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1.1 Introduction

Compressible flows play a crucial role in a vast
variety of man-made and natural phenomena.

Propulsion and power systems

High speed flight

Star formation, evolution and death
Geysers and geothermal vents

Earth meteor and comet impacts
Gas processing and pipeline transfer

Sound formation and propagation
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1.2 Conservation of mass
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Figure 1.1 Fixed control volume in a moving fluid.

J
Axayaz(P) + AyAu(pU), | 5, ~PU|)+

AxAz(pV|er Ay—pV|y) + AxAy(leer Az—lez) =0
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Divide through by the volume of the control volume.

= 0

Jp pU|x+Ax_pU‘x pVIy+Ay_pV|y pW|z+Az—pWIZ
X + + +
ot Ax Ay Az

Let (Ax — 0, Ay — 0, Az — 0). In this limit (1.4) becomes

ap é’pU+0pV ipWwW _ -0
ot ox ady 0z

1.21 Conservation of mass - Incompressible flow

If the density is constant the continuity equation reduces to

aU &'V IwW _

ox é’y Jz =0

Note that this equation applies to both steady and
unsteady incompressible flow
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1.2.2 Index notation and the Einstein convention
Make the following replacements

(-xa ya Z) — (x]a Xé, -x3)
(U9 V7 W) — (U]’ U29 U3)

Using index notation the continuity equation is

3
o, G OPYD
ot dx;
i=1

Einstein recognized that such sums from vector calculus always involve a
repeated index. For convenience he dropped the summation symbol.

ap B(pUl)_
797+ ox. =0

l

Coordinate independent form

dp o (N7 — Jd d d
-a—t-l-v (,OU)——O V (9},-0:)5),9—2)
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1.3  Particle paths and streamlines in
2-D steady flow

The figure below shows the streamlines over a 2-D airfoll.

Figure 1.2 Flow over a 2-D lifting wing; (a) streamlines, (b)
streaklines.

The flow is irrotational and incompressible

VxU = 0 Vel = 0.
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A vector field that satisfies V x U = 0 can always be

represented as the gradient of a scalar potential

U= Vb
or
0D JP

If the vector potential is substituted into the continuity
equation the result is Laplaces equation.

VeV = V2@= 0.
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A weakly compressible example - flow over a wing flap.

Figure 1.3 Computed streamlines over a wing flap.
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The figure below shows the trajectory in space of a fluid element
moving under the action of a two-dimensional steady velocity field

particle trajectory

Yo

The equations that determine the trajectory are:

dx(t) _ ]
it = V00
U = v(x(e), (1)
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Formally, these equations are solved by integrating the
velocity field in time.

x(t) = x5+ JJ U(x(t), y(t))dt
0

y(t) =y + _r V(x(), y(1))dt
0 J

Along a particle path

X = F(XO: )’0, t) > y = G(x09 )’0, t)
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Eliminate time between the functions F and G to produce
a family of lines. These are the streamlines observed in
the figures shown earlier.

v = ¥Y(x,y).

The value of a particular streamline is determined by
the initial conditions.

WO = 'P(XO, yO)
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This situation is depicted schematically below.

X = F(XO:yO) t)
= G(XOJ yO’ t)

W() = '{I(xo: yo) = 'P(x’ y)

Figure 1.5 Streamlines in steady flow. The value of a particular
streamline is determined by the coordinates of a point on
the streamline. This can be regarded as the initial position
of a fluid particle that traces out the streamline.
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The streamfunction can also be determined by solving the first-order
ODE generated by eliminating dt from the particle path equations.

dy _ V(xy)

dx  U(x,y)

The total differential of the streamfunction is

= a!de +2¥Idy.

d""‘"é}' oy
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Replace the differentials dx and dy.
dy = (U(x y) V(x y)ay)dt

The stream function, can be determined as the solution of a
linear, first order PDE.

UeVV = U(x, y)allj+ Vi(x, y)gllu = 0.

This equation is the mathematical expression of the statement
that streamlines are parallel to the velocity vector field.
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The first-order ODE governing the stream function can be
written as

~Vi(x, y)dx+ U(x, y)dy = 0.

1.3.1 The integrating factor

On a streamline

OF, J¥, _
a—xdx+§-§dy = 0.

What is the relationship between these two equations ?
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To be a perfect differential the functions U and V have to satisfy
the integrability condition

9V _dU
dy ox
For general functions U and V this condition is not satisfied. The

equation —-v(x, y)dx + U(x, y)dy = omust be multiplied by an
integrating factor in order to convert it to a perfect differential.

It was shown by the German mathematician Johann Pfaff in
the early 1800’s that an integrating factor M(x,y) always exists.

dy = -M(x, y)V(x, y)dx + M(x, y)U(x, y)dy

and the partial derivatives are

g—’" = M(x, V(% )
* \
b 4

g— = M(x, y)U(x, y)

y
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1.3.2 Incompressible flow in 2 dimensions
The flow of an incompressible fluid in 2-D is constrained
by the continuity equation

a_l]+._a_‘_/=0
ox dy

This is exactly the integrability condition . Continuity is satisfied

identically by the introduction of the stream function,
oV 0¥

= — , V = —
V=3 ox

In this case -Vdx+Udy is guaranteed to be a perfect
differential and one can write.

dy = —Vdx + Udy.

1.3.3 Incompressible, irrotational flow in 2 dimensions

o _ 0o
dy ox The Cauchy-Reimann
0¥ _ 0 conditions

“9x  dy
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/1.3.4 Compressible flow in 2 dimensions

The continuity equation for the steady flow of a
compressible fluid in two dimensions is

0 o B
é—;(PU)*"a—;(PV) =0

In this case the required integrating factor is the
density and we can write.

dy = —-pVdx + pUdy

The stream function in a compressible flow is
proportional to the mass flux and the convergence and
divergence of lines in the flow over the flap shown
earlier is a reflection of variations of mass flux over
different parts of the flow field.
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1.4  Particle paths in three dimensions

X3

Figure 1.6 Particle trajectory in three dimensions

The figure above shows the trajectory in space traced out
by a particle under the action of a general three-
dimensional unsteady flow,
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The equations governing the motion of the particle are:

dx(t)
dt

= Ui(x](t): xz(t), x3(t), t) L= 1,2,3
Formally, these equations are solved by integrating the velocity field.

t
x(1) = x;0+ .[0 U.(x;(2), x5(1), x5(2), )dr  ;  i=12 3
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/15  The substantial derivative

The acceleration of a particle is

Ext) 4 U, dU,dx,
= CTtUl(xl(t),xz(t), x3(t)’ t) - ot + axk dt

s

Insert the velocities. The result is called the
substantial or material derivative and is usually

denoted by
DU; JdU, an_ oU —

= — = UeVU
Dt o T Ukaxk o 7

The time derivative of any flow variable evaluated on a fluid
element is given by a similar formula. For example the rate

of change of density following a fluid particle is

Dp _9p,y 9% _9%,p
Di = o Ukax, T tUCYP
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1.5.1 Frames of referenc,e

Vix',y,7’)) —
V(x,3,2) T y _ (e U’
y X(0) % S
Y (1) W(x’,y’,z’)
U(x,y,2) x’

Figure 1.7 Fixed and moving frames of reference

Transformation of position and velocity

x = x-X(1)
y =y-Y()
7 = z-7Z(1)
U = U-X(1)
V o= V-Y(1)
W = W-Z2Z(t)

Transformation of momentum

mU' = mU-mdX/dt

ol

momentum in moving coordinates momentum in fixed coordinates
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Transformation of kinetic energy

1 2 2 2
kinetic energy in moving coordinates = ém(U' + V7 + W)

2 2 2
kinetic energy in fixed coordinates = ém( U +V +W")

ém(U'2+ v w?y = %m((U~X)2+(V—Y)2+(W—Z)2).

%m(U‘2+V'2+W'2) - ém(U2+V2+W2)+
I I I
“mX(X=2U) + 5m¥(¥ =2V) + 5mZ(Z - 2W)

K= k+ émX(X—ZU) + émY(Y—-2V) + émz’(z'—zwy

Thermodynamic properties such as density, temperature and
pressure do not depend on the frame of reference.
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1.6 Momentum transport due to convection

Rate of |
Rate of Rate of Sum of
momentum )
) momentum flow momentum flow forces acting
! accumulation | = ) -
o into the out of the on the
inside the
control volume control volume control volume
control volume
Z
PUW|Z+AZ (x + Ax, y + Ay, z + Az)
W(x,y,2,1) pUV Iy + Ay
V(x,y,2,t) R |
§~~ I
.~ T
U(xy1) l
— I o P Ule + Ax
p(x, ¥, 2, 1) UU [ >
P lx L | Az
NEE l
H N
y : \\
>} i A \\ Y
(x, ¥, 2) pUV|
‘Ay PUW, ’
\<__ Ax ——p»i
X

Figure 1.8 Fluxes of x-momentum through a fixed control volume.
Arrows denote the velocity component carrying momentum into
or out of the control volume.

dpU
Axayaz(EZ) + AyAz(pUU|, 4 ~pUU| )+

AxAz(pUV |, , = PUV|)+ AxAy(pUW| 4 - pUW|) =

{ the sum of x-component forces acting on the system}
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Divide through by the volume

pUU‘x+Ax_pUU'x+pUV|y+Ay_pUV‘y +pUW|z+Az—pUle -
at Ax Ay Az

{the sum of x-component forces acting on the system}

per unit volume

Let (Ax — 0, Ay — 0, Az — 0). In this limit (1.54) becomes

The sum of ]
apU .\ IpUU .\ UV, IpUW  _ x-component forces X - component
ot ox ay 0z ) per unit volume acting
on the control volume

In the y and z directions ( The sum of
dpV . dpVU , dpVV , pVW _ y-component forces
Jt ox dy Jz < per unit volume acting
on the control volume

The sum of )

apW N apWU N dpWV N JpWW z-component forces
ot ox ay 0z < per unit volume acting [

on the control volume

L
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In index notation the momentum conservation equation is

Sum of the
IpU; . o"(pUin) _ ith-component forces | =123
Jt 0x per unit volume acting [ w
on the control volume

Rearrange
( The sum of ]
U, a(U;) dp a(pU j) ith-component forces
p— + pU . +U)| &+ ——| = 1 _ ,
ot J ox j ot dx j per unit volume acting
| on the control volume
The sum of
DU, B ith-component forces
Dt ) per unit volume acting
on the control volume
In words,

The vector sum of

The rate of momentum change .
= forces acting

of a fluid element _
on the fluid element
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1.7 Momentum transport due to molecular motion
1.71 Pressure

1.7.2 Viscous friction - Plane Couette Flow

y
1d * t<0 Fluid all at rest
—» X
-
y U
* t=0+ Upper plate set in motion
—P X
3 U Unsteady velocity i
nsteady velocity increase
* U0 Small t Y Y
— X
_R = > _ Large t Steady state velocity distribution
U
—P X

Figure 1.9 Build-up to a steady laminar velocity profile for a vis-
cous fluid contained between two parallel plates. At t=0

the upper plate is set into motion at a constant speed U .

Force/Stress needed to maintain the motion of the upper plate

F_ Us .~ ,dU
a -7 v = Ry
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1.7.3 A question of signs

1.7.4 Newtonian fluids

1.7.5 Forces acting on a fluid element

y4
(x + Ax, y + Ay, z + Az)
T
lez+AZ
_——>:
rxyl : A
y + Ay 4P+
(—-P+‘L‘xx)| - === ___.. _,(» xx)|x+Ax
X|
Az
K 7
— e ] — — — Xy
-k\ |y
- —— -
(x, y, 2) tlez
A 3
Ay,
Alg— Ax —p»
X

Figure 1.10 Pressure and viscous stresses acting in the x-direction
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)+

Pressure-viscous-stress force components

F AyAz| (- P+ -(-P+ + AxAz|T -T
x Y Z(( xx)|x+Ax ( xx) x) (xy|y+Ay xy

)

)+AxAz(( P+t )l -(-P+< )|)
y + Ay

AxA)’( yzlz + AZ_Tyzl)

F_ = AyAz| T -T + AxAz| T -T +
z y ( xz x) ( YZ|y+Ay yzly)

X+ Ax  xz
AxAy|(-P+ T —(-P+T,,
y(< D), z“)L)

AxAy( le -T

Z+ Az xz

B!
Il

-7

AyAz| T
y Y (xy|x+Ax xy

Momentum balance in the x-direction

AxAyAZ(%]> AyAz(pUU| - pUU| 4 )+
AxAz(pUV|y—PUV| )+AxAy(pUW| —pUW|, )+

AyAz((—P+txx)| o -(-P+1,,)
X X

X )+
X/

) + AxAy( lez . Az_txz

AxAz| T -7
( 4 |y + A4y xy

)
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Divide by the volume

dpU pUU|x+Ax—pUU|x+(P—txx)|x+Ax—-(P-—rxx)‘x
+ +
ot Ax

PUVIy , 4y =PUVIy = (txylﬁ Ay txy|y)

Ay

“+

pUWlZ + Az pUWIZ - (szlz + Az txz‘)
=0

Az

Let (Ax = 0, Ay — 0, Az — 0). In this limit (1.65) becomes

IpU HpUU+P-1,) o'?(pUV—txy) (?(pUW—rxz)_o
+ + + =

X - component

ot ox dy 0z

In the y and z directions
dpV . d(pVU - rxy) . dHpVV + P — ryy) . dpVW — ‘L'yz)
ot ox dy 0z
IpW . dpWU -7,) . HpWV — ‘L’yz) . HpWW + P — ‘CZZ)
ot ox dy dz

=0

=0
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In index notation the equation for conservation of momentum is

gpU. dpU.U. Jv..
pPU; AU ap % . i=123

ot ox ; ox ; ox j

Coordinate independent form

ﬁpU

e Ve (pUU)+ VP-V*7 = 0.
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1.7 Conservation of energy

Rate of | ([ Rateof | [ Rateof
energy energy flow energy flow
{ accumulation \ = | into the L — 1 outofthe |+
inside the control volume control volume
control volume by convection by convection
Work done on the ) Energy generation
Rate of energy
control volume . due to sources
+ { addition due to | + o
by pressure and ] inside the
] heat conduction
viscous forces . control volume
z
p(e + k)W|Z + Az
Weyzt) — gle+ V] 4 * (x + Ax, y + Ay, z + Az)
V(xyz1) \ [
§~~ |
.~ T
U(x,y,z,t) | p(eTo KU\
—_— | > x + Ax
|
ple+ k)| | Az
s '4 - 2 2 .2
, \ : \‘\\ k= (172)(U° + Vv + W?)
X i > SN
(x,  2) ple + KV
~ ple+k)W|, y
y\‘_ Ax ——p»
X

Figure 1.11 Convection of energy into and out of a control volume.
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1.8.1 Pressure and viscous work

Power input to the control volume = F » U

Fully written out this relation is

Power input to the control volume =

U+t -T
) (xylx+Ax xy
X
)W}+
X

-P+ —(-P+7 V+
)u+(( I yy)|)
))W}+
U+|T -T
z) (yzlz+Az yz

)"}

AyAz{((— P+ ‘L'xx)l —(-P+ txx)

X + Ax

)V+
X

T l —-T
(xzx+Ax XZ

AxAzl| T -T
Y Iy + Ay xy

T -7
( yziy + Ay yz

AxAy{(tlez . Az_txz

ﬂ_P+QQ‘ ~(-P+71,)

)V+
Vé

zZ+ Az
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The previous equation can be rearranged to read in
terms of energy fluxes.

Power input to the control volume =

AyAz{(— PU +7,, U+ txyV + 1:sz)| —(-PU+7, U+ rxyV +7,,W)

-

—(-PV + rny + rny + ryzW)l }+
y

)

X+ Ax

AxAz{(—— PV + rny + rny + 'ryzW)|y . 4y

~(-PW+7, U+ szV + ‘L'ZZW)

Z+ Az

AxAy{(— PW+7t, U+ tzyV + rZZW)l

z
(-PW + 7, U+ rzyV + rZZW)I

Z+ Az

(_PV+TXYU+1ny+ryZW)|y+Ay * (x+ Ax, y + Ay, 2 + Az)

AN w

-~

-~
.~ |

|
1PU+ txxlU +T W+ rx?W)l

—_

x + Ax

------ -

-PU+T U+ T4V + 7] W)l)|r \ Az
—_—_——-—-— = A
, \ -PV+ "}KU + rnyl+ ryZW)|y
) ~

(x,y,2)] i

o y I(—PW+1:qu+rzyV+rzzW)|z

Ay,
Al g— Ax —p

X

Figure 1.12 Energy fluxes due to the work done on the control volume
by pressure and viscous forces.
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Energy balance.

AxAyAz(a—p(%ti—’-c—)> = AyAz(ple + )U|_~ple + )U|_, , )+

AxAz(p(e + k)V| - p(e + k)V| . Ay +

AxAy(p(e + k)W| - p(e+ k)W|z . Az +

AyAz((— PU+7, U+ rxyV + tsz)l ~(-PU+7, U+ txyV +7, W) )
X/

X+ Ax

(1.76)
AxAz((—- PV + ‘L’ny + rny + tyZW)|y . Ay—(— PV + 'rny + ‘L'ny + ryzW) )

AxAy((— PW + rsz + rzyV + rzzW)|z . Az—(— PW + rsz + ‘L’zyV + ‘L'ZZW)

Z

AyAz( N + AxAz(Qy|y - ley . A) + AxAy(Qzlz -0, Az) +

x+Ax>

{ Power generation due to sources inside the control volume}

Divide (1.76) through by the infinitesimal volume AxAyAz and take the limit
(Ax — 0, Ay — 0, Az — 0). The conservation equation for the energy becomes
dp(e + k) + d(ple + k)U) + d(p(e + k)U) + d(p(e + k)U) +
ot ax dy d9z
0PU-T U7, V-1, W) I(PV-7,,U-7, V-7, W) |
ax dy 1.77)
d(PW-t, U-t, V-7, W) 90, 9Q, 90,
3z Tox Ty Tz

{ Power generation due to sources inside the control volume }
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In index notation the equation for conservation of energy is

dple + k)U,) oPU. dU;it.) 4Q.
dple + k) + il L J_ L' M { Power sources} .
ot 0xj o"xj (9xj 0xj

Coordinate independent form

dp(e + k)

r + Ve(p(e+k)U + PU - TeU + Q) = {Power sources}
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1.9 Summary - the equations of motion

Conservation of mass
_0£+0pU+6pV+a7pW — 0
ot ox ay 0z

Conservation of momentum
dpU . dpUU +P-1,,) . dpUV - ’L'xy) . HpUW -7,.) _ 0
ot ox dy 0z
dpV . d(pVU - txy) . HpVV +P - tyy) . I(pVW — ’L'yz) _
ot ox dy 0z
IpW . HpWU -7,,) . IHpWV - ryz) . dHpWW + P — Tzz)
ot ox dy 0z

Conservation of energy
dp(e + k) + d(p(e + k)U) N d(p(e + k)U) + d(p(e + k)U) +

dt ox dy 0z
8(PU——rxxU—rxyV—17x2W) .\ a(PV-—rny—tny—‘cyzW) .
ox dy
d(PW-t, U-t, V-1, W) Q. 9Q. 9Q
( LEINNNES AR )+ ol + —2 + —% = {Power sources}

0z ox dy 0z
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1.10 PROBLEMS

Problem 1 - Show that the continuity equation can be expressed as

1Dp an
=Ey L =9 (1.81)
p Dt z?xj

Problem 2 - Use direct measurements from the streamline figure below to esti-
mate the percent change from the free stream velocity at points A, B, C and D.

i C

Problem 3 - The general, first order, linear ODE

dy i o
o g(x)y + f(x) (1.82)

can be written as the differential form

(g(x)y-f(x))dx +dy = 0. (1.83)
Show that (1.83) can be converted to a perfect differential by multiplying by the
integrating factor.
gdx
M = (1.84)

Work out the solution of (1.82) in terms of integrals. What is the solution for the
case g = sinx, f = cosx. Sketch the corresponding streamline pattern.

Problem 4 - Solve

y=— === =0 (1.85)

Sketch the resulting streamline pattern.
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Problem 5 - Show that the following expression is a perfect differential.

— (sinxsiny)dx + (cosxcosy)dy = 0 (1.86)

Integrate by quadrature to determine the stream function and sketch the corre-
sponding flow pattern. Work out the substantial derivatives of the velocity
components and sketch the acceleration vector field.

Problem 6 - Determine the acceleration of a particle in the 1-D velocity field
X
u = (k;, 0, o) (1.87)

where k is constant.

Problem 7 - In a fixed frame of reference a fluid element has the velocity
components

(U, V, W) = (100, 60, 175) meters/sec (1.88)

Suppose the same fluid element is observed in a frame of reference moving at

X = (25, 110, 90) meters/sec (1.89)

with respect to the fixed frame. Determine the velocity components measured by
the observer in the moving frame. Determine the kinetic energy per unit mass in
each frame.
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Problem 8 - The stream function of a steady, 2-D compressible flow in a cor-

ner is shown below.
N\

= X
v I+x+y

Determine plausible expressions for the velocity components and density
field. Does a pressure field exist for this flow if it is assumed to be inviscid?

Problem 9 - The expansion into vacuum of a spherical cloud of a monatomic gas
such as helium has a well-known exact solution of the equations for compressible
isentropic flow. The velocity field is

_xt _ oyt _ oz

U = t2 t2 V = t2 t2 W = t2 t2. (1.103)
ot ot ot
The density and pressure are
372

P X +y +z2
0 2 2372 )
0 (to +1) mmal g+t . (1.104)

P o_ ( -—QO) 5/3

Py P
where R; ..., is the initial radius of the cloud. This problem has served as a
model of the expanding gas nebula from an exploding star.
1) Determine the particle paths (x(¢), y(z), z(2)).

2) Work out the substantial derivative of the density Dp /Dt .
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Problem 10 - A moving fluid contains a passive non-diffusing scalar contaminant
Smoke in a wind tunnel would be a pretty good example of such a contaminant.

Let the concentration of the contaminant be C(x, y, z, t) The units of C are

mass of contaminant/unit mass of fluid (1.105)
Derive a conservation equation for C.

Problem 11 - Include the effects of gravity in the equations of motion (1.93). You
can check your answer with the equations derived in Chapter 5.



