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Convex optimal control problem

» we consider discrete-time, deterministic, finite-horizon control
> linear-convex optimal control problem:
minimize Ztho 0 (¢, 1)
subject to x4 = Atxt + Btu[ +c, t= 0, ceey T—1
X0 = Xinit
» variables: states x; € R" and actionsu; ¢ R",t=0,...,T
> stage cost {; : R" x R” — R U{oo} convex

» infinite values of {; encode state/action constraints

Convex optimal control problem



Solution methods

» many methods to solve convex optimal control problem
> interior-point methods
> accelerated (primal or dual) proximal gradient
> explicit MPC
> active set

» each has advantages, disadvantages, limitations

Convex optimal control problem



This talk

yet another method for convex control problem, that
> is fast and reliable
> is implementable in light, library free code

> can take advantage of parallelism

v

scales to large problems

> can be implemented in fixed point arithmetic (in many cases)
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Stage cost decomposition

v

stage cost decomposed as

b= ¢+

> ¢ convex quadratic

v

1; non-quadratic, possibly infinite (but convex)

> (decomposition not unique)
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Quadratic stage cost

convex quadratic terms ¢, : R” x R" — R have the form

T

X Q S
Gi(x,u) =(1/2) | u S R
1 a1t

where

Q S
[ST R | =°

(i.e., symmetric positive semidefinite)
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Decomposed problem

minimize Y[, (bi(x,, ) + V(% 14r))

subjectto  x;41 = A, + By +¢, t=0,...

X0 = Xinit

Convex optimal control problem



Variable-term graph structure

circles: objective function terms; rectangles: variables
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Notation

» x = (xo,...,x7), u = (ug,...,ur), (x,u) denote whole trajectories

> define trajectory costs

T
(b(xlu) = Z d)t(xt/ ut)/ w(x/u) = le)t(xt/ ut)

t=0 t=0

v

D is set of trajectories that satisfy dynamics
D= {(.’JC,M) | X0 = Xinit, Xt+1 :Atxt +BM¢ +c, t= 0,‘. .,T— 1}
> [p is indicator function of D

0 (xuedD
oo otherwise

Ip(x,u) :{
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Optimal control problem

minimize Ip(x,u) + &d(x,u) +v(x, u)

> Ip(x,u) encodes linear equality (dynamics) constraints
> ¢(x, u) is separable convex quadratic

> 1 (x, u) is separable non-quadratic convex

Convex optimal control problem
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Consensus form

> replicate x and u, and add consensus constraints:

minimize (Ip(x,u) + ¢(x,u)) + V(& i)
subjectto  (x,u) = (%, i1)

over (x,u) € R and (%, 1) € RU)(THD)

Operator splitting method
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Graph structure (original problem)
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Graph structure (consensus form)
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Proximal operator

> define prox operator

proxf(v) = argmin (f(x) + (p/2)[]x — v||§)

with parameter p > 0
> generalizes notion of projection

> prox operators of many functions have simple forms

Operator splitting method
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Douglas-Rachford splitting for consensus convex optimization

> consensus convex optimization problem

minimize f(x) + g(z)
subjectto x =z

v

DR splitting algorithm: starting from any 20,0, fork=0,1,...,

= proxf(zk + A

k+

2= proxg(x"+1 — A9

}\k+1 — 7\k + xk+1 _ Zk+1

v

A is (scaled) dual variable associated with consensus constraint
» Afis running summing of errors x* — z* (integral control)

> converges to solution, if one exists

Operator splitting method
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Operator splitting for control (OSC)

> consensus form optimal control problem:

minimize (Ip(x,u) + d(x,u)) + V(X

subjectto  (x,u) = (%, 1)

» OSC: starting from any (°,1°), (2°,°), fork=0,1,...,

(o1, kT = prox,, Lo+ 20 )

(xk+1 i-lkJrl) _ pI'OX (xk+1 _ Zk, Hk+1 _yk)

Zk+1’yk+1 — ka + (J?kH _ ka,ﬁkH _

Operator splitting method
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Stopping criterion

» primal residual 7 = (x*, u*) — (&, iit)

v

dual residual s = p((&, i) — (&1, 55 1))

v

both converge to zero

> stopping criterion: _
1Pl < e, stz < e

with tolerances eP" > 0 and e?" > 0

Operator splitting method
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Consensus form graph
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With dual variables

Operator splitting method
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Douglas-Rachford Splitting
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Sub-problems

Quadratic
@ @ @ Affine equality @
constraints
(x0,1p) |— @0 0 —1 (xt,14) (X1, Up1) | — o 0 @ —] (X7, UT)
I I I I
| | | |
(20, Yo) (zt, ) (zt41, Y1) (zr,yr)
[ [ [ |
I I I I
(%o, i19) cee (X4, 1) (X1, h41) coe (¥, iir)
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Sub-problems

Quadratic

Affine equality
constraints

(xO/ uO) — o 00 — (xtr ut) (xt+1/ ut+1) — o0 0 — (XT/ uT)
I I I I
| | | |
(z0,Y0) (zt, ) (Zt41,Yi11) (zr,yr)
P Ry N I i I
| @d) | eee | Gi) || R )| eee | (Fndn) |
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Linear quadratic step

v

OSC first step is solving a linearly constrained quadratic problem
minimize (1/2)w"Ew + fTw
subjectto Gw =h

over variable w € R(T+1D (n+m)

v

E has block structure

> optimality conditions: KKT system

E G w] [ —f
G 0 Al | h
A € RTFD" qual variable associated with Gw = h

> in each iteration of OSC we solve KKT system with same KKT matrix

Operator splitting method
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Sparse LDLT decomposition

» factor KKT matrix as

{E GT

_ TpT
G 0}—PLDLP

> Pisa permutation matrix

> L is unit lower triangular

> D is diagonal
> P chosen to yield a factor L with few nonzeros
» can choose P such that L is block banded

> factorize, then cache P, L, D!

Operator splitting method
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Solve step

- ol Sy‘“’[e; ]_i (e (e ([ 31)))

> multiplication by L~ is forward substitution

> multiplication by LT is backward substitution
> these operations do not require division
> factor cost: O(T(m + n)?), solve cost: O(T(m + n)?)
> same as Riccati recursion, but (much) more general

> (we also use regularization and iterative refinement)

Operator splitting method 27



Non-quadratic prox step

> OSC second step separable across time

> solve for each t:
minimize (X, ;) + (p/2)||(Fe, ) — (v, wi) |3
over ¥; € R" and ii; € R"
> in many cases we have analytic or semi-analytic solutions

> can be solved in parallel

Operator splitting method
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OSC summary

in each step:

1. solve linear-quadratic regulator problem
2. T + 1 parallel prox steps
3. dual update

Operator splitting method
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Usage scenarios

v

cold start
> solve optimal control problem once
> warm start
> solve many times with similar data
> initialize algorithm using previous solution
> constant quadratic
> solve many times, where Qy, R;, 5¢, A, B; do not change
» perform LDLT factorization once, offline
> can yield division free algorithm
> warm start constant quadratic

> computational savings stack

Operator splitting method 30
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Examples

> three examples, three instances of each
> timing results for
> cold start: initialize variables to zero

> warm start: perturb Xinit
> at termination no instance was more than 1% suboptimal
> implemented in C
> Tim Davis” AMD and LDL packages for factorization and solve steps
» run on 4 core Intel Xeon processor (3.4GHz, 16Gb of RAM)

> and, for fun, Rasberry Pi

Examples 32



Box-constrained quadratic optimal control

> box-constrained problem:

minimize (1/2) Y[, (xTQx; + ul Ruy)
subjectto  x441 =Ax; +Bu, t=0,...,T—1
X0 = Xinit
el <1
Q>0andR >0
» data randomly generated; A scaled so that p(A) =1
> Xinit Scaled so inputs saturated for at least 2/3 of horizon
> Pe(xy, 1) = Ijuyjoo<1s SO

prox,, (v,w) = (v, §a§](w))

[—1

Examples 33



Results

(all times in milliseconds)

small medium large
state dimension n 5 20 50
input dimension m 2 5 20
horizon length T 10 20 30
total variables 77 525 2170
CVX solve time 400 500 3400
fast MPC solve time 15 14.2 2710

Examples
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Results

(all times in milliseconds)

Examples

small medium large
state dimension n 5 20 50
input dimension m 2 5 20
horizon length T 10 20 30
total variables 77 525 2170
CVX solve time 400 500 3400
fast MPC solve time 15 14.2 2710
factorization time 0.1 1.3 16.8
KKT solve time 0.0 0.1 0.9
OSC iterations 92 46 68
OSC solve time 0.4 44 60.5
warm start OSC iterations 72.6 35.1 39.5
warm start OSC solve time 0.3 3.4 35.2
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Multi-period portfolio optimization

> manage a portfolio of n assets over t =0,...,T

> x; € R" vector of portfolio positions at time ¢ (in dollars)
> (xt); < 0: short position in asset i in period ¢

> u; € R" vector of trades at time ¢ (in dollars)

> (u); < 0: asset i is sold in period ¢

> dynamics
X1 = diag(r)(x +uy), t=0,...,T—1

> 1, > 0 (estimated) returns in period ¢

Examples 35



Stage cost

gross cashin  price-impact quadratic risk bid-ask spread  trading constraint
=~ /-T/\ o N——
1w, +uf diag(s)us+ (x +u)TZ(x +u) + kT + e, (o, 1)

» k>0,5s>0,and ~ > 0 are data
> negative stage cost means (risk-adjusted) revenue extracted
> trading constraints

> long-only: C; = {(xt,ut) | x¢ +u 20}, t#T

> liquidate position: Cr = {(xr,ur) | xp + ur = 0}

Examples 36



Splitting

gross cash in price-impact quadratic risk

=
1w, +uf diag(si)ue +A (X0 +u) i (2 + we) +
o]

note: 1; separable across assets

Examples

bid-ask spread
T
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trading constraint

—
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Proximal operator for 1;

» for t < T prox step given by solution to

minimize  «;[ul; + (p/2) ((x; — v;)* + (u; — w;)?)
subjectto x; +u; >0

with scalar variables x; and u;

> solution easily expressed using soft-thresholding operator S, (z)

$,(z) = argmin (vlyl + (1/2)(y — 2)2) = z(1 —v/lz])+
Yy

Examples 38



Results

(all times in milliseconds)

small medium large
number of assets n 10 30 50
horizon length T 30 60 100
total variables 620 3660 10100
CVX solve time 800 2100 10750

Examples
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Results

(all times in milliseconds)

Examples

small medium large
number of assets n 10 30 50
horizon length T 30 60 100
total variables 620 3660 10100
CVX solve time 800 2100 10750
factorization time 0.7 13.3 73.6
KKT solve time 0.1 0.7 3.2
OSC iterations 27 41 53
OSC solve time 15 30.8 177.7
warm start OSC iterations 5.1 59 4.8
warm start OSC solve time 0.3 4.4 16.1
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Supply chain management

> single commodity supply chain on a directed graph
> nnodes: warehouses or storage locations

> m edges: shipment links between warehouses, sources, and sinks

> x; € R, amount of the commodity stored in warehouses

v

u; € R amount shipped across links

> dynamics
Xe1 =X+ (BY — B )uy

> B;T = 1if edge j enters node i

- B; = 1l if edge j leaves node i

Examples

40



Stage cost

storage cost transportation cost  warehouse capacities  link capacities  can’t ship more than on hand
T ~T,.2 /T\
px+gx+  rnuw + Dew<e + Docusu + Tp—u<x,
ol Py

transportation costs include
> cost of acquisition
> revenue from sales

prox step of 1\, solved via saturation and bisection

Examples
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Results

(all times in milliseconds)

small medium large
warehouses n 10 20 40
edges m 25 118 380
horizon length T 20 20 20
total variables 735 2898 8820
CVX solve time 500 1200 3300

Examples
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Results

(all times in milliseconds)

Examples

small medium large
warehouses n 10 20 40
edges m 25 118 380
horizon length T 20 20 20
total variables 735 2898 8820
CVX solve time 500 1200 3300
factorization time 0.3 1.3 4.7
KKT solve time 0.0 0.1 0.3
single-thread prox step time 0.1 0.4 1.3
multi-thread prox step time 0.0 0.1 0.4
OSC iterations 82 77 116
OSC solve time 4.6 19.1 88.1
warm start OSC iterations 21.9 31.0 24.2
warm start OSC solve time 1.2 7.5 18.5
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Summary

> decompose convex optimal control problem into
> convex linear quadratic control problem

> time-separable nonquadratic problems

v

yields fast, reliable algorithm
> small problems solved in microseconds

> large problems solved in milliseconds

v

if dynamics matrices don’t change, yields division-free method

> can be improved by diagonal scaling, computed on-line or off-line

Conclusion 44



	Convex optimal control problem
	Operator splitting method
	Examples
	Conclusion

