Review

Grammaticality judgments unreliable

- vary with context
- sensitive to relative frequency
- affected by interactions of multiple conflicting constraints, including processing constraints

Usage data problematic

- unexamined confounds and correlations
- pooled data from different speakers
- lexical dependencies ignored
- cross-corpus differences

Data from controlled experiments

- experimental items $=$ constructed sentences
- isolated from connected discourse
- artifactual default referents

Solutions

- use multiple sources of converging evidence: typological, usage-based, experimental, and introspective
- use modern data analysis: graphical visualization, descriptive statistics, multivariable modeling, qualitative interpretation of quantitative data

Documentation of the problems from intuitions:
Joan Bresnan. 2005. "A Few Lessons from Typology".

Case studies of the English dative alternation:
Joan Bresnan, Anna Cueni, Tatiana Nikitina, and Harald Baayen. 2005. "Predicting the Dative Alternation." [corpus]

Joan Bresnan. 2006. "Is syntactic knowledge probabilistic? Experiments with the English dative alternation." [experiments]

Case studies of the English genitive alternation:
Anette Rosenbach. 2003. "Iconicity and economy in the choice between the 'sgenitive and the of-genitive in English." [experiments]

Lars Hinrichs and Benedikt Szmrecsányi. 2006. "Recent changes in the function and frequency of Standard English genitive constructions: a multivariate analysis of tagged corpora." [corpus]

Hands-on quantitative data analysis with syntactic, semantic, and lexical data:
R. Harald Baayen. 2006. Practical Data Analysis for the Language Sciences with R (forthcoming)
class project with dative data from the CHILDES database

Methods of analysis of corpus and experimental linguistic data

- Install and learn to use R (open source statistical computing environment available for all platforms): dataframes, vector calculations
- Graphical data exploration - visualizing
- single random variables: histograms, density plots, boxplots, ordered values, quantile plots
- two or more random variables: barplots, mosaic plots, scatterplots, pairs plots, trellis graphics, smoothers
- Probability distributions
- Discrete distributions: binomial (frequency of binary-valued variable in corpus), poisson (rate of occurrence of variable in a corpus)
- Continuous distributions: normal distribution; t, F, χ^{2}
- Basic statistical tests

Type of Data	Question?	If data are...	then do
1 numerical vector	normal distribution? equal probabilities? location of mean?	counts normal non-normal	shapiro.test(), ks.test() chisq.test() t.test() wilcox.test()
2 independent vectors	same distribution? same means? same variances?	normal non-normal normal	ks.test(), w jitter t.test() wilcox.test() var.test()
2 paired vectors	same means? functional relation? correlated?	normal non-normal normal normal input non-normal	```t.test(. . , paired = T) wilcox.test(. . , paired = T) lm() cor.test cor.test(..., method = "spearman")```
1 numerical vector, 1 factor	different group means?	normal, same variances different variances	$\operatorname{lm}(), \operatorname{anova}(), \operatorname{aov}()$ kruskal.test()
2 numerical vectors, 1 factor	different means? interactions?	normal	$\operatorname{lm}()$
2 vectors of counts	different proportions?		chisq(), fisher.test()

Problems and pitfalls of linear regression: (i) outliers, (ii) nonlinear covariates
Snag of anova with factor levels >2 : multiple comparisons inflating chances of a significant result; use Bonferroni correction or Tukey's H(onestly)S(ignificant)D(ifference)

- Clustering and Classification
- principle components analysis (for tables of measurements)
- classification trees
- Regression Modeling
(to be continued on Thursday)

