix H belongs to H if and only
if it satisfies the following interpolation conditions:

T3=

“?,1H(I+J'; = v
“5,1”(1‘j = v, 1
H1)zy = w1 (15)
HOM)zy3+ HM)z12 = 1o,
where
’ 11
[u1,10 uz1) = [0 0 ],
l' 1 1
[1 vea] = (271) (2'{'1) ’
L 3-J4) (8+37)
11
[£11 212) = 2 41,
1 o0
R
: - |2 %
Y1 Y2 = i ﬂ_
12 144

We will now impose the frequency-weighted Ho,
condition

Tmax (H(jw)) < vb(w) for allw € R. (16)

on H € H, and study the tradeoffs between M, v
and wpg.

4.1 Tradeoff between M and 4

For various values of wp, the smallest achievable ¥
(i-e., Yopt), as a function of M are shown in figure 4.

We first note that the case wg = 0 corresponds to
the situation where there is no in-band specification;
in this case, irrespective of M, the condition (16) is
merely the “He-norm condition”

Omax (H(jw)) < ¥ for allw € R. 17)

We see that +y,p in this case, which we will denote
Yo, is about 0.83.

For nonzero values of wp, decreasing the in-
band to out-band rejection ratio M corresponds
to requiring increasingly stringent conditions on
Omax (H(jw)) over w € [-wp,wn]. This can be
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Figure 4: Tradeoff between M and v for various values
of wp.

achieved only at the cost of increased out-band lev-
els of omax (H(jw)) (recall that 7 is precisely this
quantity). Moreover, for nonzero wpg, Yopt — OO as
M — 0. Similarly, increasing wp corresponds to re-
quiring the in-band to out-band rejection ratio to
hold over larger bandwidths, and the cost of requir-
ing this is reflected in larger values of Yopr as well.

Finally, when wp — o0, there is no out-band. As
with the case wp = 0, the condition (16) reduces to
the Ho-norm condition

Omax (H(jw)) <YM forallw € R. (18)

Since the smallest achievable Ho,-norm is Y0, the
tradeoff curve between M and v is given by Yopt M =
Yo-

4.2 Tradeoff between wy and 5

The tradeoff between wp and v for various fixed
values of M is shown in figure 5.

We start with the case M = 1, which translates
to the simple H,,-norm condition (17). Therefore,
the smallest achievable v (i.e., Yopt), irrespective of
wp, is Yo-

For M < 1, increasing wp requires an in-band
to out-band rejection ratio of M over larger band-
widths, the cost of which is reflected in larger values
of Yopt - Similarly, decreasing M leads to an increase
in opt, for all wg. As wp — oo, the condition (16)
reduces to (18), and therefore vop, — 70/M.

Finally, we note that we may study the tradeoff
between wp and M as well.



Figure 5: Tradeoff between wp and v for various values
of M.

5 Conclusions

We have shown how we may very efficiently plot
tradeoff curves for the frequency-weighted H-
control problem, by reducing the question of
whether a point lies above or below a tradeoff curve
to an eigenvalue calculation. Each tradeoff curve
in figures 4 and 5, comprising 100 data points
each, took only about 20 seconds to compute, us-
ing a Newton search, on a lightly-loaded SUN Sparc
2 workstation. The implication is that least for
moderate-size problems, we may interactively study
the tradeoffs between the various parameters that
comprise the frequency-weighting function. We also
note that the results presented here can be extended
to more complicated frequency weighting functions
in a straightforward manner.

In this paper, we have only concentrated on
achievable performance; we have not concerned our-
selves with designing controllersthat achieve a given
frequency-weighted Ho,-norm specification. How-
ever, from standard results in interpolation theory,
an explicit parametrization of all interpolants H
that solve the Hermite-Fejér problem (9) is readily
available; thus, we may immediately write down an
explicit parametrization of all stabilizing controllers
that achieve a given frequency-weighted He-norm
specification. We refer the reader, once again,
to [11] for details.
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