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LEAST-SQUARES COVARIANCE MATRIX ADJUSTMENT∗

STEPHEN BOYD† AND LIN XIAO‡

Abstract. We consider the problem of finding the smallest adjustment to a given symmetric
n×n matrix, as measured by the Euclidean or Frobenius norm, so that it satisfies some given linear
equalities and inequalities, and in addition is positive semidefinite. This least-squares covariance
adjustment problem is a convex optimization problem, and can be efficiently solved using standard
methods when the number of variables (i.e., entries in the matrix) is modest, say, under 1000. Since
the number of variables is n(n + 1)/2, this corresponds to a limit around n = 45. Malick [SIAM
J. Matrix Anal. Appl., 26 (2005), pp. 272–284] studies a closely related problem and calls it the
semidefinite least-squares problem. In this paper we formulate a dual problem that has no matrix
inequality or matrix variables, and a number of (scalar) variables equal to the number of equality
and inequality constraints in the original least-squares covariance adjustment problem. This dual
problem allows us to solve far larger least-squares covariance adjustment problems than would be
possible using standard methods. Assuming a modest number of constraints, problems with n = 1000
are readily solved by the dual method. The dual method coincides with the dual method proposed
by Malick when there are no inequality constraints and can be obtained as an extension of his dual
method when there are inequality constraints. Using the dual problem, we show that in many cases
the optimal solution is a low rank update of the original matrix. When the original matrix has
structure, such as sparsity, this observation allows us to solve very large least-squares covariance
adjustment problems.
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1. The problem. This paper concerns the following problem. We are given a
symmetric matrix G, and seek X, the nearest (in the least-squares sense) symmetric
matrix that is positive semidefinite and in addition satisfies some given linear equalities
and inequalities. This can be expressed as the optimization problem

(1.1) minimize (1/2)‖X −G‖2
F

subject to X � 0,
TrAiX = bi, i = 1, . . . , p,
TrCjX ≤ dj , j = 1, . . . ,m.

Here the matrices X, G, Ai, and Cj are n × n and symmetric (and real). The
(real) matrix X is the optimization variable; the matrices G, Ai, and Cj , and the
scalars bi and dj , are the problem data. We note that the optimization variable X
has dimension n(n + 1)/2, i.e., it contains n(n + 1)/2 independent scalar variables.
In (1.1), Tr denotes the trace of a matrix, � denotes matrix inequality, and ‖ · ‖F
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denotes the Frobenius norm, i.e.,

‖U‖F = (TrUTU)1/2 =

⎛
⎝

n∑
i,j=1

U2
ij

⎞
⎠

1/2

.

Since any real-valued linear function f on the set of n × n symmetric matrices can
be expressed as f(U) = TrAU for some symmetric n × n matrix A, we see that the
constraints in (1.1) are a general set of p linear equality constraints and m linear
inequality constraints. For reasons to be explained below, we refer to problem (1.1)
as the least-squares covariance adjustment problem (LSCAP).

LSCAP is a type of matrix nearness problem, i.e., the problem of finding a ma-
trix that satisfies some property and is nearest to a given one. In the least-squares
covariance adjustment problem, we use the Frobenius norm, the given matrix is sym-
metric, and the property is that the matrix belongs to a polyhedron, i.e., the solution
set of some linear equalities and inequalities. See Higham [6] for a recent survey of
matrix nearness problems. A related geometric interpretation of the LSCAP (1.1) is
as follows: We are given a symmetric matrix G, and wish to compute the (Frobenius
norm) projection of G onto the intersection of a general polyhedron, described by
linear equalities and inequalities, and the cone of positive semidefinite matrices.

LSCAP (1.1) comes up in several contexts. One is in making adjustments to a
symmetric matrix so that it is consistent with prior knowledge or assumptions, and
is a valid covariance matrix. We interpret X as the covariance matrix of a zero mean
random n-vector z, and suppose that the variances of some linear functions of z are
known, e.g.,

E ‖FT
i z‖2 = TrFT

i XFi = bi, i = 1, . . . , p.

We are given G, which is some approximation of X (e.g., a sample covariance matrix),
and wish to find the covariance matrix nearest G that is also consistent with the prior
information. This results in problem (1.1) with Ai = FiF

T
i (using Tr ‖FiX‖2 =

TrX(FiF
T
i )). If we are also given some lower or upper bounds on the variances of

some linear combinations of z, we obtain an LSCAP with inequality constraints.
We will also consider a special case of the basic problem (1.1), in which there is

only one equality constraint, defined by a matrix of rank one:

(1.2) minimize (1/2)‖X −G‖2
F

subject to X � 0, cTXc = b.

This is the problem of finding the covariance matrix closest to G that matches the
given variance of one given linear function of the underlying random variable.

1.1. Previous work. Some special cases of the LSCAP have simple solutions,
or have been addressed in the literature. The simplest case is when there are no
constraints on X other than positive semidefiniteness. In this case the LSCAP reduces
to finding the projection of a symmetric matrix onto the positive semidefinite cone,
which has a well-known solution based on the eigenvalue decomposition of G (given
in section 1.3). Another example is the problem of finding the nearest correlation
matrix, i.e., the nearest symmetric positive semidefinite matrix with unit diagonal
elements. This particular problem is addressed in Higham [7], where an alternating
projections method is proposed for solving the problem.
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There is a large literature on matrix nearness problems; see, for example, the
references in the survey [6]. In much of this work, the original matrix (which we
denote G) is nonsymmetric, which complicates the problem a bit. For example, in
[5], Higham considers the problem of finding the nearest positive semidefinite matrix
to a given (nonsymmetric) matrix with no other constraints.

Our approach and methods are related to others that have been proposed for
other matrix nearness problems. In particular, we find ideas related to the dual of the
original problem in, e.g., [7]; the idea of exploiting structure to evaluate the projection
of a matrix onto the positive semidefinite cone also appears in [7]. Our method for the
special case (1.2) involves a one parameter search, which can be done by a bisection
algorithm, or a guarded Newton method. This is similar to methods proposed in [4, 5]
and several of the papers cited in Higham’s survey paper for (other) matrix nearness
problems.

By far the closest previous work is the recent paper [11] by Malick, which appeared
while this paper was under review. Malick considers the general problem of computing
the Euclidean projection of a point onto the intersection of a cone and an affine set,
and the special case in which the cone is the positive semidefinite cone, which he calls
semidefinite least-squares (SDLS). His SDLS problem coincides with our LSCAP,
with no equality constraints; the inequality constraints can, however, be handled by
introducing slack variables, and including the slack nonnegativity constraints in the
cone, so SDLS can be said to be more general than LSCAP. Our approach and Malick’s
approach are very similar with some differences that we will point out in what follows.
In fact, some of our ideas and Malick’s can be combined to create a method that can
very efficiently solve large-scale SDLS problems.

1.2. Basic properties of LSCAP. The LSCAP (1.1) is a convex optimization
problem, since the objective is convex, the constraint functions are linear, and the
semidefiniteness inequality X � 0 is convex. (The constraint X � 0 is called a
generalized or cone constraint, or more specifically, a linear matrix inequality.) If the
problem (1.1) is feasible, then it has a unique solution, since the objective function is
strictly convex and has bounded sublevel sets. We will denote the solution as X�.

The observation that the LSCAP is a convex optimization problem have several
important implications. The first is that the LSCAP is readily solvable, by standard
interior-point methods, at least when the number of variables is modest, say, under
1000 (which corresponds to n around 45). General purpose interior-point solvers
(that do not exploit problem structure) have a complexity that scales at least as fast
as the number of variables cubed, so the overall complexity of solving the LSCAP
problem, using this approach, scales at least as fast as n6. For background on convex
optimization and interior-point methods, see, e.g., [3].

The second consequence of convexity of LSCAP is that its associated dual problem
(defined below) is sharp (provided a technical condition holds) and can be used to
solve the original LSCAP. This is the central idea of our method, and is described in
more detail in section 2.

The LSCAP problem is closely related to semidefinite programming (SDP) [18,
17, 3]. Like LSCAP, SDP is an optimization problem with a symmetric matrix vari-
able, a semidefiniteness constraint, and linear equality and inequality constraints. In
an SDP, the objective is a linear function; in LSCAP the objective is (a simple) convex
quadratic function. In fact, it is possible to express the LSCAP problem as an SDP,
using a standard trick for converting a quadratic objective into a linear matrix in-
equality and a linear objective (see, e.g., [18]). In principal, this allows us to solve the
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LSCAP using standard algorithms for solving SDPs. Without exploiting any partic-
ular structure in the resulting SDP, however, this approach will be quite inefficient.
The observation that LSCAP (in the SDLS form) is convex, and can be formulated
as an SDP, but one that is difficult to solve using the standard methods can be found
in Malick [11] and Higham [7].

1.3. Projection on the positive semidefinite cone. Here we introduce some
notation and standard material that we will use in what follows. For a symmetric
n× n matrix X, we sort the eigenvalues in decreasing order,

λ1 ≥ λ2 ≥ · · · ≥ λn,

and use the notation λi(X), for example, to specify the matrix if it is not clear.
The positive and negative semidefinite parts of X, denoted by X+ and X−, re-

spectively, are defined implicitly by the conditions

X = X+ −X−, X+ = XT
+ � 0, X− = XT

− � 0, X+X− = 0.

The positive semidefinite part X+ is the projection of X onto the positive semidefinite
cone, i.e., we have

‖X −X+‖F = ‖X−‖F ≤ ‖X − Z‖F

for any positive semidefinite Z. In a similar way, ‖X + Z‖F is minimized, over all
positive semidefinite matrices Z, by the choice Z = X− (see, e.g., [3, section 8.1.1] or
[8]).

We can express the positive and negative semidefinite parts explicitly as

X+ =
∑
λi>0

λiqiq
T
i , X− =

∑
λi<0

−λiqiq
T
i ,

where X =
∑n

i=1 λiqiq
T
i is an eigendecomposition of X, i.e., q1, . . . , qn is a set of

orthonormal eigenvectors of X with corresponding eigenvalues λ1, . . . , λn. We also
note, for future reference, that to compute X+ and X−, it suffices to find the negative
eigenvalues of X and the associated eigenvectors; X+ can then be computed as X+ =
X + X−.

2. The dual problem.

2.1. Lagrangian and dual function. We introduce the Lagrange multipliers
ν1, . . . , νp associated with the equality constraints μ1, . . . , μm associated with the in-
equality constraints, and the symmetric n × n matrix Z associated with the matrix
inequality X � 0 (which we write as −X � 0). The Lagrangian of problem (1.1) is
then

L(X,Z, ν, μ) =(1/2)‖X −G‖2
F−TrZX +

p∑
i=1

νi(TrAiX − bi) +

m∑
j=1

μj(TrCjX − dj)

= (1/2)‖X −G‖2
F + TrX

⎛
⎝−Z +

p∑
i=1

νiAi +

m∑
j=1

μjCj

⎞
⎠− νT b− μT d

= (1/2)‖X −G‖2
F + TrX (−Z + A(ν) + C(μ)) − νT b− μT d,
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where we use the notation

A(ν) =

p∑
i=1

νiAi, C(ν) =

m∑
j=1

μjCj .

To form the dual function, we must minimize the Lagrangian over X, which we
can do by setting the gradient with respect to X to zero (since L is convex quadratic
in X). This yields

X −G− Z + A(ν) + C(μ) = 0,

so the X that minimizes L is given by

X = G−A(ν) − C(μ) + Z.(2.1)

Substituting this expression for X back into the Lagrangian we obtain the dual func-
tion:

g(Z, ν, μ) = inf
X

L(X,Z, ν, μ)

= (1/2)‖ −A(ν) − C(μ) + Z‖2
F − νT b− μT d

+Tr (G−A(ν) − C(ν) + Z) (−Z + A(ν) + C(μ))

= −(1/2)‖ −A(ν) − C(μ) + Z + G‖2
F + (1/2)‖G‖2

F − νT b− μT d.

This is a concave quadratic function of the dual variables Z, ν, and μ.

2.2. Dual problem and properties. The dual problem is

(2.2) maximize −(1/2)‖ −A(ν) − C(μ) + Z + G‖2
F + (1/2)‖G‖2

F − νT b− μT d
subject to Z � 0, μ � 0,

where the symbol � between vectors means elementwise, and the (dual) variables
are Z, ν, and μ. This problem is similar to the original LSCAP: it has a symmetric
matrix variable (as well as two vector variables), a quadratic objective, a positive
semidefiniteness constraint, and a set of (scalar) nonnegativity constraints.

Weak duality always holds for the dual problem (2.2): if Z, ν, and μ are dual
feasible, i.e., Z � 0 and μ � 0, then the dual objective is a lower bound on the optimal
value of the LSCAP (1.1). If the LSCAP (1.1) is strictly feasible, i.e., there exists an
X � 0 that satisfies the linear equalities and inequalities in (1.1), then strong duality
holds: there exist Z�, ν�, μ� that are optimal for the dual problem (2.2) with dual
objective equal to the optimal value of the LSCAP (1.1). Moreover, we can recover
the optimal solution of the LSCAP (1.1) from the dual optimal variables using

X� = G−A(ν�) − C(μ�) + Z�(2.3)

(which is the choice of X that minimizes the Lagrangian, when Z = Z�, ν = ν�, and
μ = μ�). This follows from convexity of the original LSCAP, and strict convexity of
the Lagrangian with respect to the primal variable X; see, e.g., [3].

Although we will end up deriving this result directly, general convex optimization
theory tells us that X� and Z� satisfy the complementarity condition Z�X� = 0.
Since X� and Z� are both positive semidefinite, this means that the intersection of
their ranges is {0}.
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2.3. Simplified dual problem. It is possible to analytically maximize over the
variable Z in (2.2), using the fact (from section 1.3) that

‖−A(ν) − C(μ) + Z + G‖2
F

is minimized over the choice of Z � 0 by choosing

Z = (G−A(ν) − C(μ))− ,(2.4)

which gives

‖−A(ν) − C(μ) + Z + G‖2
F =

∥∥(G−A(ν) − C(μ))+
∥∥2

F

=
∑
λi>0

λ2
i (G−A(ν) − C(μ)) .

Using the result (2.4), we can simplify the dual problem (2.2) to

(2.5) maximize −(1/2) ‖(G−A(ν) − C(μ))+‖2
F + (1/2)‖G‖2

F − νT b− μT d
subject to μ � 0,

where the variables are ν and μ. We will refer to this as the simplified dual LSCAP
problem. The simplified dual problem has no matrix variable or inequality and has a
number of (scalar) variables equal to the number of equality and inequality constraints
in the original LSCAP.

The simplified dual problem is, of course, a convex optimization problem (since
the objective is concave, and is to be maximized). We also note that the objective
function is differentiable, but not twice differentiable. To see this we define φ, for
symmetric W , as

φ(W ) = (1/2)‖W+‖2
F = (1/2)

∑
i

(max{0, λi(W )})2 ,

the sum of the squares of the positive eigenvalues. Its gradient can be expressed as

∇φ(W ) = W+,(2.6)

by which we mean the following: for symmetric V , we have

φ(W + V ) = φ(W ) + TrVW+ + o(V ).

This can be verified several ways, for example, using standard perturbation theory for
the eigenvalues of a symmetric matrix, or results from Borwein and Lewis [2, section
5.2].

From the formula (2.6), we conclude that ∇φ(W ) is continuous, indeed, with
Lipschitz constant one: for any symmetric V and W ,

‖∇φ(V ) −∇φ(W )‖F ≤ ‖V −W‖F .

Whenever W has no zero eigenvalues, ∇φ(W ) is differentiable; but when W has a
zero eigenvalue, ∇φ(W ) is not differentiable. In other words, φ is twice differentiable,
except at points W with a zero eigenvalue.
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Using (2.6) we can find expressions for the gradient of the objective of the sim-
plified dual (2.5), which we denote

ψ(ν, μ) = −(1/2) ‖(G−A(ν) − C(μ))+‖2
F + (1/2)‖G‖2

F − νT b− μT d.

We have

∂ψ

∂νi
= Tr(G−A(ν) − C(μ))+Ai − bi,

∂ψ

∂μj
= Tr(G−A(ν) − C(μ))+Cj − dj .

Defining X(ν, μ) as X(ν, μ) = (G − A(ν) − C(μ))+, we see that the gradients of the
dual objective can be expressed as

∂ψ

∂νi
= TrAiX(ν, μ) − bi,

∂ψ

∂μj
= TrCjX(ν, μ) − dj ,

which are exactly the residuals for the constraints in the primal LSCAP with X =
X(ν, μ).

The simplified dual (2.5) coincides with the dual derived by Malick for the case
when there are no inequality constraints in the LSCAP, and is obtained as a simple
extension of his dual, when inequality constraints are included (see [11, Remark 4.3]).
He also observes that the dual objective is differentiable, and has a gradient with
Lipschitz constant one.

From (2.3) and (2.4) we find that

X� = (G−A(ν�) − C(μ�))+.(2.7)

The formula (2.7) shows that the optimal solution of the LSCAP problem is always
obtained by adding a linear combination of the constraint data matrices to the original
matrix, and then projecting the result onto the positive semidefinite cone.

More generally, suppose that ν and μ are any feasible values of the dual variables
(i.e., μj ≥ 0), not necessarily optimal. Then the dual objective ψ(ν, μ) gives a lower
bound on the optimal value of the primal LSCAP. The matrix X(ν, μ) is always
positive semidefinite (since it is the positive semidefinite part of G − A(ν) − C(μ)),
but does not satisfy the original equality and inequality constraints, unless ν and μ
are optimal.

2.4. Rank of optimal adjustment. Consider X� − G, which is the optimal
adjustment made to G. We have

X� −G = (G−A(ν�) − C(μ�))+ −G(2.8)

= −A(ν�) − C(μ�) + (G−A(ν�) − C(μ�))−.

This shows that the optimal adjustment made to G is a linear combination of the
constraint matrices, plus the negative part of G−A(ν�) − C(μ�).

We can draw many interesting conclusions from this observation. We start by
observing that the number of negative eigenvalues of G − A(ν�) − C(μ�) is no more
than the number of negative eigenvalues of G, plus the sum of the ranks of Ai, plus
the sum of the ranks of Cj . In other words, we have

Rank(G−A(ν�)−C(μ�))− ≤ Rank(G−) +
∑
i

Rank(Ai) +
∑
j

Rank(Cj).(2.9)
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We also have

Rank(−A(ν�) − C(μ�)) ≤
∑
i

Rank(Ai) +
∑
j

Rank(Cj),

so, using the result (2.8) above, we conclude

Rank(X� −G) ≤ Rank(G−) + 2
∑
i

Rank(Ai) + 2
∑
j

Rank(Cj).

This shows that if G is positive semidefinite, and there are only a small number of
constraints, with low rank data matrices, then the optimal adjustment is low rank,
i.e., X� is a low rank update of G.

As another example, suppose that G is a factor model covariance matrix ; i.e., it
can be expressed as a sum of a nonnegative diagonal matrix and a positive semidefinite
matrix of low rank, say, k. (This means that the underlying random variables can
be explained by k common factors, plus some independent noise in each component.)
We also assume that the constraint matrices Ai and Cj are rank one and positive
semidefinite. For this example, the rank of the optimal adjustment X� − G cannot
exceed 2(p + m), so the optimal adjusted covariance matrix X� will also be a factor
model (indeed, with the same diagonal part as G, and a number of additional factors
not exceeding twice the number of equalities and inequalities).

3. Solution via simplified dual. In many cases, we can solve the LSCAP (1.1)
efficiently via the simplified dual problem (2.5), which has differentiable (but not twice
differentiable) objective, a number of variables equal to the number of constraints in
the original LSCAP, and nonnegativity constraints on some of the variables.

Several methods can be used to solve the general simplified dual problem. One
very simple method is the projected (sub)gradient method, described in detail in
section 3.1; another possibility is a conjugate gradient method that can handle non-
negativity constraints. Various special cases of the simplified dual can be handled by
more specialized methods. For example, if there is only one equality constraint, the
dual objective function can be shown to be twice differentiable, so Newton’s method
can be used. (This is described in more detail in section 3.4.3.)

If there are no inequality constraints in the original LSCAP (1.1), the simplified
dual is an unconstrained problem, so any method for unconstrained minimization of a
differentiable (but not twice differentiable) function can be used. For this case, Malick
proposes a quasi-Newton method (BFGS) for the simplified dual problem [11]. Such
a method will yield faster convergence than a simple gradient method for LSCAP
problems with a few thousand equality constraints. For problems with more than
a few thousand constraints, methods that do not require forming or storing a p × p
matrix, such as conjugate gradients, might be preferable.

3.1. Dual projected gradient algorithm. In this section we describe in detail
one simple method that can be used to solve the simplified dual problem (2.5). The
projected (sub)gradient method repeats the following steps:

1. Update X. Set X := (G−A(ν) − C(μ))+.
2. Projected gradient update for μ and ν.

(a) Evaluate primal residuals/dual gradients,

∂ψ

∂νi
= TrAiX − bi,

∂ψ

∂μj
= TrCjX − dj .
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(b) Set

νi := νi + α(TrAiX − bi), μj := (μj + α(TrCjX − dj))+ .

Here α > 0 is a step size parameter. The iteration is stopped when all νi and μj ,
the equality constraint residuals and the positive parts of the inequality constraint
residuals, are small enough.

Assuming the original LSCAP is strictly feasible, this algorithm is guaranteed
to converge, i.e., ν, μ, and X converge to their optimal values, provided α is small
enough. This follows from standard analysis of the subgradient algorithm, specialized
to the case of differentiable objective; see, for example, [15, 1, 13, 10, 16].

We can give a specific bound on α that guarantees convergence. In the general
case, convergence is guaranteed whenever α < 2/L, where L is a Lipschitz constant for
the gradient of the dual objective, i.e., the mapping from (ν, μ) to (∂ψ/∂ν, ∂ψ/∂μ).
We can derive a Lipschitz constant for this mapping by noting that it is the compo-
sition of three mappings:

• The affine mapping from (ν, μ) to G−A(ν) − C(μ).
• Projection onto the positive semidefinite cone, which yields X.
• The affine mapping from X to (∂ψ/∂ν, ∂ψ/∂μ).

The first affine mapping has a Lipschitz constant

⎛
⎝

p∑
i=1

‖Ai‖2 +

m∑
j=1

‖Cj‖2

⎞
⎠

1/2

,

where the norm is the spectral norm (i.e., maximum singular value). The projection
has a Lipschitz constant one. The final affine mapping has a Lipschitz constant

⎛
⎝

p∑
i=1

‖Ai‖2 +

m∑
j=1

‖Cj‖2

⎞
⎠

1/2

.

Thus, the gradient has a Lipschitz constant

L =

p∑
i=1

‖Ai‖2 +

m∑
j=1

‖Cj‖2.

While we are guaranteed that the algorithm converges for α < 2/L, such a choice
usually yields slow convergence.

We mention another step size strategy that guarantees convergence, and does not
depend on the problem data at all. We choose the step size as a function of the
iteration, i.e., we use step size αk in iteration k. Convergence is guaranteed provided
the step size sequence αk satisfies the simple conditions

αk ≥ 0, lim
k→∞

αk = 0,
∑
k

αk = ∞.

For example, the algorithm is guaranteed to converge, for any problem data, with
the universal choice αk = 1/k. (See, e.g., [15, 16] for more on step size strategies for
projected subgradient methods.)
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3.2. Complexity analysis. No matter what method is used to solve the simpli-
fied dual problem, each iteration requires evaluating the gradient of the dual objective,
i.e., steps 1 and 2(a) of the projected gradient algorithm described above. For the
projected gradient algorithm, this evaluation dominates the effort per step; for other
methods, such as conjugate gradients or quasi-Newton methods, the cost of an itera-
tion is at least the cost of evaluating the dual objective gradient. In this section and
the next we analyze the cost of evaluating the dual objective gradient.

We first assume no structure in the problem data, i.e., G, Ai, Cj are given as
full, high rank n × n matrices. We compute X by first forming A(ν) and C(μ),
which costs order n2(p + m) flops, then computing the complete eigendecomposition
of G − A(ν) − C(μ), which is order n3 flops, and finally forming X (which is order
n3 flops). The cost of step 2(a) is n2(p+m), so the overall cost of one dual objective
gradient evaluation is therefore order n2 max{n, p + m}.

If there are few constraints (compared to n), the cost is dominated by the com-
plete eigendecomposition of G − A(ν) − C(μ), which has a cost around 10n3. One
dual objective gradient evaluation (and therefore one iteration of the dual projected
gradient algorithm) can be carried out on a current personal computer, for n = 1000,
in at most a few seconds; assuming on the order of several hundred iterations, we can
solve such an LSCAP in minutes. This dimension is far beyond the size of an LSCAP
that can be solved using a standard interior-point method directly, since the problem
has order 106 variables (entries in X).

3.3. Exploiting structure. In many interesting cases we can exploit structure
in the LSCAP data to reduce the complexity of a dual objective gradient evaluation
far below order n3. In this section we describe a generic example that illustrates the
basic idea.

We assume that G is a positive definite matrix for which we can carry out matrix-
vector multiplication efficiently, such as a sparse matrix, block diagonal matrix, or a
diagonal matrix plus a matrix of low rank, given in factored form. We also assume
that the data matrices Ai and Cj are all low rank and given in factored form (such
as LDLT ). We let k denote the total of the ranks of the constraint data matrices,
and we assume that k 
 n. Following (2.9) we see that for any ν and μ, we have
Rank(G−A(ν) − C(μ))− ≤ k.

The matrix-vector multiplication y → (G − A(ν) − C(μ))y can be carried out
efficiently, since Gy is efficiently computed, and Aiy and Cjy are efficiently computed
using their factored forms. Therefore, we can use a Lanczos or subspace iteration
method to compute the k eigenvalues λn−k−1, . . . , λn, as well as the associated eigen-
vectors, of G − A(ν) − C(μ) (see, e.g., [12, 14]). This can be done very efficiently,
since these methods require only that we multiply a given vector by G−A(ν)−C(μ).
Choosing the negative eigenvalues from these, and using the associated eigenvec-
tors, we form (G − A(ν) − C(μ))−, storing it in factored form. We then “form”
X = (G − A(ν) − C(μ))+ = (G − A(ν) − C(μ)) + (G − A(ν) − C(μ))−, storing it
as G (or really, the subroutine that computes Gy) along with the low rank, factored
representation of (G−A(ν) − C(μ))−.

To evaluate the gradient of the dual objective, we must compute TrAiX and
TrCjX. But these are readily computed using the factored form of Ai and Cj , and
using the fact that y → Xy can be efficiently computed.

We note that this observation applies for any method for solving the simplified
dual problem, and not just the dual projected gradient approach described above. In
particular, it can be used with Malick’s BFGS method for the SDLS problem.
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3.4. Special case: One rank one constraint. In this section we consider the
special case with one rank one equality constraint (1.2),

minimize (1/2)‖X −G‖2
F

subject to X � 0, cTXc = b,

where G � 0. Without loss of generality we can assume that ‖c‖ = 1. We assume
that b > 0, so this problem is strictly feasible, which implies that the solution has the
form

X� = (G− ν�ccT )+,

where ν� satisfies cT (G− ν�ccT )+c = b (see (2.7)). The residual cT (G− νccT )+c− b
is monotone nonincreasing in ν. We now find a lower and upper bound on ν�.

We define ν as the value of ν which satisfies cT (G−νccT )c = b, i.e., ν = cTGc−b.
If G− νccT � 0, then ν� = ν. Otherwise,

cT (G− νccT )+c− b ≥ cT (G− νccT )c− b = 0,

which implies that ν� ≥ ν. Thus, ν is a lower bound on the optimal solution ν�.
Now we derive an upper bound ν on ν�. We first observe that

ψ(ν) = −(1/2)‖(G− νccT )+‖2
F + (1/2)‖G‖2

F − νb ≤ (1/2)‖G‖2
F − νb.

Since the primal objective function is nonnegative, the optimal dual variable ν� must
have a nonnegative dual objective value. Using the inequality above, we have

0 ≤ ψ(ν�) ≤ (1/2)‖G‖2
F − ν�b.

From this we obtain

ν� ≤ ν̄ = ‖G‖2
F /(2b).

3.4.1. Bisection. We can now find ν� by bisection, starting from the initial
bounds ν and ν. At each iteration we must compute λn, the unique negative eigenvalue
of G− νccT , and the associated unit eigenvector q, and then evaluate

cT (G− νccT )+c− b = cT (G− νccT )c− λn(cT q)2 − b

= cTGc− b− ν − λn(cT q)2

= ν̃ − ν − λn(cT q)2.

We have observed that in most cases, ν� is much closer to the lower bound ν than
to the upper bound ν. This suggests carrying out the bisection using the geometric
mean of the current bounds as the next iterate, instead of the usual arithmetic mean.
This was suggested by Byers for another matrix nearness problem [4].

3.4.2. Exploiting structure. We can exploit structure in G to compute the
initial bounds and carry out the bisection iterations efficiently. Suppose, for example,
that G is large, but it is easy to compute the matrix-vector product Gy. Then we
can compute λn by a power method, for example, with a shift to ensure the method
converges to the negative eigenvalue. If we can efficiently compute (G − νccT )−1y
(e.g., if G is sparse, and we are able to find a sufficiently sparse Cholesky factor), we
can compute the eigenvalue λn and eigenvector q using inverse iteration with shifts,
which requires only a handful of iterations.

The upper bound requires computing ‖G‖2
F , which can also be done efficiently in

many cases, by exploiting structure in G. This is clear when G is sparse, since ‖G‖2
F

is just the sum of the squares of its nonzero entries. As a more interesting example,
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suppose G is a factor matrix, given as D1 +LD2L
T , where L has k 
 n columns and

D1 and D2 are diagonal. Even though G is full, its Frobenius norm can be efficiently
computed using the formula

‖G‖2
F = ‖D1‖2

F + 2TrD1LD2L
T + TrLD2L

TLD2L
T

= ‖D1‖2
F + 2Tr(LD2)

T (D1L) + Tr(D2L
TL)(D2L

TL)

= ‖D1‖2
F + 2Tr(LD2)

T (D1L) + ‖D2L
TL‖2

F .

The right-hand side can be calculated in order k2n flops (as compared to kn2, if we
form the matrix G and then the sum of the squares of it entries).

3.4.3. Newton’s method. For this special case, the residual r(ν) = cT (G −
νccT )+c − b is differentiable (in fact, analytic), so we can use Newton’s method to
find its root ν�. (This is the same as using Newton’s method to maximize the dual
objective function, since r is the derivative of the dual objective.) The derivative of
the residual (i.e., the second derivative of the dual objective) is given by

ṙ = −1 − λ̇n(cT q)2 − 2λn(cT q)(cT q̇),

where we use the superscript dot to denote the derivative with respect to ν.
Now we recall some results from standard perturbation theory (see, e.g., [9]).

Suppose the matrix A is symmetric, depends on a scalar parameter ν, and has isolated
eigenvalue λ with associated unit eigenvector q. Then we have

λ̇ = qT Ȧq, q̇ = −(A− λI)†Ȧq,

where U† denotes the Moore–Penrose pseudoinverse. Applying these results here, we
have

λ̇n = −(cT q)2, q̇ = (cT q)(G− νccT − λnI)
†c.

Substituting these expressions into the equation above, we obtain

ṙ = −1 + (cT q)4 − 2λn(cT q)2cT (G− νccT − λnI)
†c.

Now we describe a simple guarded Newton method, which maintains an interval
[l, u] known to contain ν� at each step, and whose width decreases by at least a fixed
fraction each step (thus guaranteeing convergence). For an interval [l, u] and α > 0,
we let α[l, u] denote the interval scaled by α about its center, i.e.,

α[l, u] = [(u + l)/2 − α(u− l)/2, (u + l)/2 + α(u− l)/2)].

The guarded Newton method starts with the initial interval [l, u] = [ν, ν], an initial
value ν inside the interval (such as ν = (u + l)/2), and a guard parameter value α
that satisfies 0 ≤ α < 1. The following steps are then repeated, until r(ν) is small
enough:

1. Calculate Newton update. Find the (pure) Newton update νnt = ν−r(ν)/ṙ(ν).
2. Project onto guard interval. Set ν to be the projection of νnt onto the interval

α[l, u].
3. Update guard interval. If r(v) > 0, set l = ν; otherwise set u = ν.

When α = 0 this guarded Newton algorithm reduces to bisection. For α > 0,
the algorithm has quadratic terminal convergence. As a result, it converges to high
accuracy very quickly; on the other hand, it requires computing (G − λncc

T )†c at
each iteration. If no structure is exploited, this does not increase the order of the
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Fig. 1. Norm of residual for the large example.

computational cost (which is still n3). But this method makes it difficult or impossible
to exploit structure such as sparsity in G.

4. Examples. Our first example is a large problem. The matrix G is a sparse
positive semidefinite matrix with dimension n = 104 and around 106 nonzero entries.
It was generated by choosing a random sparse matrix Z, with unit Gaussian nonzero
entries, and setting G = ZTZ. (The density of Z was chosen so that G has around 106

nonzero entries.) The problem has p = 50 equality constraints and m = 50 inequality
constraints. The coefficient matrices Ai and Cj are all rank one, Ai = aia

T
i , Cj = cjc

T
j

with ai and cj chosen randomly and normalized. The coefficients bi and dj were chosen
as bi = ηia

T
i Gai, where ηi are random with uniform distribution on [0.5, 1.5].

The method described in section 3.1 was used with constant step α = 1, constant
step size α = 2, and diminishing step size rule with αk = 4/(1 + k/100). The
convergence of the norm of the residual,

⎛
⎝

p∑
i=1

(TrAiX − bi)
2 +

m∑
j=1

(max {0, TrCjX − dj})2
⎞
⎠

1/2

,

is shown in Figure 1, and the convergence of the dual objective is given in Figure 2.
Convergence to modest accuracy occurs in about 400 iterations.

Our second example has the special form (1.2), with G a dense randomly cho-
sen positive semidefinite 100 × 100 matrix, and the vector c randomly generated
and normalized. We solved this problem using the bisection method, using both
the arithmetic and geometric means, and the guarded Newton method with pa-
rameter α = 0.9. The convergence of the residual magnitude is shown in Fig-
ure 3. As expected, the Newton method converges to very high accuracy in fewer
steps.
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