Regression Modeling Strategy
Basic Strategy:

- Look at the data.
- Look at the data.
- Look at the data.
- Look at the data. Select preliminary variables of interest.
- *Then* try a model.
• Check the model for accuracy, overfitting, ...
• Check the model assumptions (nonlinearities? collinearity?).
• Eliminate unnecessary variables; transform non-linear variables.
• Refit the model. Iterate above as necessary.
• Then interpret the model.
Look at the data –

- use Design library summary plots; use trellis graphics plots (‘lattice’ package in R)
- explore the data graphically, inspecting predictors and their relation to the response and each other
Choose type of model...

- logistic regression: for dichotomous responses ('NP NP' vs. 'NP PP'; presence vs. absence of that) use lrm() in Design library or glm()

- ordinal logistic regression: for discrete ordered responses ('perfect', 'marginal', 'ungrammatical') use lrm()
• ordinal logistic regression: for discrete ordered responses ("etymological age": Dutch < West Germanic < Germanic < Indo-European)
 use lrm()

• multinominal regression: for nominal responses (4 alternative possessive constructions in modern Low Saxon)
 use multinom() in nnet library or poisson regression with glm/lrm; see Venables and Ripley’s MASS for examples
In textbook:

• Multiple linear regression:
 – *lm*, model specification, interaction terms, sequential anova
 – *ols* (ordinary least squares in Design package), R-squared, residuals, plotting partial effects, nonlinearities (pol, rcs), collinearity, simultaneous anova and fastbw, which.influence, bootstrap validation with validate()
• Multiple logistic regression (Generalized linear models):
 – `glm` for logistic regression on tabular data (proportions), `anova(..., test = "Chisq")` for binomial link function
 – `lrm` (Design package) for logistic regression on individual observations (single outcomes), simultaneous anova on partial effects, penalized maximum likelihood, AIC
Mixed models

- advanced topic
- fewer user-friendly tools
- you can roll your own
How to evaluate generalized linear mixed models

- quality of model: Baayen’s concordance.fnc()
- how to validate model assumptions (to be continued)