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In this paper we study multiple-input multiple-outpur (MIMO) linear time-
invariant (LTI} control systems. We show that some well known constraints on
the performance of single-input single-output (SISQ) linear control systems, e.g.
those expressed by the Paley-Wiener theorem, Bode’s integral theorem, and
more recently, Zames' inequality can be given a unified treatment using some
elementary properties of subharmonic functions. Most importantly, results derived
in this framework of subharmonic functions apply immediately to the MIMO case.
Indeed the proofs of the MIMO generalizations are often simpler than the
original proofs of the SISO versions.

1. Introduction

BoDE (19435) was perhaps the first to study a priori constraints on the performance of
single-input singie-output (SISQ) linear time invariant feedback systems, in the
context of feedback amplifiers; Horowitz (1963) later interpreted Bode’s work for
control systems. In fact the classic Paley-Wiener theorem (1934) can also be inter-
preted as expressing an a priori constant on the performance of control systems.
Recently this topic of deriving constraints on control system performance, based
on just a little qualitative knowledge of the plant and controller {(e.g. closed-loop
stability and the existence of a piant C, zero) has received much attention, for
example in Zames (1981, 1983} and Freudenberg and Looze (1983).

The constraints arise from the requirement that the closed-loop system be
stable, that is, that certain transfer functions be analytic and bounded in the right
half-plane. The results mentioned above are all proved using the theory of
analytic functions and as a result their multiple-input multiple-output (MIMO)
analogues either do not exist or involve complicated proofs when they do.

One approach to extend these ideas to MIMO control systems focuses on the
eigenvalues of the various transfer-function matrices: the eigenvalues are viewed as
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one glgebraic function defined on a Reimann surface (Doyle and Stein, 1981).
Unfortunately, the eigenvalues can be a poor measure of the “size” of a MIMO
operator {e.g. a disturbance-to-output map) or the “tightness” of a feedback loop
(Doyle and Stein, 1981). Matrix norms, for example the largest singular value, are
good indicators of the size (resp., minimum singular values for the “tightness” of a
feedback loop}, but, to quote Looze and Freudenberg (1983): “In contrast to the
gain of a scalar transfer function, a singular value is not in general the magnitude
of an analytic function, thus precluding the application of complex variable theory
which led 10 the Bode gain—phase relations.”

While the maximum singular value of a stable transfer function matrix is not the
real part of an analytic function (such functions are called harmonic), we will see
that it is subharmonic, and that subharmonic functions have the properties needed
to derive the constraints (or generalizations) above. The purpose of our paper is
to show that using some elementary properties of subharmonic functions, all of
the results mentioned above can be easily and clearly extended to the MIMO case.
The proofs based on subharmonic functions not only apply to MIMO systems, but
are often simpler than the original proofs of the SISO versions.

The mathematics presented here (Theorems 2.1 and 2.2} is not, 10 our knowl-
edge, in the mathematics literature.

2. Subharmonic functions

2.1 Notation and Definition

C. will denote the open right half plane {s:Res>0} and C. its closure
{s :Res=0}. H* will denote as usual the set of functions h(s) analytic and
bounded in ., with boundary values defined via

h(jw) = lim h(o +jw). (2.1)
a—)

(The limit in (2.1} can be shown to exist for almost all w €R: see e.g. Rudin
(1984).

(H™™*" will denote the set of m X n matrices with elements in H™. If A is an
m X n complex matrix, then ||A{ will denote any induced norm, for example the
maximum singular value o . (A)2 VA (A A)]

We will be considering functions on C. such as f(s)=1log|(s — 1)/(s + 1)| which
may take on the value —~x, that is, functions f : C, — [—=, %). Such a function is
said to be continuous if the (real valued) function exp f is. This agrees with the
standard notion of continuity when, as usual, a basis for the neighbourhoods of
—cc are [~=, -n) (n=1,2,...). Alternatively, continuity can be replaced in the
sequel by upper semicontinuity, which is all that is needed.

DermntTioN  f 1 C, — [~%, %} is subharmonic i and only if it is coatinuous and
whenever Rea>r>0

2
fla) si j fla +rei®) do. {2.2)
2wy
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Note that the continuity of f implies that the integrand in (2.2) is bounded
above, and thus the integral in (2.2) is always well defined (but may be —=). Note
also that the constant —x is subharmonic. Finally, if equality always holds in (2.2),
then f is harmonic.

We will be concerned with subharmonic functions which have a few additional
properties. For notational convenience we define the class SH:

Dermtrion:  f:C, — [—=%, )& SH if and only if
{1} f is subharmonic,
{(ii} f is bounded above, and
{ii) lim, _, flo +jw) exists and equals f(jw) for almost all w eR.

2.2. SH Functions in Control Theory

Classic examples of functions in $H are |h(s)| and log |h(s)|, where his)e H™.
Some important SH functions in control theory are given in the following
theorems.

THEOREM 2.1 Suppose H{sye (H"™ " If ||si| is anv induced norm, then
[H(s)|eSH and log|H(s)|jeSH.

THEOREM 2.2 Suppose H{s}e (H")"™". Then
plH(sNeSH and logp(H(s))eSH

where p(A) denotes the spectral radius of A, that is, p(A)2 max, |\, (A)].
w(H(s))eSH and logw(H(s))eSH

where . is Doyle’s structured singular value (Doyle, 1982). If in addition
His)"'e(HM™™, then

cond(H(s))eSH and logcond(H(s))eSH
where condyA =|A]||A7"| is the condition number of A.

Theorems 2.1 and 2.2 are proved in thé appendix. We will not use the fact that
Doyle’s structured singular value and the condition number are SH in the sequel.

2.3 Important Properties of SH Functions: MIMO Paley—Wiener Theorem

In the sequel we will use only two properties of SH functions, the Maximum
principle and the Poisson inequality.

MaxquMm PrivcieLe  If f e SH then
sup f(jw) = sup f(s). (2.3

welk Res=(

Technically, the sup on the left hand side of (2.3) is an essentiat sup. The proof
can be found in Rudin (1974, p. 231) or Conway (1978, p. 264).



156 STEPHEN BOYD AND C. A. DESQOER

Remark. The Maximum principle need not hold if f is not bounded above, for
example f{s) = Re (e*), which is bounded along the jw-axis but not in T.. This f
satisfies (i) and (i) of SH but not (ii). Note also that the maximum principle still
holds even if f is not bounded below, e.g. f(s) =log (s = 1)/(s + 1)] which is in SH.

Porsson INequaLTTY Suppose f<SH and is not identically —. Then for o> 0,

o dw o aof(jw)

1
- j —_ =< ie. - ! 4
ﬂIlwa)! O'S+(w—w0)' zoe cg+(w+w0}2EL (2.4)
and
1 . d .
_J.f(JW}_JEi"_; = f(00+]€00)- {2.5)
™ it (w—wgp)

Remark. Equation (2.3) should be compared to the Poisson formula, valid for a
bounded harmonic function f(s): for a;>0,

1 j fliw) =229 _ fa+ ). (2.6)
T ogitiow—wg)

SISO arguments which use (2.6) (perhaps implicitly, e.g. via the Bode gain—phase
relations) can be extended to analogous MIMO arguments simply by using the
Poisson inequality in place of the Poisson formula. In this way SISO results go
through nearly unchanged for the MIMO case, with the conclusion changed into
the appropriate inequality.

Proof of Poisson inequality. Define f,(jo)2 max {f(jw), —=n}. Hence w — f,(jw) is
bounded on R. For x>0 define

x dw

—_—. i
*t+iw-y) 2.7

fin 2= [ fe)
v
(Note that the integrand in (2.7)is L'} f, :C.— R is a bounded harmonic function
which satisfies property (iii) of SH, so f—f, < SH. Since f(jw}—f.(jw)=0 for all
w € R, we conclude from the Maximum principle that f(s)—f,(s)=0Oforall seC,.
Thus for all n,

1 . Ta dw .
> [futi0) T flao 4o 2.9

We now establish (2.4). If we can establish (2.4) for any particular g3=x>0
and wo=y R, then it is true for all oy>0 and wyeR, since for each such o, and

wq there is a K <% such that for all w R,

[ X

=K
o2+ (w—wg)? 22+ (w-y)?

and hence

x dw
3.

. Uodw < J’ .
[ o 22— <k it 7t



LINEAR TIME-INVARIANT FEEDBACK SYSTEMS 157

Since f is not identically —=, find x> and y R such that f(x +jy) # —x. Since
f<SH it is bounded above, we can find an M <= such that f(s)sM forall seL..
Then

) x dw
LUM:O fa (i) ey M (2.9)
Now for each n we have:
. x de
[ o 5t
x dw x dw

‘_-zj‘ n i ___j n j = . .5

| oo |fa o)l ey faljo) Trlw—y)

<2nM - wf(x+jy)

by (2.8) and (2.9). Thus by the monotone convergence theorem {Rudin, 1974,
p. 22} :

J‘|f(jw)| x do s=2aM-=wf(x +jy)<x=

x%+ (w— v
and (2.4) is established.

From (2.4), (2.8), and the dominated convergence theorem (Rudin, 1974, p. 27)
we conclude
0'0 dw

1 .
- J‘ flio) m————==flog+jwg)

T+ {w—wg)
which is (2.5). O

Condition (2.4) implies that the map w — f{w) is locally L', which is not
obvious at all. For example, f(s)=logis(s+1)"' has a singularity at w =0,
nevertheless is still locally L'. Indeed (2.4) has as a corollary the following
theorem.

MIMO PALEY-WIENER THEOREM. Suppose H(s)e (H™)™ " and is not identically
zero. Then

[ logltolly, .,

1+w?

This is the simplest proof of the Paley-Wiener theorem that we know of (see
e.g. Zadeh and Desoer (1963)).

3. Applications: MIMO feedback systems

3.1. Set-up and Notation

We will refer to the system 'S(P,C) shown in Fig. 1. In order to include
distributed and unstable plant P(s) and compensator C(s), we assume that P(s)
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U d

Fig. 1

(respectively, C(s)) is an n X m (resp., m X n) matrix of transfer functions in the
algebra B, with n < m (see Callier and Desoer {1980) and Desoer and Vidysagar
(19750,

B is defined as follows: A is the subalgebra of H™ consisting of Laplace
transiorms of distributions of the form

fw=f0+ L fidle—1)
t=0

where f.(t)=0for t<Q, =0, f,eL!, and (f)e ¢'. A" is the multiplicative subset
consisting of those elements in A which are bounded away from zero at s == in
C.. Finally, B is the algebra of quotients A(A™ ™', that is, elements of B have
the form n/d with ne A and d €A™ (see e.g. Lang, 1965, p.66). The reader
unfamiliar with these concepts can simply think of P and C as rational.

An element of B is stable if it is in A, i.e. if it has a representation with d = 1.
We say an element h of B is strictly proper if lim,_,. his)=0 in C..

We make two assumptions about 'S(P, C):

AssuMPTION 1 The plant P(s) is strictly proper.
AssUMPTION 2 'S(P, C) is closed-loop stable, that is,

_ [(I+ PCYt -P(I+CPY!

A(m ~nixX{m+n) .
CUI+PC)™' (I+CP)! ]E (3.1)

where H,, : (uq, #;) — (e, &;). This is precisely the condition that the transfer
function from any input to any output has all its elements in A {and hence H™.

P and C have left and right A-coprime factorizations (Callier and Desocer.
1980, and Callier, Chan and Desoer, 1978):

P = DgNpL = NprDpr,
C=D¢ NCL NCRDCR:

with the N's and D’s having elements in A and the D’s having determinants in
A~ e.g. det Dpg€ A™. The C, poles of P and C are precisely the C, zeros of
det Dpg and det Dy, respectively.

We will say that P(s) has a zero at s,€C, if Np.(so) is less than full rank, that
is, if there is a nonzero c€C" such that ¢"Npgrisy)=0. This agrees with the
standard notion of a zero for rational P, defined via the Smith-MacMillan form
{Callier and Desoer, 1982). Note that P may also-have a pole at s,. We define the
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left nullspace associated with the zero at s, by
N pero 2 nullspace (N Friso));

Niero does not depend on the coprime factorization used. If P*does not have
a pole at sq, then P is analytic at s, and we can find ¥, without reference
to coprime factorizations: .. =nullspace(P(s,)"). An example where
N e # nullspace(P(s,)") is:
1 -2 0
P(s)= —— [S ]

(s+12L 1 (s—2)7!

For this plant there is no nonzero AeC? such that ATP(s} is analytic and zero at
s=2.
Similarly if p, is a pole of P, we define its associated right nullspace .V . by

¥ ooe 2 nuilspace (Dpy (po)}.

N pele 15 independent of the coprime factorization used, and if the pole is simple,
then Voo, is also given by ¥ pole = range (residue,, P).

Y poe can be interpreted as those directions along which the (open-loop) plant
blows up at pg.

We will focus our attention on constraints imposed on the disturbance-to-ourput
map H,; = (I+PC)™", which also happens to be the input-to-tracking-error map
u — u—y=e, By either interpretation it is something which, roughly speaking,
we would like ‘“‘small” over the bandwidth of our system. We will refer to
—log||H,q(jw}l as the disturbance rejection (in nepers, at @ rad/sec). Of course
other control configurations or transfer functions can be considered.

In the sequel we will use only a few properties of 'S(P, C). Two very important
ones relate 10 H,4:

Fact. Suppose P has a zero at s;C., and a pole at pyeC., with associated left
(right) nullspace N, (¥pqe). Then

(1) If A€ N,y then NTH, 4(so) = AT, In particular, [H,q(s)lj=1.

(2} If pe ¥ then Hy(poyp =0.

The proof is in §A2,

Interpretation of (1): At s = 3,, the component of the disturbance which lies in
N ero appears unaffected in the output.

Interpretation of (2): At s = p,, we have perfect tracking along those directions
in which the plant has infinite gain.

We have already seen one constraint on Hy,y: by Assumption 1, PC is not
identicaily — I, so H,4 cannot be identically zero, hence the Paley-Wiener theorem
yields

Juog Hya Gl (3.2)

1+w?

This constraint is well known in the SISO case. One consequence is, we cannot
have perfect tracking or infinite disturbance rejection (H,4(jw)=0) over any band of
frequencies.



160 STEPHEN BOYD AND C. A. DESOER

3.2 Bode’'s Integral

In (3.2), the Paley—Wiener theorem expresses a fundamental constraint on the
achievable disturbance rejection. If the plant and compensator are swictly proper,
as is usually the case, the conclusion can be strengthened considerably. For SISO

systems with stable rational P and C, with P{s}C(s)= O(s™~), Bode proved
{Bode, 1943, and Horowitz, 1963):

J log |H,4(jw)| dw = 0. (3.3)

Thus the area under the disturbance-rejection curve (in db-rad/sec), is zero. In
particular, positive closed-loop disturbance rejection (i.e. log|H4{jw)| <0} in
band implies disturbance amplification (log |H 4(jw)|>0) at some frequencies out
of band.

Freudenberg and Looze have recently evaluated the integral (3.3) for the SISO
case, where the plant and compensator have finitely many C ., poles {Freudenberg
and Looze, 1983). This is just Jensen's formula for C. (Rudin, 1974, and
Conway, 1978}

K
j log |H,q{jw)|dw =27 3, Rep, (3.4)

k=1

where p,,...,px are the C. poles of PC {In fact (3.4) holds when there are
infinitely many C. poles). Thus unstable P or C can only increase the integral
(3.3): if PC=0(s7? then in general we have

J log |H,(jw)}| do =0
regardless of whether the plant or compensator is stable or not.

Using subharmonic functions we can prove the following theorem.

MIMO Bope THEOREM. Suppose PC = O(s™%). Then

I log | Hyg (jeo )l dew = 0. (3.5)
Proof. The hypothesis PC = O(s™?) implies I~H,q=0(s"%). By the triangle
inequality,
1-|I- H,gll < |Hyall < 1+~ Hygl
so that

log |Hyqli= O(s 3. (3.6)

From the Poisson inequality we know w — log||H,4(jw)| is locally L*; from
(3.6) we know log |H,.(jw)ll = Olw™?); hence we conclude that
® — log |H,4(jw)|e L". (3.7

Now multiplying the Poisson inequality (2.5} by o> 0 and evaluating at w,=0
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yields

dw

T twiog? > o008 1ol 3.8
0

1 .

~ [ og IH,q(je

™
By (3.6), as oy — = the right-hand side of (3.4) converges to zero. By dominated
convergence and (3.7) the left-hand side of (3.8) converges to
n'flog ||Hyy(jw)] dw and (3.5) follows. (I :

This theorem is known (John Doyle, personal communication), but we em-
phasize that this proof is almost the same as the proof of the SISO Bode theorem
given in Freudenberg and Looze {1983), with the exception that we have used
Poisson's inequality (valid for subharmonic functions) as opposed to Poisson's
formula (valid just for harmonic functions). We should perhaps mention that (3.5)
can be strengthened by replacing [|H, 4| with pi{H,).

Remark. For MIMO systems strict inequality can occur in (3.5) even when the
plant and compensator are stable (cf. SISO case (3.4)). For example consider the
plant P{s)=diag[(s+1)7%, (s+2)"?] with unity compensator C=1I Then
flog|H,g(jw)l| de is the integral of the max of two functions, each of which has
integral zero by the SISO Bode theorem. Since the graphs of the two functions
cross each other, {log||H,4{jo)||do >0.

3.3 Zames’ Inequality (Zames, 1981, and Zames and Francis, 1983)
We now consider constraints due to plant C—+ Zeros.

ZamEes' INeQuALITY, Suppose weH™ and P has a zero at s,eC.. Then

sup | Hyq (je ) w(jo )= wiso)|. (3.9)

The interpretation is as follows: usually we have P(jw)C(jw) — 0 as w — = {i.e.
PC is stricily proper), which implies that as @ — %, [|H,4(jw)|— 1. Hence
sup {|Hys(jo)| : @ €R} = 1, that is, the minimum (unweighted) disturbance rejec-
tion is less than 0 db. The H® function w in (3.9) serves to weight the disturbance-
to-output map more highly in-band (where |w| is large) than out-of-band (where
|wi is small). Zames’ inequality tells us that the plant C, zero puts a lower bound
on the achievable peak value of the w-weighted disturbance-to-output map.

This was proved in Zames (1981) for stable P and C and extended to
unstabie SISO P and C in Zames and Francis (1983).

Proof (using subharmonic functions). Under the hypotheses, |H,,(s)w(s)| € SH, so
invoking the maximum principle (2.3},

Slig tuJ(j‘“)W(jﬁ’)“?'""H,d(-"o)w(so)" = ”qu(so)“ [w(sg)| = [w(se)l {3.10)

since by Fact 1 of §3.1, |[Hu(so)|=1. O

Remark 1. We need not start with a weighting function w(s) in H™. Indeed it is
more natural simply to specify a positive weighting function k{w) along the j
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w-axis, for example

a for|w|<wg
b for \w|> wg,

k(w)={

which weights the in-band disturbance rejection by a>0 and the out-of-band
disturbance rejection by b > (. Using the concepts developed, it is not hard to
express Zames’ inequality directly in terms of the weight k(w), as follows.

ZAMES' INEQUALITY FOR jw-axis WEIGHTS. Suppose k(w) is a bounded positive
function such that [ |log k{w)| (1 + ) ' dw <=, and P has a zero at s, = 0, + jwy
C.. Then

7o dw ) (3.11)

ai+(w—wy)?

1
sup |H,, (jo)k (@) =exp (; Jlog k(w)
weR

If 0o=0 then sup, g [HyGwlk{o)l=k(w).

The proof is in §A2.

This last theorem can be put in another interesting form. Suppose M{w) is a
desired upper bound for |Hy4{jw)l]. M(w) would typically be small in band (to
guarantee a minimum disturbance rejection), and larger, but not too large. out of
band {to guarantee robusiness).

CoOROLLARY. Suppose that P has a zero at oy+ jwgeC. and M{w) is a bounded
positive function such that

0Oq dw

J.lOgM(w)m<0 (3.12)
0 0

(this integral may be —=, but is always well defined).
Then there is no controller C such that the closed-loop system 'S(P, C) is stable
and |Hyy(jo)|<Mlw) for all w eR.

The proof is in §A2. These last two forms of Zames’ inequality are related to
the MIMO generalizations of the Freudenberg-Looze integral constraints which
we will discuss in §3.5.

Remark 2. Zames’ inequality holds for matrix weightings, i.e. if We (H™)™** and
P has a zero at s,eC,, then

sup 1Hya (je0) Wije)l[ = Wso). (3.13)

Note that matrix weightings do not induce symmetric seminorms (in Zames’
sense). Also, the inequality is false if we put the matrix weighting on the left,

3.4 MIMO Zames-Francis Inequality

Just as the Bode integral increases when the plant or compensator is unstabie
(see equation (3.4)), Zames’ inequality may also be sharpened when the plant or
compensator is unstable. Suppose, for example, that an SISO plant P has a pole
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at poeC. and a zero at soeC., and w e H”. Then (Zames and Francis, 1983)

S0+ Po
S0~ Po

Thus if the plant or compensator is unstable, the lower bound (3.9} increases
(dramatically, if the pole p, and zero s, are close). If either the pole or zero is on
the jw-axis, (3.14) is still true: it is simply Zames’ inequality then.

Using subharmonic functions, we can extend this result to the MIMO case. In
the MIMO case, the increase in the lower bound is not as simple as (3.14), that is,
division by the Blaschke factor formed with the plant C. pole: the increase
depends not only on the location of the zero and pole in the complex plane, but
also on their geometry, i.e. their direction in space. Let us next consider two
examples.

Sup [ Hya (jw)w (jeo )= lwiso)l. (3.14)

ExamrLE 1
$—0-9 0
1 s—1
PisI=19 $+0-9
0 s+1

If we apply the Zames-Francis SISO bound to channel 1 of this plant we have:

sup [y ju)w (ju)]| > 19 1w (0.9)}.

In this case, the C, pole-zero near cancellation has greatly reduced the achievable
performance. On the other hand consider

ExampLE 2
s+0-9 0
1 s—1
Psi=im3 s—09 | |
0 s+1

For this plant it can be shown, using the SISO methods of Zames and Francis
(1983), that for any & >0 there is a controller which yields

sup |HysGw)w (ol =<|w(0-9)+e.

In this case the plant C, pole, even though close to the plant . zero, has not
degraded the performance of the system as in Example 1.

The key is that the concept of pole-zero near cancellation for MIMO systems
involves the geometry of the pole and zero.

To make this precise:

MIMO Zames-Francis INEQUALITY. Suppose the plant P has a pole at p,eC.,
with associated nuilspace /. there, and a zero at s,eC., with associated left
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nullspace ¥,..,. Then if s = o, (),
S0t Po
S0~ Po

where cos L(N e, Vo) denotes the cosine of the angle between the spaces N e
and &,.., and is defined by

sup nHyd (J"-’) W(Jw)“ = C0s L(-’Vpole» "'v.zero) l |w(50)l (3 15)
weR

€08 LN potes Nrero) 2 max {{u 0] : UEN o, BEN o, Uil =0 =1}, (3.16)

The proof is in §A2.

It is readily verified that the cosine expression in (3.15) is one in Example 1
above (indeed .V, = ..., here} and zero in Example 2 above (i.e. ¥ pole and
N zero are orthogonal). Thus the MIMO Zames—Francis inequality tells us nothing
for Example 2, and, more generally, is weaker than Zames’ inequality when the
angle between the spaces &', and ¥, is larger than arccos |(s,— po)(so+ po) 3.

Remark. Although we have stated the MIMO Zames-Francis inequality for poles
and zeros in the open right half-plane C_, it remains true if either the pole or zero
lies on the jw-axis, since in this case the conclusion (3.15) is weaker than that of
Zames' inequality {3.9).

3.5. MIMO Freudenberg-Looze Integral Constraints

Freudenberg and Looze (1983) recently applied Poisson’s formula to SISO
control systems to derive integral constraints similar to those appearing in Zames’
inequality for jw-axis weights. Using subharmonic functions, we can extend their
results to the MIMO case.

To take a simple example, suppose P and C are $ISO and P{o,) =0, 0,>0,
and log |H,4{jw)|<—M for lw|<wg (that is, we have at least M nepers distur-
bance rejection up to wg rad/sec). Then (Freudenberg and Looze, 1983)

log sup IHM(jm)].‘aM—e-. : (3.17)
weR ™ 6
where 8 =2 arctan (wp/ad,).

@ can be interpreted as the total angle from the C. zero o, subtended by the
“bandwidth” {jw :|w|=<wg}. From (3.17), we see there is quite a peak in the
disturbance-to-output map H,; unless wg< ay.

We will now show that the same result holds for MIMOQ systems.

MIMO FREUDENBERG~LOOZE CONSTRAINT. Suppose that P has a zero at oy,>(
and log {|H,4(jow)|=—M for lo|< wg. Then
8

log sup |Hy (jo)|=M—— (3.18)
wel 11'—6

We consider a real plant zero here for simplicity only; in fact the result holds
for any C. zero.

Proof. Once again the proof is nearly the same as SISO version, with the Poisson
Inequality used where the Poisson formula is used in the SISO proof. From Fact 1
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of §3.1, |Hya(oo)li= 1, so log |H,4(0)i= 0. From the Poisson inequality:

dew

1 , i g
= [ 108 1Hutiol 2222 > log |, el 0. (.19
T 0'0+w
Using our hypothesis we also have
1 . T dﬁ)
- I log [iHyel| (jw) = o (3.20a)
-MJ‘“B T, de oo 1 J' Todw
=— + - 3 B .
7 b, sita? IOgi:E“Hyan)“ﬂ e, Tirw? (3.20b)
e
= -M-q-i-log sup | Hyq Go)ll (1 ——). (3.20¢)
™ welR ™

From (3.19) and (3.20) we conclude the expression in (3.20c) is nonnegative, and
thus

) 0
log sup |H,4(jw)i=M——
well w—0
which establishes the MIMO Freudenberg-Looze inequality. [

In fact the MIMO Freudenberg-Looze inequality can also be derived from
Zames’ inequality for jw-axis weights. Let R =log sup,.p [|[H,a(jw)| and consider
the weight

expM  for lw|=wp,
k(m)=
exp —R for lo|> wq,
so that sup [|H,q(jw)k(w){=<1. From (3.11) we have

1= sup |Hyg{jo)k{w)|=exp - (M8 + R(8 —))
weft

so that R=M#@{w—¢)"", which is (3.18).

4. Conclusion

We have given generalizations of the Paley-Wiener theorem, the Bode integral,
Zames’ inequality, the Zames-Francis inequality, and the Freudenberg-Looze
constraints, to distributed, unstable, multiple-input multiple-output systems. We
wish to emphasize the simplicity of the method. SH functions are a wide enough
class to include such useful functions as |H,q{(s}| and log||H,(s){, and vet are
restricted enough to still derive meaningful constraints, €.g. via the Maximum
principle or Poisson inequality.
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Appendices

Al. Proofs of Theorems 2.1 and 2.2
We first list some elementary properties of subharmonic functions:

Fact Al. Suppose {f,:ac A} is a family of subharmonic functions which is
bounded above. Then

f(s)& sup f.(s)
aeh
is subharmonic.

Proof. The function f is clearly continuous. Now suppose Re a > r> (. Then for
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any a € A,

2w 2w

. 1 .
f.la+rei®)de S-z—j fla +rei®) de
1y

0

0

and consequently

2
f(a)=sup f,(a) <L J fla+re®) de,
axeA 21‘.’

o

which proves that f is subharmonic. O

Fact A2. Suppose f, is a sequence of subharmonic functions and f, — f uni-
formly on compact subsets of C,. Then f is subharmonic.

Proof. Again, f is clearly continuous. If Re a > r>0 then

1 2w ) 2m )
_.J fla + rei®)do = lim if fla+re®)do=lim f.(a) = f(a).
2w 4, n—= 2 Jg n—so

Fact A3. Suppose f is subharmonic and ¢:[—s, %) — [-=, =) i{s continuous.
convex, and nondecreasing. Then ¢(f(s)) is subharmonic.

Proof. Once again ¢(f(s)} is clearly continuous, and

1 2w ) 1 2m .

——.[ ¢(f(a+re‘°))d9?¢(~—j f(a+re’9)d9)?¢(f(a))

2w dy 2w iy

where the first inequality is Jensen’s inequality (Rudin, 1974, p.63) and the
second follows since f is subharmonic and ¢ is non-decreasing. [

The most important case of Fact A3 is ¢(x)=exp x: if f is subharmonic then
exp f is subharmonic, and hence if fe SH then exp fe SH.
We can now prove Theorems 2.1 and 2.2.

THEOREM 2.1. Suppose H(s) e (H™)™" " and suppose ||s|| is any induced norm. Then
logiH(s)ll € SH and ||H(s)|je SH.

Proof. In view of the remark after Fact A3, we need only prove that log||[H{(s)|le
SH. Property (ii) of SH is clear; property (iii) follows from (2.1) and the continuity
of A —logllAll. It remains to show that log||H(s)|| is subharmonic.

Continuity is clear. Let |jo/|, be the norm used in C™ and let |lalj, be the norm
dual to the norm used in C™, so that

log|H(s)l|= sup logluH(s)vl. (A1.1)

i =1 jlol <1

For any ueC™ and any v €C", the function log |u"H(s)v| is subharmonic, so by
Fact Al and (A1.1)}, log{|H(s)|| is subharmonic, establishing log||H(s)je SH. O

Thus, for example, log o, (H(s)) and o (H(s)) are in SH.
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TreEOREM 2.2, Suppose His)={H™"*". Then
p(Hi{s)eSH and logp(H(s) eSH,
wiH{(sDeSH and logu(H(s))eSH.
If in addition H(s) ' (H™"™", then
cond(H{s))eSH and logcond(H(s})<SH.

Proof. As in Theorem 2.1 the only hard part is showing the log-expressions are
subharmonic. Suppose H(s)e (H™)"*". We first show log p(H(s}) 1s subharmonic.
Let [lo|| be any induced norm, e.8. G Then

1oglllilf(s)"u_* log p(H(s) as n—» o (A1.2)

uniformly on compact subsets of C,. By Theorem 2.1 each n™'log||[His)"| is
subharmeonic, so by Fact A2 and (A1.2) we conclude log p(H(s}) is subharmonic.
If w(A) denotes Doyle's structured singular value, then

log w(H(s)) = sup log p(UH(s)}
Uelr

where U’ is the structured unitary group (see Dovle [Doy82]) and hence by Fact
A1l and subharmonicity of log p(UH(s)), the function log w(H{s)) is subharmonic.

Finally suppose in addition H(s)"'e(H™"™". Then logcondy(H(s))=
log!|H(s)} +log [H(s)"!|, and is subharmonic by Theorem 2.1. J

A2. Proofs of Theorems of §3.

Facr. Suppose P has a zero at s,eC.. and a pole at pyeL., with associated left
{right) nullspace N ., (¥ o). Then

(1) If A€ WN,ero then ATH 4(sg)=A".

(2) If peNoe then Hyylsg)p =90,

Proof. Direct calculation yields

H,‘ =I- NPRA;INCL (AZ. l)
where
8,2 Dy Dpg + Ny Npg.

It is shown in Callier and Desoer (1980) that the closed-loop stability Assump-
tion 2 implies A7'c A™*™. In fact det A, is what is usually called the characrerisiic
function of the closed-loop system 'S(P, C), and the closed-loop stability assump-
tion (Assumption (2)) is equivalent to (det A, € A. If A € ¥ ,c,o then ATNpg(sy) =
0, hence from (A2.1) ATH,4(so) = AT, which establishes Fact (1). To prove Fact
(2), we note that

H,4 = Dcgd; ' Dy, (A2.2)

where
A32 Dp Deg+ Np New




LINEAR TIME-INVARIANT FEEDBACK SYSTEMS 169

and, as above, A3'e A™*™ If m eV, then Dy (poip =0, so from (A2.2) we
conclude H4(po)pe =0. O

ZAMES' INEQUALITY FOR jw-AXIS WEIGHTS. Suppose k(w) is a bounded positive
function such that f{log k(w)| (1+w*)™* dw <=, and P has a zero at s,= gy + jw, €
C,. Then '

O'od&)

sup HH,d(jm)k(w)HBexplj'log k{ew) (A2.3)
weR k1)

o3+ {w—wy)?’

Remark. The hypothesis on k is precisely the condition that there exists w e H™
with k{w) = |{w(jw). We will not directly use this fact.

Proof. We first extend log k(w) to a function h harmonic in £,. Define h by
h{jw)2log k(w) and for o,>0,

Ty dw
O3+ (w0~ wp)?’

h(cro+jw0)-%-11; J log k(w) (AZ.4

The hypothesis on k ensures that the integral in {AZ2.4) makes sense. It can be
directly verified that h € SH (indeed h is harmonic, i.e. —h € SH as well). Hence

log || H,4(s)|+ h{s)e SH

50 by Fact A3 of §A1,
| H,a(s)| exp A(s)e SH.

By the Poisson inequality,
sup 1Hya )k (@)]| 2| Hya (5o)l| €xp h(s0)

1 oqde
?3’(!31-1_ J- log k(w)m

since |Hy4(soll=1 by Fact (1) of §3.1. O

CoOROLLARY. Suppose that P has a zero at oy+jw,cC, and M(w) is a bounded
positive function such that

oy de
— (). A2,
oi+{w — wg)? (A2.3)

Jlog M(w)

Then there is no controller C such that the closed loop system 'S(P, C) is siable and
| Hya(jw)| < M{w) for all weR.

Proof. By contradiction. Suppose there is such a controller. Then

HlognH,d(jm)n Tode lJlogM(w)cr2 %049 0. (A26)
Q

—_._{_ ———
Cit{w—we) w + (w — wy)
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Since P has a zero at 5,= ¢+ jwo<sC., we have as above

ag,dw

1
O<log|[H,a(soll=— j log |H,q (j i (A2.7)

Tit(w—wg)?
which contradicts (A2.6), establishing the Corollary. U
MIMO Zames-Francis INEQUALITY. Suppose P has a pole at p,e L. and a zero at

5o C., with associated left (right) nullspace ¥, (N.o), respectively. Then if
loll = & maxle},
+Po

. , X s
sup [|H,q jow)w(jo)ll = (cos £(¥ poier Vaero)) ‘—0
weR So— Do

|w(sg)] (A2.8)

where cos Z{N poies Nzero) is defined in (3.16) of §3.3.

Proof. Let U, be a matrix whose columns are an orthonormal basis for .V ..
By Fact (1) of §3.1, H,4(po) Upete = 0. Since H,q is analytic at p,, we have

s+ Po

H, g (8YU e & (HT) @™ o0te {A2.9)

HH,d(jw)Umlcw(jw)“
0

Ml iW(SO)l “Hyd (SO) Upolen- (sz 1-0}
S0~ Po

Po

Now since [U .l 1 (recall jjofl = o ,.,(+)} here!},

sup [|H,q(jow)wijw)= sup | Hyq(jo) Upgrew (je)|| = sup
wel we

wel

and using {A2.9) and the Poisson inequality:

Sa+ Do
= 1 07 Po Hyd (SO) Upolew(so)
o~ Po

Now let U, be a matrix whose columns form an orthonormal basis for V..
Then by Fact (2) of §3.1 we have Ul(oH,a(50) = Utero. Since U Loll= 1,

"H,a (30) Upolen = H U;mH,d {sq) Upolen = H UIcro Upo]eH (A2.11a)
=max {{u v #E Neror UE Npaies 2l = [0l = 1} (AZ.11b)
2 008 L[N potes ¥ zero)- (A2.11c)
From (A2.10) and (A2.11) we conclude -
sup L0} ()1 08 £ e o) |22 (55
weR S0~ Po

which establishes the MIMQ Zames-Francis inequality. ]




