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1.1  Introduction 
Compressible flows play a crucial role in a vast  
variety of man-made and natural phenomena. 

Propulsion and power systems 
 
High speed flight 
 
Star formation, evolution and death 
 
Geysers and geothermal vents 
 
Earth meteor and comet impacts 
 
Gas processing and pipeline transfer 
 
Sound formation and propagation 
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1.2  Conservation of mass 
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Divide through by the volume of the control volume. 

1.2.1  Conservation of mass - Incompressible flow 
If the density is constant the continuity equation reduces to 

Note that this equation applies to both steady and 
unsteady incompressible flow 
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1.2.2  Index notation and the Einstein convention 
Make the following replacements 

Using index notation the continuity equation is 

Einstein recognized that such sums from vector calculus always involve a 
repeated index. For convenience he dropped the summation symbol.  

Coordinate independent form 
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1.3  Particle paths and streamlines in  
           2-D steady flow 

The figure below shows the streamlines over a 2-D airfoil. 

The flow is irrotational and incompressible 
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Streamlines Streaklines 
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A vector field that satisfies  can always be  
represented as the gradient of a scalar potential 

or 

If the vector potential is substituted into the continuity 
equation the result is Laplaces equation. 
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A weakly compressible example - flow over a wing flap. 
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The figure below shows the trajectory in space of a fluid element  
moving under the action of a two-dimensional steady velocity field 

The equations that determine the trajectory are: 
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Formally, these equations are solved by integrating the  
velocity field in time. 

 Along a particle path 
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Eliminate time between the functions F and G to produce 
a family of lines. These are the streamlines observed in 
the figures shown earlier. 

The value of a particular streamline is determined by  
the initial conditions.  
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This situation is depicted schematically below.  
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The streamfunction can also be determined by solving the  first-order 
ODE generated by eliminating dt from the particle path equations.  

The total differential of the streamfunction is 
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Replace the differentials dx and dy. 

The stream function, can be determined as the solution of a 
linear, first order PDE.  

This equation is the mathematical expression of the statement 
that streamlines are parallel to the velocity vector field. 
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1.3.1  The integrating factor 
On a streamline 

What is the relationship between these two equations ? 

The first-order ODE governing the stream function can be 
written as 
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To be a perfect differential the functions U and V have to satisfy 
the integrability condition 

It was shown by the German mathematician Johann Pfaff in 
the early 1800’s that an integrating factor M(x,y) always exists. 
and the partial derivatives are 

For general functions U and V this condition is not satisfied. The 
equation                                     must be multiplied by an 
integrating factor in order to convert it to a perfect differential. 
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1.3.2  Incompressible flow in 2 dimensions 
The flow of an incompressible fluid in 2-D is constrained 
by the continuity equation 

This is  exactly the integrability condition . Continuity is satisfied 
identically by the introduction of the stream function,  

In this case -Vdx+Udy is guaranteed to be a perfect 
differential and one can write.   

1.3.3  Incompressible, irrotational flow in 2 dimensions 
The Cauchy-Reimann 
conditions 
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1.3.4  Compressible flow in 2 dimensions 
The continuity equation for the steady flow of a 
compressible fluid in two dimensions is 

In this case the required integrating factor is the 
density and we can write.  

The stream function in a compressible flow is 
proportional to the mass flux and the convergence and 
divergence of lines in the flow over the flap shown 
earlier is a reflection of variations of mass flux over 
different parts of the flow field. 



Stanford University Department of Aeronautics and Astronautics  

1.4  Particle paths in three dimensions 

The figure above shows the trajectory in space traced out 
by a particle under the action of a general three-
dimensional unsteady flow,  



Stanford University Department of Aeronautics and Astronautics  

The equations governing the motion of the particle are: 

Formally, these equations are solved by integrating the velocity field. 
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1.5  The substantial derivative 
The acceleration of a particle is 

Insert the velocities. The result is called the 
substantial or material derivative and is usually 
denoted by  

The time derivative of any flow variable evaluated on a fluid 
element is given by a similar formula. For example the rate 
of change of density following a fluid particle is  
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1.5.1  Frames of reference 

Transformation of position and velocity 

Transformation of momentum 
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Transformation of kinetic energy 

Thermodynamic properties such as density, temperature and 
pressure do not depend on the frame of reference. 
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1.6  Momentum transport due to convection 
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Divide through by the volume 

In the y and z directions 
x - component 
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In index notation the momentum conservation equation is 

In words, 

Rearrange 
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1.7  Momentum transport due to molecular motion 
1.7.1  Pressure 
1.7.2  Viscous friction - Plane Couette Flow 

Force/Stress needed to maintain the motion of the upper plate 
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1.7.5  Forces acting on a fluid element 

1.7.3  A question of signs 
1.7.4  Newtonian fluids 
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Pressure-viscous-stress force components 

Momentum balance in the x-direction 
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x - component 
In the y and z directions 

Divide by the volume 
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In index notation the equation for conservation of momentum is 

Coordinate independent form 
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1.7  Conservation of energy 
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1.8.1  Pressure and viscous work 

Fully written out this relation is 
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The previous equation can be rearranged to read in 
terms of energy fluxes. 
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Energy balance. 
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In index notation the equation for conservation of energy is 

Coordinate independent form 



Stanford University Department of Aeronautics and Astronautics  

1.9  Summary - the equations of motion 
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