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1 Introduction

Mathematical logic is divided into two parts: semantics and syntactics. Semantics is the study
to interpretations and models of a theory, think examples. Syntactics is the study of formal de-
duction systems and provability. We will study first-order or predicate quantifier logic which has
an extremely powerful metatheory. Higher-order logics also exist but do not admit complete proof
theory and many of the desirable metalogical properties of first-order logic fail to hold. A first-order
logic has two pieces, a class of first-order formal languages which we will define inductivly and a
deduction system defined by rules of inference.

1.1 First-Order Languages

Definition 1.1.1. A vocabulary or signature o is a set of “nonlogical” symbols which may be of
three types:

(a) Constant symbols (e.g. 0)
(b) n-ary function symbols (e.g. +)

(c) n-ary relation symbols (e.g. €)
Along with the signature, a first-order language has a set of “logical” symbols:

(a) A countable list of variable symbols: z1, s, x5, - -
(b) Logical connectives: =, V, A, —

(¢) Quantifiers: V (we get 3 <= V- for free)

(d) An equality relation: =

(e) Punctuation: (), etc.

Definition 1.1.2. The set of terms of a first-order language L with vocabulary ¢ is defined induc-
tively as follows:

(a) Any variable or constant symbol is a term.
(b) If f is an n-ary function symbol and ti,...,¢, are terms then f(t1,...,t¢,) is a term. For a
binary operator (2-ary function), say o, we will often write (¢; o t5) to mean o(ty, ts).

Definition 1.1.3. The set of formulas of a first-order language L with vocabulary o is defined
inductivly as follows:

(a) If s,t are terms then (s = t) is a fomula. Furthermore if R € ¢ is an n-ary relation symbol
and ty,...,t, are terms then R(t,...,t,) is a formula. For a 2-ary relation we will often write
sRt to mean R(s,t).

(b) If A and B are formulas then —A, (AV B), (AA B), and (A — B) are all formulas.
(c) If x is a variable symbol and ¢ a formula in which z is free (¢ contains z but no quantifiers
over z) then Vx ¢ and 3z ¢ are formulas.
Definition 1.1.4. A sentence of a first-order language is a formula with no free variables.

Definition 1.1.5. A first-order theory is a first-order language L along with a set I" of first-order
L-sentances which are refered to as axioms.



1.2 Proof Theory

There are many possible first-order deduction systems each with its own unique flavor. A deduction
system has logical axioms and rules of inference on formulas of L. A formal proof begining with
some assumptions is a sequence of L-formulas each of which is either a logical axiom, an assumption,
or the result of a rule of inference applied to previous formulas.

Definition 1.2.1. We say that a first-order theory I' syntactically entails or, more simply, proves
A if there exists a formal proof using axioms of I' and first-order rules of inference. We write this

as '+ A.

Definition 1.2.2. A first-order theory I' is consistent if there does not exist a statement A such
that ' A and I' - —A.

Definition 1.2.3. A first-order theory I' is complete if for every L-sentence A we have either I' - A
or I' F —A.

Lemma 1.2.4 (Deduction). Let A be an L-sentence. If ' U{A} - B then ' - A — B.

Proof. This proof is a simple induction on theorems. We suppose it is true for all proofs of length
n or less and show that any proof of B with length n+ 1 must contain a subproof of B’ with length
at most n such that a single rule of inference can take B’ to B. Using the induction hypothesis we
get ' A — B’. It is then a simple yet tedious excersize in first-order logic to arrive at A — B
from A — B’ and the rule of inference which takes B’ to B. O

Lemma 1.2.5 (Categorization of Consistency). I' is proof-theoretically consistent if and only if
there exists a first-order sentence A such that I' i/ A.

Proof. If T" is consistent and I' - A then I' ¥ = A. If T is not consistent then ' - A and I" = = A for
some A. However, for any B, we have ' - AV B since ' - A and also I' - =A so I' = B. Thus, if
I is inconsistent then it proves everything. O

Lemma 1.2.6. I'U {—A} is consistent <= I'l/ A.

Proof. Suppose I' U {—=A} is inconsistent. Then it proves anything including A. By the deduction
lemma, I' - A — A and thus I' - A.

Conversely, if I' = A then ' U {=A} - A and clearly I' U {—=A} F = A so it is inconsistent. O

1.3 Interpretations, Models, and Truth

Definition 1.3.1. Let L be a first-order language with signature ¢. An L-interpretation or o-
structure M = (M, I) is a nonempty set M called the domain and an interpretation function [/
satisfying,

(a) For each constant symbol ¢ € o, an element of the domain, M = I(c) € M.

(b) For each n-ary function symbol f € o, n-ary function f™ = I(f): M™ — M.

(¢) For each n-ary relation symbol R € o, an n-ary relation RM = I(R) C M™. Furthermore =

is the diagonal relation A;.



Definition 1.3.2. Let M be an L-interpretation and given a map « : VAR, — M we extend « to
an assignment on terms inductivly,

(a) If t is a constant symbol ¢ then ¢(t) = M

(b) It = f(t,..., fu) then a(t) = fM(a(tr), ..., altn)).
For a tuple a € M we write [z := a] for the assigment sending x; — a;.

Definition 1.3.3. Let M be an L-interpretation and « an assigment. Let ¢ be an L-formula then
we define satisfaction of a formula by ¢, denoted M|a] = ¢ inductively:

a) If pis R(ty,...,t,) then Mla] E ¢ <= (a(t1),...,a(t,)) € RM.

(a)
(b) If pis (s =t) then Ma] E ¢ <= a(s) = a(t) <= (a(s),a(t)) € Ay
(c) If ¢ is = A then M[a] | ¢ <= M]|a] £ A.

(

d) If ¢ is A — B then M|a] = ¢ <= M]a] = A implies M|[a] = B.
(e) If pis AV B then M[a] = p <= MJa] = A or M|a] E B.

(f) If o is AA B then Ma] E ¢ <= M]|a] E A and M[a] | B.
)

(g) If ¢ is Vo A then M|a] = ¢ <= M]a] = A for every assigment o such that a(z) = o/(z)
for all variables besides z.

(h) If ¢ is 3z A then M[a] = ¢ <= M]a] = A for some assigment o’ such that a(z) = o/(2)
for all variables besides x.

An L-formula ¢ is true in the interpretation M, written as M = ¢, if M|a] | ¢ for each assignment
a. The satisfaction of a sentence A does not depend on the choice of assignment and thus either
Mla] E A for all « or for no a. Therefore, either M = A or M | —A. A formula can be
neither true nor false in M when it has free variables since different assigments may disagree on its
satisfaction. However, sentences are always either true or false. If ¢ is a formula with free variables
amoung x then for a tuple a € M we write M = ¢(a) to mean M|z :=a] E ¢.

Definition 1.3.4. Let I' be a first-order theory and M an L interpretation. If M = T i.e. every
axiom of I' is satisfied in M, then we say that M is a model of T'.

Definition 1.3.5. Let M be an L-interpretation. Then Thy, (M), the theory of M, is the set of
true L-sentances of M.

Definition 1.3.6. Two L-interpretations M and N are said to be elementary equivalent, written
M = N, if they have the same set of true L-sentences.

Lemma 1.3.7. If Thy, (M) C Thy (N) then Th, (M) = Thy (N) and thus M = N.

Proof. Let A be an L-sentence. If M = A then by hypothesis N = A. However, if M (£ A then,
because A is a sentence, M = -4 so N' = = A and thus N (£ A. O

Definition 1.3.8. Two L-interpretations M and N are said to be isomorphic, written M = N, if
there is a bijection o : M — N such that,



(a) For each constant symbol ¢, we have o(cM) = V.
(b) For each relation R and tuple @ € M we have a € RM «= o(a) € RV.
(¢) For each function f and tuple a € M we have o(f™(a)) = fV(0(a)).

Proposition 1.3.9. Let 0 : M — N be an isomorphism of L-interpretations. Then we have

M pla) <= N ¢(o(a))

for any a € M and L-fomula ¢ with parameters.

Proof. Induction on the complexity of a formula. 0
Corollary 1.3.10. If M = N then M = N.

Proof. The above proposition applied to parameter-free formulas i.e. sentences says,
MEA = NEA
which is exactly the content of M = N. O

Definition 1.3.11. A first-order theory I' semantically entails or simply entails an L-formula A,
written I' = A, if A is true in every model of I" i.e. whenever M |=I' then M |= A.

Definition 1.3.12. A first-order theory is satisfiable (or consistent) if it admits a model.

Definition 1.3.13. A first-order theory is model complete if any two models are elementary equiv-
alent.

2 The Completeness of First-Order Logic

The crowning achievment of mathematical logic is to join syntactics and semantics into a unified
theory. This was accomplished in one fell swoop by the greatest logician to ever live, Kurt Godel, in
his celebrated “completeness theorems” for first-order logic. Care must be taken to not mistake the
“completeness theorems” with Godel’s most famous work, his “incompletness theorems.” The situa-
tion seems designed for confusion. Hopfully this distinction will clear things up. The incompletness
theorems deal with the technical notion of proof-theoretic and model-theoretic completeness we
discussed earlier and show that various theories cannot be complete in this sense. On the other
hand, the completness theorems consider the informal notion of the completness of first-order logic
as a whole in the sense that proof theory and model theory complete eachother.

Theorem 2.0.1 (Model Existence). A first-order theory is satisfiable if and only if it is consistent
in the proof-theoretic sense. Furthermore, any consistent L-theory has a model of cardinality at
most |L|.

Proof. The proof of this theorem is long and highly technical so we cannot cover it here. The proof
first constructs a maximally consistent set (consistent and every sentence or its negation is included)
of sentances containing the theory and then constructs a model in which these are exactly the true
sentances. 0



Theorem 2.0.2 (Adequacy). If I' = A then I' = A. That is, if A is true in every model then there
exists a formal proof of A.

Proof. Suppose that ' I/ A then we know that T' U {—A} is consistent. By the model existence
theorem there exists a model of I' U {=A}. However, this is a model of I' in which A is false. Thus
I B~ A. O

Theorem 2.0.3 (Soundness). If ' - A then I' = A i.e. A is true in every model.

Proof. The proof is quite simple and uses induction on proofs. The only piece of input is to check
that one application of a rule of inference preserves truth value for any truth assignment. This
follows easily from the inductive definition of truth assigments. U

Theorem 2.0.4. All models of I" are elementary equivalent if and only if I" is complete in the
proof-theoretic sense.

Proof. Suppose that I' is complete and let M be a model of I'. For any first order sentence
A, if T+ A then M | A. Furthermore if T' I/ A then by completeness I'  —A and thus
ME-A <= M} A. Thus,

MEA <= TFA

Therefore, every model of I' has the same set of true first-order sentences and are thus all elementary
equivalent.

Conversely, suppose that all models of I' are elementary equivalent. For any model M of I and any
sentence A either M = A or M | —A. Furthermore, for any other model ' we have M = N so
either A or —A is true in every model of I". Therefore, by the adequacy theorem, either I' = A or
I' F =A so I is proof-theoretically complete. O

A finaly elegant summary of these results is given by Godel’s monumentous theorem:

Theorem 2.0.5 (Godel). For any first-order theory, ' - A <— T' = A.

3 The Compactness of First-Order Logic

Here we will dive into model-theory proper in which we want to study properties of the set of all
possible models of a given theory. However, it is often the case that proof-theoretic methods will
provide insight and clever proofs even for purely model-theoretic statements.

Theorem 3.0.1 (Compactness). A first-order theory is satisfiable if and only if it is finitely satifi-
able.

Proof. Suppose that I' is not satisfiable. By the model existence theorm, I' must be incomplete so
there exist proofs I' - A and I' = = A. However, every proof is finite so each can only use a finite
set of axioms in I'. Call the set of all axioms in I" used in either proof A C I'. Thus, A - A and
A F =A so A cannot admit a model and is finite. Therefore, if every finite subtheory A C I" has a
model then I' must have a model. 0

Remark. There exist purely model-theoretic proofs of the Compactness theorem but they require
more sophisticated ideas such as ultra-products.



3.1 Ultra-Products

4 The Lowenheim—Skolem Theorem
Definition 4.0.1. Consider the first-order statments of the form,
JxFydz i xFyANy#zNz#x

which express that there exist at least n elements. Call X the set of all such statments. Furthermore,
for any set of constant symbols C', define,

Yo ={=(a=0)|a,be C such that a # b}
the set of all sentances of the form a # b.

Theorem 4.0.2. Let ' be a first order theory. If I' has arbitrarily large finite modeles then I’
admits an infinite model.

Proof. Consider the first-order theory I'UX.. Since I' has arbitrarily large finite models we know that
any finite subset A C I' U X is satisfiable by a large enough finite model of I'. By the Compactness
theorem, there exists a model of I' U 3 which is a model of I" which cannot have any finite number
of elements. O

Remark. This theorem about deducing the sizes of possible models gives a small taste of the powerful
Loéwenheim—Skolem theorem yet to come. However, the finite version is very important for proving
the consistency of a new theory. Furthermore, the technique of adding an infinite set of first-order
theorem which together impose a strict condition but in isolation are easily satisfied and then
applying the compactness theorem comes up over and over in mathematical logic.

Theorem 4.0.3 (Léwenheim—Skolem). Let L be a first-order language and M an infinite L-
interpretation. Then for any cardnal x > |L| there exists an L-interpretation N/ such that M =N
and |N| = k. We call such an N an elementary substructure or elementary extension.

Proof. First suppose that k£ > max (M|, |L|) > N,. Let C be a set of constant symbols with |C| = &
and construct the language L™ generated by LUC'. Now, consider the L*-theory I'yy = Thy (M)U
Y¢. For any finite subtheory A C T'pq, I claim that M = A. This is because A contains only
true L-sentences of M and a finite number of ¥ statements which can be interpreted by sending
any distinct elements of M to the finite number of C-constants which appear in A. Thus, 'y is
finitely satisfiable so, by compactness, ', is satisfiable and thus consistent. By the model existence
theorem there exists a model M’ |= T'yy such that |[M'| < |L*| = |C| = k (since k > |L| > Ny).
However, since X¢ C 'y we must have an injection C' — M’ because not two C-constants can be
interpreted as equal (since a # b is true in Ty for all a,b € C). Thus, |[M'| = |C| = k. We may
view M’ as an L-interpretation since L C L*. Furthermore, Th; (M) C T'y; and M’ = Ty so
Thy (M) C Thy (M’) and thus M = M’ as L-interpretations. O

Remark. An immediate consequence of the preceeding theorems is that having arbitrarily large finite
models implies having models of every infinite cardinality. This is very powerful and surprising. The
Lowenheim—Skolem theorem and they compactness theorem show that first-order logic is insufficient
to constrain the size of its models. We will make this notion percise within the framework of first-
order properties.



5 Skolem’s Paradox and Higher-Order Logic

5.1 First-Order Properties
(FINITENESS) (SIZE) (REAL NUMBERS)

5.2 Higher-Order Logic
5.3 Nonstandard Models of Set Theory

6 Categoricity
Definition 6.0.1. A first-order theory is x-categorical if all models of size x are isomorphic.

Theorem 6.0.2 (Vaught). Supppose that I' is k-categorical for some x > |L| and has only infinite
models then I' is model complete.

Proof. Let M =T and N =T be models. By the Lowenhiem-Skolem theorem, there exists models
M’ and N of cardinaility x such that M = M’ and N/ = N’. However, by k-categoricity, we know
that M’ =2 N’ since |[M'| = |N'| = k. Therefore, M = M’ = N"= N so I is model complete. [

7 Applications To Algebraic Geometry

Definition 7.0.1. The first-order language of fields, denoted F, is generated by the signature
or ={0,1,+, -} where 0 and 1 are constant symbols and + and - are 2-ary function symbols.

Definition 7.0.2. The theory ACF is the first-order theory of algebraically closed fields is defined
over F' and has axioms:

(a) Field Axioms.

(b) Algebraic Closure: for each positive integer n, the sentence,

VagVay - - -Va,3z [an - 2™ + -+ a1 - x + ap = 0]

where exponentiation by a fixed integer is shortand for repeated multiplication.

Definition 7.0.3. The theory ACF, is the first-order theory of algebraically closed fields of char-
acteristic p is defined over F' and has axioms ACF, = ACF U C,, where C), limits the characteristic.
Let o4 be the sentence,

I+14-+1=0

with exactly k ones. Then C, = {—o} | k <p}U{o,} and Cy = {—o, | k € Z*}.

Theorem 7.0.4 (Steinitz). All algebraically closed fields of the same uncountable cardinality and
characteristic are isomorphic. That is, ACF, is uncountably-categorical for any characteristic.

Proof. This theorem uses the axiom of choice and equivalences of transendence bases. It is not
wildly difficult but is outisde the scope of this discussion. O

Corollary 7.0.5. ACF, is complete.



Proof. There are infinitely many irreduicble polynomials and each have distinct roots. Thus any
algebraially closed field is infinite. Let M |= ACF, and N |= ACF,, be models. By the Loéwenhiem-
Skolem theorem, there exists a model M’ of cardinaility |N/| (since it is infinite) such that M = M.
However, by categoricity, we know that M’ = N since they are models with the same cardinality.
Therefore, M = M’ = N so ACF,, is model complete. O

Theorem 7.0.6 (Lefschetz Principle). The true first-order sentences about C and about Q are the
same. This is often stated as, the first-order theory of algebraic geometry over C is the same as
over Q.

Proof. By the completeness of ACFy we have Q = C. U

Theorem 7.0.7 (Cross-Characteristic Transfer). Let A be a first order F-sentence. Then ACFy =
A if and only if F, = A for all but finitely many p.

Proof. Consider any finite subtheory A C ACFy U {A}. Since A may contain only finitely many
sentences constraining the characteristic and for large enough p we know that F, = A, we can choose
p large enough such that F, = A. Therefore, A is satisfiable so ACF, U {A} is finitely-satisfiable.
Thus, by the compactness of first-order logic, ACF, U {A} is satisfiable so there exists a model of
ACFj in which A is true. Thus, by the completeness of ACF, we know that ACF, = A.

Conversely suppose we can find arbitrarily large p such that F, = —A. Again, take a finite subtheory
A C ACFy U {—A} and choose p large enought that it satisfies the finite number of sentences in
A constraining the characteristic in which A is false. Thus, F, = A so ACF, U {—=A} is finitely
satisfiable and thus, by compactness, satisfiable. As before, there exists a model of ACFy in which
A is false so, by completeness, ACF, = —A. O

Theorem 7.0.8 (Ax-Grothendiek). If a polynomial map f : C* — C" is injective then it is
surjective.

Proof. For a fixed natural number d consider the first order sentence,

(S

AG:vaoval...Vadl‘v’xVy[(ad. d+'”+gl'g—i_QO:Qd'gd_"Ql'ﬂ_’_"'—i_QO) %x:y]

— {VyﬂItad'$d+"'+a1 -x+a0=yH
which expresses the Ax-Grothendiek theorem for degree d. Here exponentiation is short for multipli-
cation written a fixed number of times and underlined variables represent n-tuples with operations
and comparisions defined componentwise i.e. each comparision is a conjunction of n comparisions
on the components. Furthermore, suppose that a map f : Fpn — IF?,” given by polynomials is in-
jective. For each element y € Fpn consider the field extension k = Fp[ay, . . ., a4, y| given by adjoing
the coefficients of f and coordinates of y. Since these are elements of F, each is algebraic and thus
k is a finite extension of I, and thus a finite field. Furthermore f restricts to a map f : k™ — k"
since it is given by polynomials with coefficients in k. However, this restriction is still injective
and therefore surjective because k™ is a finite set. Thus, 3z € k" such that f(z) =y € k" so f is
surjective.

Since F, = AG for every p we know that ACF, = AG and thus the Ax-Grothendiek theorem is
true for every algebracially closed field of characteristic zero inculuding C = AG. O

9



Theorem 7.0.9 (Strong Ax-Grothendiek). Let V' be an affine variety over an algebraically closed
field and f : V — V a morphism. If f is injective then it is surjective.

Theorem 7.0.10. Every extension of algebracially closed fields is elementary.
Proof. This follows from quantifier elimination. O

Theorem 7.0.11 (Hilbert’s Nullstellensatz). Let I C K[X] be a proper ideal and K algebracally
closed then the common vanishing set,

VI)={pe K" |Vfel:f(p)=0}

is nonempty.

Proof. The ideal I is contained in a maximal ideal. Consider the field L = K[X]/m and projecton
map K[X]| — L. Since I C m the image of [ is zero in L and thus the image of X is a common
solution for I now viewed as elements of L[Y] for some new transcendentals Y since X has gained
relations in L. Since K C L it is an elementary extension. Since K[X] is Noetherian, we can
find generators I = (f1,...,fn). Let a € K a tuple encoding the coefficients of the polynomials
fi,..., fn and ¥(a) the first order formula encoding the idea that the polynomials with coefficients
a have a common zero. Since the extension is elementary and a € K we have,

KEY(a) < LEY()

However, X is a solution in L so K |= v (a). Thus any proper ideal has nonempty vanishing set. [J

8 Incompletness and Decidability

9 Provability Logic
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