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Abstract

We show how Linear Matrix Inequalities (LMIs) can be used to
perform local stability and performance analysis of linear sys-
tems with saturating elements. This leads to less conservative
information on stability regions, disturbance rejection, and La-
gain than standard global stability and performance analysis.
The Circle and Popov criteria are used to obtain Lyapunov func-
tions whose sublevel sets provide regions of guaranteed stability
and performance within a restricted state space region. Our LMI
formulation leads directly to simple convex optimization prob-
lems that can be solved efficiently as Semidefinite Programs.
The results cover both single and multiple saturation elements
and can be immediately extended to discrete time systems. An
obvious application of these techniques is in the analysis of con-
trol systems with saturating control inputs.

1 Introduction

Linear systems with saturation nonlinearities, see
Fig.1, occur very often in practice. A typical example
is a control system for a plant with saturating control
inputs. Such systems exhibit nonlinear behaviour such
as local stability, finite disturbance rejection, and per-
formance degradation, when operating in saturation.
Yet there is todate no standard method for analyz-
ing them. The objective of this paper is to develop
some simple LMI-based computational tools for the
local stability and performance analysis of linear sys-
tems with saturating elements.
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Figure 1: LTI system H with saturation.
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The tools we present are essentially local versions of
the standard Circle and Popov criteria, and have the
following features: By performing local analysis rather
than global analysis, they can provide useful informa-
tion even about systems that are not globally stable,
and the information they yield is always less than that
obtained from corresponding global analysis. They
can handle systems of any order and multiple satu-
ration nonlinearities. They can easily be extended
to discrete time systems. They provide information
not only about local stability but local performance as
well. Other approaches in the literature which do not
use the circle or Popov criteria, see {1, 7, 5, 13, 16]
for example, are not able to offer all of the features
mentioned above.

Our approach has its origins in work that was done
about three decades ago [18, 17, 4], on computing guar-
anteed regions of attraction for linear systems with
locally sector bounded nonlinearities, by constructing
quadratic and Lur’e type Lyapunov functions. Since
then, various authors have made use of the the cir-
cle criterion to analyze the local stability of systems
with saturation, see for example [6, 9, 8]. A similar
approach to ours for computation of regions of attrac-
tion has been reported independently in [12].

Note that none of the references above treat local per-
formance analysis. Yet in practice, local performance
analysis can give very valuable information on how the
performance of a system degrades as it operates in sat-
uration. We will see that local performance analysis is
a straight forward matter, using the LMI framework.

The contribution of this paper is a thorough pre-
sentation in the LMI framework, fully generalized to
the case of multiple saturation elements using the S-
procedure [3, 14], extended to performance analysis,
with explicit formulas for the semidefinite programs
that must be solved for each case. In reference [11],
the authors attempt to extend these ideas to output
feedback synthesis.

Experience has shown that these methods can work
quite well, and they are simple to implement. It is
probably fair to say that the main reason why they
have not been widely used is because until recently, it
was not appreciated that these problems, due to their
convexity and structure, are extremely tractable and
that they could be solved efficiently even for systems



Figure 2: Model for saturation nonlinearity.

of moderate order (e.¢.30), where the number of pa-
rameters of the Lyapunov functions is in the hundreds.

In this paper, due to space limitations, we will focus on
presenting the results. Most of the proofs are omitted,
but they follow in a straight forward way from the
discussion in Preliminaries.

1.1 Model
Consider the linear system H with a (decoupled) block

of saturators, see Fig.1:
£ = Az + Bpp+ Byw; z(0) =z
g = Cyqz, 2=C;zx (1)
p = sat(q)

where £ € R™, p € R™, g € R™ (n, = ny), w €

R™, and z € R™. The sat(-) denotes the normalized
unit saturation function, and is defined on a scalar

g € R' by

A 1 ;¢:>1
sat(;) = ¢ @ el <1 (2
-1 ;¢a<-1
and on a vector ¢ = (q1,---,¢n,) by
A
sat(q) = (sat(q),...,sat(gn,)) - (3)

Note that any block of saturators can be put into this
standard form by scaling the input and output of each
saturator appropriately.

1.2 Local Analysis Formulation

A restriction on the amplitudes of the inputs to the
saturators, translates directly into a constraint on
the state of the system. Let r € R:_" be a vector
whose components specify allowable input amplitudes
to the saturators. Then the constraint {|g;| < ri,i =
1,...,nq} holds if and only if the state z lies in the
region R, = {z||Cqz| < r;,i = 1,...,n4}. In par-
ticular, note that whenever z lies in the region Rq,
obtained by setting r =1 = (1,..., 1), the system be-
haves linearly, since all the inputs to the saturators are
less than 1 in absolute value. Therefore, we will only
be interested in situations where r; > 1, in which case
the r; specify the amount by which the input ampli-
tude can exceed the output amplitude at each satura-
tor.
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DEFINITION 1 Any set D C R, such that whenever
z(0) € D and w = 0 we have lim;_,, z(t) = 0 will
be called an r-level guaranteed region of attraction.
The largest set D C R™ for which z(¢) — 0 whenever
z(0) € D and w = 0 is called the region of attraction.

DEFINITION 2 Any number é&max,r € Ry such that
whenever z(0) = 0 and ||w||3 < &max,» We have

(i) limgy oo z(t) =0

(i1) z(t) e R, Vt>0,

will be called an r-level disturbance rejection bound.
The largest such number will be denoted by amax,r-

DEFINITION 3 Any number 4, € R, such that when-
ever z(0) = 0 and ||w}|2 < Gmax,r We have

(i) z(t) € R, V¢ > 0,

(iii) [l2ll2/|Jwll2 < A,

will be called an r-level Ls-gain bound. The smallest
such number will be denoted by ~,.

1.3 Problem Statement

Given model (1) with A + B,C, Hurwitz and a given
set of allowable saturation input amplitudes specified
in the vector r, we want to compute the following:

1. r-level guaranteed region of attraction D;,
2. r-level disturbance rejection bound Gmax,r,
3. r-level L-gain bound #;.

We would like these to be not overly conservative. We
also require that the technique be: efficient, capable
of handling multiple nonlinearities with no restriction
on order of system, and easily extendable to discrete
time systems. Of prime concern will be simplicity and
generality.

Notation: Let P be a symmetric positive defi-
nite matrix in R™**"=, then £p(a) denotes the set
{z|2TPz < a}. For a function V : R™ — R,
lev,V denotes the a-sublevel set of V , i.e., the set
{z|V(z) < a}. For any function ¢ : R™ — R™,
gr is the graph of the function ¢, i.e., it is the set
{(z,y) |y = ¢(z)}. If a,b € R, then sect[a, b] denotes
the sector in R xR defined by {(¢,p) | (p—agq)(p—bq) <
0}. If a and b are vectors in R", then sectfa,d] is
taken to be sect{ai,bi] x -+ x sect[an,b,]. A func-
tion ¢ : R™ — R" is said to be sector[a, b] if p(q) =
(p1(q1)s - - - Pnlan)), grp; € sectfa, by

2 Preliminaries

The following are some facts about quadratic func-
tions, Popov functions and multiobjective optimiza-
tion which we will find useful.



2.1 Quadratic Functions
Recall that if V(z) = z7Q 'z is a quadratic func-
tion with Q@ = QT > 0, then its a-sublevel sets are

ellipsoids £g-1(a) whose volume is proportional to
o™ det @ [10, 2].

LEMMA 1 (CONSTRAINED QUADRATIC)

Let V(z) = 27Q 'z where Q = QT > 0, C be a row
vector in R"™ and r be a nonzero scalar. Then the
minimum of V along the hyperplane {z|Cz = r} is
given by

r2

- cqQeT

A necessary and sufficient condition for the sublevel
set leveV = £g-1(a) to be contained in the region R,
is a < a, where

Qr

2
2 min T
i=1,...,nq Cq,i Cg:l

Qr
where C,,; are the rows of C,.

2.2 Popov Functions

DEFINITION 4 A Popov function V : R® - Ry in
standard form is defined as

V() = 2Pz + T, 2\ [y gi(0)do (4)
where P = PT > 0, A = diag(Ay,...,Aq,) 2 0,
gro; C sect[0,1], i=1,...,n, and C,; are the rows

of C, in (1).

From now on, we assume that the ¢; are odd functions
whose graphs lie in the first and third quadrants. Then
we have the following properties:

(i) fOC‘"” @i(o) do is an even function
(i) 0< foc"“z wi(0)do < 1aTCT,Coiz
We associate with V the following functions:

V(z) = z'Psg,
Viz) = «TPz+2) [y pi(o)do, (5)
V(z) = aT(P+CTAC):z.

Then we have the following ordering and inclusions:

0SV<LV, VgV

Ep(a) DlevaV; Dlev,V D E(erquACq)(a) (6)

The first part of the following lemma is due to [17].

LEMMA 2 (CONSTRAINEB Poprov)

Let V(z) = 2T Pz +2X ) ¢(0) do, where P = PT >
0, X > 0, ¢ is sector{0, 1], C is a row vector in R", and
let r be some positive scalar. Then the minimum of V
along the hyperplane {z|Cz = r} is given by

,,.2

- op-iCcT

(273

+ 2)\/ (o) do.
0
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Let V(z) = 2T Pz+312, 2\ foc""'z i(0) do, where p;
are all sector[0,1] and odd, P = PT > 0, and \; > 0.
A sufficient (and necessary for n, = 1) condition for

the sublevel set lev,V to be contained in the region
R, is a < a, where

r? Ti
2 i(0)do } .
{C.,,iP‘ICL + l/O vi(o) }

REMARK 1 It is important to realize that the terms
Jy " wi(o) do are simply constants which can be com-
puted directly from the loop transformed nonlineari-
ties ;.

A
Qp =
i=1,...,nq

2.3 Multiobjective Optimization

DEFINITION 5 Let F : R®™ — R™ be a vector valued
objective function F(z) = (fi(z),..., fm(z)). Then a
point z,p, € R™ is Pareto optimal with respect to F
if there is no other point z € R" such that f;(z) <
fi(zope) for all 4, and fiy(z) < fi,(zopt) for at least
one ig, [2].

LEMMA 3 (CHARACTERIZING MAXIMIZER)

Let fi : R™ 5 R and f; : R™ — R, a; and az be
positive numbers, and ¢ C R™*"2. Then the maxi-
mizer of the following optimization problem (when it
exists)

max a1 (fi(z1))”" + a2 (fa(z2)) ™}
s.t. z1,z2) €C

will be a Pareto Optimal point with respect to the
vector objective F(xy,z2) = (fi(z1), fa(z2)).

Proof: Suppose that the maximum is achieved at a
point (z},z3) € C. Then we must have

a1 (fi(@) ™! + a2 (fo(a3)) ™' >
a1 (fi(z1)) ™" +az (f2(22)) ™" V(z1,22) €C

Now suppose that (z},z3) were not Pareto Optimal.
Then from the definition there exists a point (z,,z2) €
C such that one of its objective values fi(z1) or fa(z2)
is strictly less than that of (z},z5) while the other is
at least as small. This would immediately contradict
7.

)

THEOREM 1 (COMPUTING PARETO)

When the component functions f; of the objective are
convex, then the set of all Pareto optimal points with
respect to the vector objective F above, is the set of
solutions (when they exist and when they are unique)
of inf{(1 — p)fi(z1) + pf2(z2)| (z1,22) € C} for all
ue [0,1] 2}

3 Linear Analysis

In this section, we will show how to compute stability
regions and performance information by requiring the



state to remain in the region Ry = {z|||Cy|lco < 1}.
Since the system never saturates in this region, the
closed loop system (1) behaves like:

T = Aqzr + Byw; z(0) =z

z = C,x 8
T € R1 & Jg|<l,i=1,...,n (8)
Aq = (A+ B,Cy)

Therefore, provided that we can ensure that  remains
in Ry, any information we can compute about system
(8) must apply to system (1).

THEOREM 2 (REGION OF ATTRACTION) )
For system (8), an 1-level region of attraction Dy
is given by the maximum volume invariant ellipsoid
£g-1(1) contained in the region Ry. This can be
computed by solving the following convex determinant
maximization (maxdet) optimization problem [3, 15]
in the variable Q = QT € R™=*"=:

max logdet @

st. CpiQCT, <1 ;i
Q>0
AgQ + QAZ; <0.

1...

y g

(9)

REMARK 2 The logdet objective maximizes volume.
But other objectives could be just as valid depending
on the application, e.g., one could instead maximize
the trace of @ which corresponds to maximizing the
sum of the squares of the major axes of £g_, (1).

THEOREM 3 (DISTURBANCE REJECTION)
For system (8), the largest 1-level disturbance rejec-
tion bound, amax,1, can be computed as [3, 14]

Qmex,1 =

where AuQ + QAT + B,BI =0.

: 1
min;-— T AAT
i=1,...,nq qu'.Qqu

Furthermore, €g-1(0max,1) C Ri1 and whenever
[lwi2 < cunax,1 and z(0) = 0, then z(t) will never
leave £5-1(0max,1)-

COROLLARY 1 (LOCAL L2-GAIN)

For system (8), whenever ||w||3 < &max,1 and z(0) = 0,
the smallest 1-level Ls-gain bound, v1, can be com-
puted as [3, 14]

2

min vy
st. @>0
AaQ+ QAL QCT B, (10)
C.Q -1 0 <0
B, 0 —+
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4 Nonlinear Analysis

From fig.2, we see that when |g;| < r;, i = 1,...,nq,
the system falls into the class of Lur’e systems:

& = Az+ Bpp+ Byw; z(0) =x0
g = Cyz, 2z=C,z
bi = LPr,i(qi)) Brr,: C sect[rl—_,, 1]) i= la <oy Mg
z € R, & |q,~|_<_r,',i=1,...,nq
(11)

This system can be analyzed using the circle and
Popov criteria. Any information that we can obtain
about system (11) will apply to our actual system (1),
provided that we can ensure that the state z remains
in R,. This has been noted in the past by several
authors [9, 6, 8, 12].

4.1 Circle Analysis

In this section, stability and performance will be an-
alyzed using a quadratic Lyapunov function V(z) =
zTQ 'z, where Q = QT > 0.

Using the change of variables (loop transformation)

IH

-(pi — pr,iq)

Pi = 5.3
)7 61‘,11 = %(1 -

=11+

=3

1 (12)

i

Pr.i

<

the nonlinearity can be centered and normalized on
the set x € R, to give the following model in standard
form:

<

& = A+ Bp,p+ Byw; z(0) ==z

q = Cuz, 2=Cyz

P = Ari(a), 1AL, i=1,...,n,
z € R, & |g|<r,i=1,...,n4
A, = A+B,T,C, B,,=B,I,

L. = diag(pr,lv <oy Pring

I, = diag(dr1,...,0rn,)

(13)

THEOREM 4 (REGION OF ATTRACTION) )
For system (13), an r-level region of attraction D,
is given by the maximum volume invariant ellipsoid
€o-1(1) contained in the region R,. This can be com-
puted by solving the following maxdet convex opti-
mization problem in the variables @ = QT € R™*"=
and § = diag(sy,...,8a,), [3,12] :

max logdet@
st. CoiQCT <% ;i=1,...,n,
Q>0 S$>0, (14)
[ ArQ‘f‘QAE:QBp,rSB;,. acy ] <0.

THEOREM 5 (DISTURBANCE REJECTION)

For system (13), an r-level disturbance rejection
bound, @max,r, can be computed as Gmax,r = 1/t*,
where t* is the optimal value of the following con-
vex semidefinite program in the variables ¢ € R,



Q=QT e R™*" and S = diag(sy,...,5n,) [3, 14]

min ¢
st CoiQCT, <rit 5i=1,...,n4
Q>0 S>0, (15)
T
ArQ +QaT +%.:SI+B,,,rSB,T,, Q_CS,,T ] < 0.

Furthermore, £g-1(Gmax,r) C R,
”’LU”% < Omax,r and 1’(0) = 0, then
leave £g-1(Gimax,r)-

and whenever
z(t) will never

COROLLARY 2 (LOCAL Ly-GAIN)

For system (13), whenever ||w||2 < @&max,» and z(0) =
0, an r-level Lo-gain bound, 4,, can be computed as
13, 14]

min 42
st. @>0, S$>0,
ArQ + QAT + ByBT 4 By nsBT @cT qcT
r r C‘:,’Qw p.rSBy € o <0.
c:Q [} -321
(16)

4.2 Popov Analysis

Since saturation is a time invariant memoryless non-
linearity, the Popov criterion can often lead to less
conservative information than the Circle criterion.

Using the change of variables (loop transformation)

pi = 55 (pi — prid)
either i =1, &ri=—(1-2) (17)
or pri=+, Si=(1-1)

the nonlinearity can be put into standard form on the
set x € R,:

z = Arz+Bp,p+ Byw; z(0) =m0
g = Cux, 2=C,zx
Di = @ri(qi), gros: €sect0,1], i=1,...,n4
T € 9 @ <ri,i=1,...,n4
A, = A+ B,I.C;, Bpy,=DBll,
FT = diag(pr,]: <9 Prng
II, = diag(‘sr,l yeoo s‘sr.nq)'
(18)
Now we will use the Popov function
q Cq‘,-z
V(z) =zTPz+) 2\ / @ri(0)do  (19)
0

i=1

to investigate the local stability and performance.
Note that V now depends on the loop transformed
nonlinearities and hence depends on the loop transfor-
mation.

Since each saturator has three possible states, the Lya-
punov function will be a piecewise quadratic function
defined on 3™ regions. As a result of this, the compu-
tation of the exact volume and the tangent invariant
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level set along with its point of tangency with R, grows
exponentially in complexity. Therefore, we will pro-
vide exact solutions only for the case of a single non-
linearity. For the general multiple nonlinearity case,
we will provide low complexity heuristics.

Recall from (6), that Ep+orac,)(@) and Ep(a) pro-
vide, respectively, inner and outer approximations
of levaV. Unfortunately, vol& P+CT Acy)(@) and
vol Ep(a) are not convex expressions in (P, A). There-
fore we will use the trace, which gives the sum of the
squares of the inverses of the major axes as a measure
of the size of the ellipsoids.

THEOREM 6 (REGION OF ATTRACTION) )

For system (18), an r-level region of attraction D,
is given by the invariant set lev,V, where V is the
Popov Lyapunov function obtained by solving the fol-
lowing convex optimization problem in the variables
P PT € R™*" A = diag(\,...,\n,), and
S = diag(s1,...,8n,) [3, 12]:

min Tx(P + CqTACq)

2 Cyi
s.t. 3 i=1,...
[ Cg:z P 2 0 32 1) 7nq
P>0, A>0, S>0,
[ ATP 4+ PA, PBp,r+aTCqa+CTs ] <0
Bl P4+ ACqAr+5Cq ACgBp,+BT cTa-2s .
(20)

Then a can be taken to be max(l,a,) where o, is
computed using Lemma 2.

Next we consider computing Gmax,» using the Popov
criterion. Although this turns out to be more compli-
cated than in the circle criterion case, it can often yield
significantly sharper results. We will treat the single
nonlinearity case first, then the multiple nonlinearity
case.

THEOREM 7 (DISTURBANCE REJECTION - SISO)
For system (18), an r-level disturbance rejection
bound, Gmax,r, can be computed as

2

r r
———— +2) / do (21
ax CoBer T, p(o)do (21)

~
Omax,r =

where for each p € [0,1], (P,,A,) is the optimal
value of the following convex semidefinite program
in the variables t;,t2 € R, P = PT ¢ R"=*"=,

A = diag(\y,...,An,), and s € R (3]:
min (1~ p)t; + pta
tl Cq t‘z 1
s.t. Cg" P >0, 1 2 >0,
P>0, X>0, s>0,
ATp 4+ PaA, PBp .+ aTcor+CTs PBy
[ BT P4+ ACqAr+3Cq ACqBp,r+ BT CTx~2s ACqBuw ] < 0.
BIpP B‘Z,‘c;rx -1
(22)

Furthermore, if y* is the optimizer of (21) and V
is the Popov function formed from the correspond-
ing (P,+,A4), then levg , .V C R,. Whenever



lwll2 € émax,r and (0) = 0, then z(t) will never
leave levg,.,, . V.

REMARK 2 Of course in practice it is impossible to
search the entire segment [0, 1). However, taking 5 to
10 points for different p’s often yields a sufficiently
good maximum.

We will not attempt to extend Theorem 7 to the case of
multiple nonlinearities since it would become computa-
tionally very intensive. Instead, we offer the following
heuristic method to compute &max,» which is obtained
by direct analogy with the circle criterion case.

THEOREM 8 (DISTURBANCE REJECTION - MIMO)

For systera (18), an r-level disturbance rejection
bound, &max,r, can be computed by applying Lemma 2
to the Popov function V obtained from (P*, A*), where
(P*, A*) are the optimizers of the convex semidefinite
program in the variables t € R, P = PT ¢ R"=*"=,
A = diag(Ay,..., A, ), and S = diag(si,...,sn,) (3]:

min ¢
2t C,i
8.t. ; 2 1>05i=1,...,n
C;I:i P = 3 ] yIog
P>0, A>0, §>0,
ATP + PA, PBpr+ATCqA+CTs PBy
[ BT P+ 4CqAr+5Cq ACqBp,+ Bl ,CTA-25 ACqByw ] < 0.
sTp BICZ’A -1

(23)
Furthermore, levs,,.. .V C R, and whenever ||w||3 <
G&max,r and z(0) 0, then z(t) will never leave

CVamax,, ¥ -

CoroLLARY 3 (LocAL Lo-GAIN)
For system (18), whenever ||w||? < @max,» and z(0) =
0, an r-level Lo-gain bound, 4,, can be computed as

(3]

min 4}
st. P>0, A>0, S>0,
ATP+Pa-+cTC, PBp,r+AaTcea+cTs PBy
[ BT P+ ACqAr +5C; ACqBpr+ Bl .CTA-25 ACqBy
XN BTcTa -521

(24)

5 Conclusion

We have presented a set of tools for performing lo-
cal stability and performance analysis for linear sys-
tems with saturation. Our results are all formulated
in terms of linear matrix inequalities, and all lead to
efficient computations. They are general and handle
multiple nonlinearities, and can easily be extended to
discrete time systems. Our experience indicates that
the information obtained using these tools is often sig-
nificantly better than that obtained from the linear
analysis.

| <o
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