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Abstract—1In this paper we propose a method to optimize
operation of a thermal energy storage (TES) system for heating,
ventilation and air conditioning (HVAC) in terms of electricity
cost. We pose this optimization problem as a mixed integer
linear programming (MILP) problem where future thermal
demand and electricity prices are predicted. The proposed
method uses a branch and bound algorithm to solve the
problem, using linear relaxation of the integer variables that
represent future on-off states of the equipment. We conduct
simulations based on real building data, which show that
significant cost reduction can be obtained.

I. INTRODUCTION

Cutting peak electricity demand has been a serious issue
in Japan especially after the Great East Japan Earthquake in
2011 since the country’s electricity supply capacity signifi-
cantly declined mainly due to shut down of almost all of the
nuclear plants [3]. Considering building energy consumption,
using thermal energy storage (TES) is one of the most
effective ways to cut peak demand. TES is a concept of
storing energy in the form of heat or cold for future use [2].
If electricity price is higher through peak time, consumers
have an incentive to use a TES system to shift their demand.

To use a TES system cost-effectively, for example, the
operation for the next day is defined taking account of
thermal demand for the TES system and electricity prices
for the next day [4]. The problem can be treated as a
mixed integer linear programming (MILP) problem if true
thermal demand and true electricity prices are given. The
true thermal demand can’t be obtained beforehand; therefore
thermal demand prediction is necessary and the prediction
error can lead to deterioration of the result [4]. The same can
be said for time varying real-time prices. Real-time energy
pricing is not yet introduced on a large scale in Japan at this
point (in June 2013). But in the near future this structure
will become more common as smart grid is introduced [4].

In this paper we propose a method to operate a TES system
cost-effectively under the condition that thermal demand
prediction has an error and the real-time pricing rate structure
is introduced. The proposed method uses a branch and
bound algorithm with a custom linear programming (LP)
solver which is generated by CVXGEN [1] to solve the
MILP problem consecutively. While the branch and bound
algorithm is executed, some of integer variables, which
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represent on-off statuses of equipment in the future, remain
linearly relaxed.

We developed a MILP solver in C using the proposed
method and conducted simulations based on real building
data. The results were compared to the conventional opera-
tions.

II. PROBLEM
A. Thermal Energy Storage System

A TES system we consider in this paper consists of
thermal energy storages and heat sources such as chillers.
Energy resources such as electricity or natural gas are bought
from suppliers at certain prices. For simplicity, we assume
that there is only one kind of energy resource, electricity.
The electrical energy is transformed into thermal energy by
the heat sources. The thermal energy has to meet the demand
from the downstream air-conditioning system. Thermal en-
ergy storage systems can store thermal energy for a while.
In other words the storages can delay the timing of thermal
energy usage from electricity energy usage. Fig. 1 shows the
energy flow of a TES system.

In Fig. 1, ng is the number of storages (with its own
chiller) and ng is the number of support chillers which are
used when the stored energy is insufficient.

B. MILP Formulation

The characteristics of the chillers and the support chillers
are represented as
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Fig. 1. Energy flow of thermal energy storage system
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where i means the i-th chiller and j means the j-th support
chiller; um and v[[g]] are thermal energy generated by the i-th
chiller and j 'f -th support chiller at time ¢, respectively; l[l] l[j ]
hm and hvj are the lower and upper bounds on the generated
thermal energy. x[ 1 and yH are integer (Boolean) variables
which represent on (1) or off (0) of the i-th chiller and the
j-th support chiller at time ¢ respectively.

The characteristics of the storages are represented as

Al = 0= O] 4 off - of
W < ) <l @
0 < w!

[¢]

where z[[ ] is stored energy in the i-th storage at time ¢; UH is

input energy at time ¢ for the storage, which is output energy
of the chiller connected to the storage at the same time; wm
is output energy of the storage at time ¢; e[’} is the heat loss
coefficient of the i-th storage; Z[Zi] and h[zi] are the lower and
upper bounds of the stored energy in the i-th storage.

The demand for the TES system must be equal to the
output of the system. This relation is represented as

Ng ndg
_ [4] (4]
dy = Zwm + Zv[i] ©)
where dp) is the demand at time .
The cost function f is expressed as

Ng U[l] ng ,U

T
=3 |nlt Z o Z i (4)
J

t=1

where plt] is the electricity price at time ¢. cg] and c?[j Iare the
coefficients of performance (COP) of the i-th chiller and the
j-th support chiller respectively. The objective of the problem
is to minimize f.

From (1)-(4), the problem is defined as a standard MILP
form (5):

minimize  f(Z)
subject to AZ =0 (®)]
G <h

where & = (z,y, z,u,v,w,); z € {0,1}T, y € {0,1}"7,
z € R=T 4 € R=T, vy € R"T and w € R™7T are

the variable vectors and the elements of those are x% % y[[i]],

[[g, H v[[g]] and wh G=1,2,....n5;75 = 1,2,....na

= 1,2,...,T), respectively; A, b G and h are constant
matrices and vectors and the elements of those are easily
defined from (1)-(4).

The problem (5) is an operation scheduling problem that
is to decide how to operate the heat sources and the storages
attime t =1,2,...,7T.

However, the demand d[;) can’t be obtained beforehand in
practice; therefore it is necessary to build a demand predictor.
The electricity price py; is also unknown if the real-time
pricing rate structure is introduced. To handle this we use a
standard model predictive control (MPC; also called receding
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horizon control, RHC) method, using predictions of future
demand and prices; see, e.g., [6].

1. METHOD

A. Branch and Bound Algorithm

We use a branch and bound algorithm [7] to solve the
problem (5). The algorithm finds the global minimum of a
function f : R™ — R over an n-dimensional set, or search
space, Qinit- This section shows the general algorithm.

For a space Q C Qjnix we define

®(Q) = inf f(z). ©)

T€EQ

We also define ®y3, and ®,,;, which compute lower and upper
bounds on ®,;,, respectively:

®1b<Q) S cI)min(Q> S éub(g) (7)

The branch and bound algorithm has two procedures:
one is called “branching” and the other “bounding.” The
branching procedure splits a search space into two smaller
spaces. The bounding procedure computes lower and upper
bounds.

The two procedures are iterated one after the other until
the difference between the minimum of the lower bounds
and the minimum of the upper bounds becomes lower than
the tolerance that is set in advance.

If 1,(Qr) > Pun(Qrr) where Qr C Qinit, Qrr € Qinit
and Q; N Qrr = (), then the search space Q; can be
eliminated from consideration obviously. This procedure is
called “pruning”. Pruning is not necessary to be done while
the algorithm proceeds, but it can reduce computer storage
requirements.

The algorithm (without pruning) is summarized below.

k=0;

Lo = {Qinit };
Lo = ®15(Qinit);
UO == q)ub(Qinit);

while Uy, — Ly, > €, {
pick Q € Ly, for which ®1,(Q) = Lg;
split @ into Qr and Qyr; ®)
form Ly from Ly by removing Q
and adding Q; and Qyr;
Liy1 := mingeg, , P1,(Q);
Ugt1 := minger,,, Pun(Q);
k=k+1;
}

where k is the iteration index; £ denotes the list of search
spaces; Ly and Uy denote the lower and upper bounds for
D nin (Qinit) at the end of k iterations; e is the tolerance.
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B. Linear Relaxation

To apply the branch and bound algorithm above to the
problem (5), linear relaxation given below is used:

minimize  f(Z)
subject to Az =10
G <h
= ©))
0< xH <1
where z!] and y['tj] are not Boolean variables. The problem

1]
(9) is a linear programming (LP) problem; this can be solved

by an LP solver.

The optimum value of (9) is a lower bound Ly of the
original problem (5). An upper bound Uy is obtained by
rounding each x%;] and y[i I of the solution of (9) to 0 or 1. If
the rounded solution is infeasible, the upper bound is +o0.

The branching procedure is to pick one element from x or
y to fix its value to 0 and 1. Our method picks the element
which has the closest value to 0.5 regarding the solution of
the problem (9). If the picked element is az[ﬂ, for example,

the inequality constraints of ;vm is changed to 0 < xm <0

to generate one new problem. On the other hand, 1 < wm <
1 is used instead to generate the other new problem. These
new problems are also LP; branching and bounding can be
done as well. These procedures are iterated to obtain the
solution of the problem (5).

The reason why we change the inequality constraints
instead of adding new equality constraints is that we use
a custom LP solver generated by CVXGEN [1]. CVXGEN
exploits the sparsity of a problem to generate a fast QP solver
which uses primal-dual interior point methods with Mehrotra
predictor corrector. (QP obviously includes LP.) The custom
LP solver solves the problem very rapidly but the structure of
the problem must remain the same. If the branch and bound
algorithm splits the problem changing inequality constraints
as we mentioned above, the structure does not change.

C. Linear Relaxation in the Future

Here we define the problem instead of (5) to cope with
erroneous demand prediction and real-time pricing.

minimize  f(Z)
subject to AZ =0
Gt <h
ol €{0,1} (t <t

( (10)
0<alf <1 (<t
(

yil € {01} (t <t,
0<yfl <1(t.<t
where t; is a threshold; the branch and bound algorithm we
use picks xm or y[[t]]} only if ¢ < t, to split the problem. This
means that it is not necessary to decide on-off statuses of the
equipment in the future further than ¢,. Using the solution

of (10) instead of (5) the result can be more cost-effective
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since the solution is less affected by the erroneous future
prediction.

Another good point of (10) is that the calculation time
becomes shorter. If the electricity price changes in real-
time, to respond to the change as soon as possible is vital
to achieve a cost-effective operation. The parameter ¢, is
adjusted considering the cost efficiency of the operation and
the calculation time.

IV. SIMULATIONS

We developed a MILP solver in C using the method
mentioned above to conduct simulations based on real data
from an office building in Japan. The data were sampled
every hour in July, August and September 2010.

We developed a demand predictor also, using an ordinary
linear regression model. We used 2008 and 2009 data to
make the model. The model uses past outside enthalpy,
past residual and future workday/holiday flag as the input
variables. The model can predict the demand for 1-24 hours
in advance.

The actual demand d[;; was obtained from the building’s
energy management system. Table I shows the values of the
parameters used in the simulations.

We used a laptop PC described below to conduct the
simulations: Lenovo ThinkPad T420 with Intel Core i7
(2.70GHz), Microsoft Windows 7 Professional 64 bit and
Microsoft Visual C++ 2010 as a compiler.

A. Fixed Prices with Demand Prediction

First we conducted simulations where the electricity prices
were fixed and known. Table II shows the prices based on a
real contract between the building’s owner and an electricity
supplier.

TABLE I
PARAMETERS FOR SIMULATIONS

Symbols Values
Ng, Ng 2
T 24 (hour)
(12 0.13 (GJ)
R Rl 1.3 (G))
RaIE 0.098 (GJ)
b1, w2 0.98 (GJ)
l[zl], l.[f] 0.0 (G))
Rl B2 8.6 (GJ)
cg], 0[12], CE], CLQ] 3.0
elll, €l2], 0.01
TABLE II

ELECTRICITY PRICES

Time Prices (JPY/kWh)

Peak (13:00-17:00) 12.7
Day (8:00-13:00, 17:00-22:00)  10.5
Night (22:00-8:00) 9.3
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The owner had an incentive to shift electricity demand
from peak time to day time or night time considering the
prices.

We executed demand prediction and optimization for 24
hours in the future every hour for the three months. We
changed t; from 1 to 24 and calculated the total electricity
costs. The average calculation time was also measured.

B. Real-Time Pricing

Secondly we conducted another simulation under the real-
time pricing rate structure. We made simulated prices adding
noise with normal distribution, ¢ € N (0, 12) JPY, to the
prices shown in Table II. The simulated prices in the future
are unknown when the optimization was executed. The
original prices are the unbiased estimators; therefore we used
the prices as pyg. The parameter 5 was set to 1 because
the future prices are unknown. The total cost was compared
to the cost of the conventional operation which would be
executed in practice.

We used the same demand predictor as in the previous
simulations.

V. RESULTS
A. Fixed Prices with Demand Prediction

The demand predictor’s error is shown in Fig. 2. The root
mean squared error (RMSE) of the prediction becomes larger
in the further future. This suggests that a precise operation
scheduling for the whole period is useless when the demand
predictor is used.

Fig. 3 shows the total electricity costs as ts is changed
from 1 to 24. As expected from Fig. 2, the total cost is
small when ¢ is small.

Fig. 4 is a semi-log plot of the average calculation time
for each ts. The calculation time increases exponentially as
ts becomes larger. The shortest calculation time was 0.009
sec when ¢, = 1. Even the longest calculation time 2.896 sec
when ts = 24 was short enough since the simulations were
based on one hour data. However, if the scale of the problem
becomes larger and the price changes more frequently, the
proposed method will be more useful.

And then, we compared the cost when t; = 1 to the
conventional operation in Fig. 5.
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Fig. 2. Demand prediction error
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Fig. 5 shows that our method can reduce the total cost by
4.3%.

B. Real-Time Pricing

Fig. 6 shows the total costs of the simulation with real-
time pricing when t; = 1 and the conventional operation.

The result shows that our method can reduce the total cost
by 7.6% if the real-time pricing rate structure is introduced.
The reduction was more significant in comparison to the
previous results when the electricity prices were fixed.
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Fig. 5. Total electricity cost comparison
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Total electricity cost comparison under real-time pricing rate

VI. CONCLUSIONS

To optimize the operation of a TES system, the proposed
method takes advantage of linear relaxation of the integer
variables which represents on-off statuses of the equipment
in the future. The method is useful when the demand pre-
diction is erroneous and the real-time pricing rate structure
is introduced.

The simulations based on the real building data with the
real electricity prices showed that the method could reduce
electricity cost by 4.3%. It was also shown that if the real-
time pricing rate structure is introduced the method can
reduce electricity cost by 7.6%.

The simulations also showed that the calculation time of
the proposed method was short enough even if the real-time
pricing rate structure is introduced in practice.
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