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INTRODUCTION

The steady two-dimensional flow of viscous incompressible fluid in the boundary
layer along a solid boundary, which is governed by Prandtl’s approximation to the
full equations of motion, presents a problem which in general is as intractable as
any in applied mathematics. The problem, however, has such an immediate and
necessary application that approximate methods of varying accuracy which go
beyond the formal processes of expansions in series and so on, have been devised
for the rapid calculation of the principal characteristics of the laminar boundary-
layer, the variation of pressure along the surface being known. Such methods usually
represent approximately the boundary-layer velocity distribution at any point by one
of a known family of distributions whose spacing along the surface is determined by
some means, often by the use of Kdrmdn’s momentum equation.

In the first main part of this paper, Sections 3-5, all known velocity distributions
from exact and approximate solutions are collected and compared in a manner
which shows clearly their potentialities or limitations when used as the bases of
approximate methods. This critical comparison explains that it is possible for an
approximate method to yield the exact values of the more important characteristics
of a flow, and enables a method of calculation to be constructed in the second part
of the paper, Sections 6 and 7.

The momentum equation, of which a full discussion is given in Sections 1 and 2,
is the basis of the construction,” but is not necessary for the final working, of the
new method. The method, which is shown to give good results and to be simple
and speedy in application, can be used with confidence in regions of increasing
pressure and, in particular, predicts separation of flow with good accuracy.

Paper read before the VIIth International Congress’ of Applied Mechanics, Imperial College,
London, September 1948
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Notation
Note:
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U’, U” are derivatives of U with respect to x
f" f’, f” are derivatives of f with respect to g
F’, F”, F" are derivatives of F with respect to 1.
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1. PRELIMINARY DISCUSSION OF EXISTING METHODS

() Prandtl’s equation of motion of steady two-dimensional boundary-layer

flow is

uou v , 0%u
‘a*';-F"a‘y———UU +lay;~; . . . . . (1)
(1, v) being velocity components, (x, y) Cartesian co-ordinates, U the stream velocity
just outside the boundary layer and y=0 the solid boundary. v is the kinematic

viscosity.

If equation (1) is integrated from v=0 to Yy =00, the first integral or momentum
equation is obtained ast
db

Ue <
o ngxr v
de = "HED G+

ou @

a'V y=0

in which the momentum thickness 6 = J 5 (1 - 5) dy, the displacement thickness

o

. XN
o B ._’i) oa . . 6}5 dv —0;
&= [ (1 U dy, H=3*/6 and the equation of continuity ax + ay 0 is used.
The equation of motion (1) becgmes, when y=0
;. (9%u .
0=UU’ +: a_v2>y=;, )

Of the methods which use equation (2) directly, Pohlhausen’s(") is the simplest,
which assumies a family of velocity distributions analytically defined. It is well

t It should be noted that, in the case of a poroué surface through which there is a normal

velocity v,, an extra term -1—8 should be added to the right hand side of the cquation
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known to give poor results in regions of rising pressure. Various other authors have
tried to improve and extend his method by assuming different families of
distributions.

It is possible to devise other methods for giving a correspondence between a
known family of velocity distributions and a certain flow. For example, Howarth™
uses the distributions which occur in the solution of U =28, - B,x as the basis of an
approximate method for regions of rising pressure. Falkner® uses the distributions
corresponding to the flows U = U, (x/c)* as a basis for an elaborate method in which
the momentum equation is incidentally used. In Ref. 4, he simplifies this work and
also suggests a form for @ in terms of U directly. Young and Winterbottom®) also
gave ¢ as a function of the stream velocity U in a form which is close to that derived
in this paper.

The Kdrmdn momentum equation, being an exact integral of the equation of
motion, should be able to yield good results but, without knowledge of any exact
solutions, such an equation would be practically useless. It is one of the intentions
of the present paper to show how known exact solutions can themselves be given
accurately by correct use of the momentum equation. A method of solution is
finally derived which is virtually the best possible under the general conditions of
the use of the momentum equation.

(i The assumption is usually made that to a sufficient degree of accuracy the
velocity distribution “o [ljl (x, ¥) can be represented by the single infinity of

U
distributions

u v v
U.-AFG,,\) LW

8 is some length of the order of the boundary layer thickness, \ is a function of v
and F is a function of two variables which satisfies the usual boundary conditions:

F (0. )~ 0: F(f ,\):1. V= A8,

If 4 is finite, the approximation assumes that the stream velocity U is actuaily
reached at a finite distance from the boundary.

Equation (3) imposes another condition upon F which is

UFr 0.0 or 2V _pro, N,

6 v

0=UU" +1

in which dashes on F denote differentiation with respect to y/4. (5) is an ideauty
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which must be satisfied at all points of the boundary and which suggests that A
can be conveniently defined by A= —52(’/v. The significance of this relation is that
it relates the thickness of the boundary layer and the stream-velocity gradient to A
or to the “shape ” of the velocity distribution.

From (4), expressions are obtainable for ¢, H and (;%) in the form:
Y u=0

6=350), (g—;) == %f(‘\), H=H ), in which ©, H, f are functions of \
y=0

depending on the form of F originally chosen. By substituting these expressions

. . 52U’ .
in (2) and with A= - S we obtain, after some re-arrangement:

A3 A2 O
i ) +(H+2)—\~Z,—< + 9y

P\ U

which can be reduced to

d/\ UII U’
it A A OV N (5

I (A), J (A) being determinable functions.

(6) can be integrated to obtain the distribution of A with respect to x, whence
all the other characteristics follow at once,

(ifi) The method given above is the standard method of using the momentum
equation. In (6), A is the dependent variable—some writers have made &% the
dependent variable, which is a slight alteration but has no effect on the comments
made below.

First, to carry out the whole process from the beginning is tedious. A large
amount of algebra is involved in obtaining © (A\), H (\), f(A), I (\) and J (A\). When
(6) has been integrated numerically, further work is needed to find the distributions

J .
of 6, H and (%”) with x.
dy/y=o0

In equation (6), the quantity U” cannot be evaluated with much accuracy from
an experimental set of readings of the pressure distribution along a surface. Further

there is a singularity in the equation at U=0 and it is necessary to find the correct
value of A to be taken at a stagnation point.

The introduction of § as a convenient but unrequired parameter involves not
only general complication in the handling of the equations, but additional
computation to obtain 8 and H.
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Lastly, there is always the possibility that the solution requires values of A for
which the method is unworkable (for example, when A > 12 in Pohlhausen’s
method), and also that for some values of \ equation (4) no longer gives a reasonable
approximation since F may have a maximum greater than unity.

Next to be considered is the general approach to the equations (2) and (3
These equations are regarded as simultaneous equations in & and A, which are the
parameters in terms of which the required variables are expressed. It happens
that the second equation allows the very simple relation, A = — 82U’ /v between & and
X and it is natural to make analytic use of this to turn the momentum equation
into an equation for either 3 or A.

The present author considers this to be rather the wrong approach to the
equations in that it obscures the initial assumptions of a certain family of
distributions and confuses the true relationship between the two equations (2) and
(3). In what follows, a different approach will be explained and a simplified
treatment of the momentum equation given.

2. THE NEW APPROACH

() In general, the intention is to avoid the introduction of unnecessary para-
meters such as 8, to avoid all algebraic work (except, of course, in the actual
integration of the equation), to simplify to a great extent this integration, to ensure
that the method can always be worked, and to avoid the necessity for knowledge
of U”. These aims will be attained largely by the use of 6 as the principal
dependent variable.

The main purpose of any approximate method is to give as accurately as
possible the distribution of skin friction (and therewith the point of separation, if it
exists) and of the momentum or displacement thickness. A good representation of
the velocity distributions is not necessary. In the method to be presented, 2
synthesis of all known accurate solutions enables the first purpose to be achieved
with the greatest degree of accuracy possible, and a good representation of the
velocity distribution can also be obtained simply.

(i) The essential featurcs of equations (2) and (3) are the two terms

2

R -

v/, -0 5,\/2 y="0

« -w
. c it . ’ ~ N
From the second equation v(ﬁ ) is equal to —UU’. To integrate the
(.\vw y =0
. ou . :
momentum equation the value of <3§) is required. Thus the fundamental
'S w =0
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-‘APPROXIMATE CALCULATION OF THE LAMINAR BOUNDARY LAYER

requirement is a relation between the two terms in (7). For if some such relation
is assumed (e.g. by the use of a family of velocity distributions such as (4)) then

( TR . A v’ *u .
) is known as a function of x since the value, - ~vof { = 1s known.
(?)" y=1 v ay- v=0
The two terms (7) indicate the behaviour of the velocity distribution at the
boundary. Its general “shape” elsewhere is indicated by the value of H which also
occurs in the momentum equation. This equation therefore is not only concerned
with boundary values, but relates these with the velocity distribution as a whole.
For this reason, the momentum equation is capable of giving good results. Thus
. o*u . .
a relation between H and (EW) 1s also required.

The construction and use of these required relationships is now considered.

3. THE COMPARISON OF BOUNDARY LAYER VELOCITY
DISTRIBUTIONS

All known velocity distributions are now compared by classifying in a particular
way the values of their first and second derivatives at y=0 which we have seen,
following (7), are of particular importance.

cu U o%u U
We put 5};)":0 = = 1, 5;3>,,=0 = sm . . . . . . (8)

these forms being chosen so that the numbers / and m depend only upon the “shape”
of the distribution of velocity, and not upon the thickness of the boundary layer
or the magnitude of the stream velocity. We are to investigate the relation between
!'and m and to regard / and also H as functions, / (m) and H (m), of m. [ (m) and
H Gn) are therefore computed for all known solutions, exact and approximate, of
laminar boundary layer flow which are enumerated and examined in the
next Section.

4. EXAMINATION OF KNOWN SOLUTIONS

Brief remarks are now made on all the known solutions of the boundary layer
equation.  Details of the computations involved in obtaining /, m and H will mostly
bs omitted, but the results are given in graphical form. Pohlhausen’s velocity
distributions and the corresponding method of solution are discussed in some detail
and fresh light is thrown upon the well-known failure of his method in certain cases.
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(i) Pohlhausen’s profiles are given by

E_:,_q,ny,»x_‘r’}_, — ) :X 9
U 2y =29+ 61(1 N, 5 . .M
It is easy to show that
euy o UA (kB
<ay=),‘u ooy and =\ 3 - 1)
9:: 8211 A ( /\ 5/\2 )2
= —\ = = = ‘;—————- . 0
Hence  m=1p; 8v> aisENY T3 " @) . 0
from which
dm 1 ( A 5A2 ( 25,\2)
A (e T AR N
d)\ (315)* el 3 144 37-4 144 /-
m therefore has maxima or minima at
A= —-3779, -17.76, +12, +28.19,
at which m takes the values
m=0, 0.183, -0.095, 0 . . . . (1D

respectively.

Now(iy—> = U (12 +\), and therefore when A= —12, separation of flow
0y/y=o0 06d

“u . .

occurs, and for A << - 12, (’, ) < 0. Thus we are only interested in the range
Ny o

of A, A =—12. As Xincreases from 12, m decreases from 0.157 until a minimum

in misreached at A = + 12. (At this point, it is well known that the solution becomes

unworkable.{) Values of /1 less than —0.095 are therefore unattainable except for

much larger values of A. These larger values of A however cannot be used since

in a solution they would involve a discontinuity in A from A= 12 to A =34.79 (where

again m= —0.095) and therefore discontinuities in # and (%) , which are
y=0

FEPE. N — - — e

t For example, in Modern Developments in Fluid Dynamics (edited by S. Goldstein),
Vol. 1, p. 161
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é inadmissible. Furthermore, for values of A > 12, the velocity distribution given by
(9) has a maximum greater than unity which in itself would make a solution in this
j region inaccurate. The range of \ available is therefore — 12 <=\ = 12, for which

0.157 = m = -0.095.

It may be pointed out here that in the problem of the flat plate in a uniform
stream, with a constant normal velocity through the plate, the velocity distribution
tends, as x —> co, to the asymptotic suction distribution, for which s = -0.25%.
It is clear therefore that the Pohlhausen distributions are very far from reaching
this value of #1 and could not be expected to give satisfactory results in this problem.
(See, for example, Ref. 14, Section 1.)

The functions ! () and H (m) are easily calculated and they are shown in
Figs. 1-4.

() U=U,(x/ )

Falkner and Skan®) have obtained exact numerical solutions of this flow which
Hartree' has amplified on the differential analyser.  For any value of &, it is
well known that the distributions have a constant “ shape.” The equation of motion
is transformed by writing

u=a~§. v=(Urx)tf ()
into k(f’)z—%(k+l)ff":k—i-f”’ . . . . (12
1t GUEDP =Y Q0PI O=F ), e 2

(12) becomes
F" +FF" =B ((F') - 1)

with the boundary conditions

£(0)=0, F(0)=0, F'(Y)—>1 as Y — oo,

t The asymptotic suction distribution can be - written as IU—I—e‘”wf’. Therefore

/0%ty -U .
— — =—02 ;
(‘ 6y-')y=o 1 whence m 0.25. See the footnote to Section 4 (v)
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The upper limit for m tor =0 is 0.068 and in this case k= —0.0904 and
[ (m)=0, i.e. the stream velocity decreases in such a way that a separation distribution
is just maintained.

It is difficult to determine whether there is a lower limit for m. Calculations
have not given values of m less than -0.10, since Hartree pointed out that the
practical value of such distributions is not very great. This is true for flow along
solid boundaries but in view of the flat plate constant-suction problem for which

a value of m= -0.25 is required, it is clear that a greater range of solutions of this
flow would be useful.

(itiy Linearly decreasing pressure gradient: (U=8,- 8,x).

This flow has been treated by Howarth(® using expansion in series, the accuracy
of which is fully discussed in the original report. Since U’ << 0, only positive values
of m occur. Separation takes place when £,x/3,=0.120 and m=0.084.

(ivy Schubauer's ellipse: Hartree's solution®

Hartree has solved the boundary layer equations on his differential analyser for
the pressure distribution which Schubauer observed on an ellipse. Near the forward
stagnation point a series solution was applied and the analyser solution was started

T R P L FN S s |

Sraggdbatioe . e

at a distance 0.067c¢ from the stagnation point. Hartree actually did not find

separation occurring before, or at, the observed point of separation and points out.
in a full discussion, that it is meaningless to pursue the solution, using the observed
pressure distribution, past thc observed point of separation. He also points out
how sensitive the solution is near the observed separation point, extremely small
changes in pressure gradient being sufficient for the solution to give a separation.
Howarth has discussed this experiment in relation to approximate solutions in Ref. 2.

For Hartree’s solution, m takes the value 0.0784 at the limit of calculation. In
the region U’ >0, m takes the value -0.0854 at the stagnation point which

corresponds to the value k=1 in (12) and increases steadily to zero at the pressure

minimum.

(v) Blasius’ equation: [” +1ff"=0 . . . ) . : . (13

This is the special case A =0 of equation (12). The boundary conditions are
f(O) =K, f(0)=0, f(0)=1

and the solution corresponds to the uniform flow past a flat plate through which

. . KU\ .
there is a normal velocity @, — - ( \_‘) . K > 0 therefore corresponds to suction
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and K=0 gives the well-known Blasius’ distribution for uniform flow past a solid
boundary. The equation has been solved for various values of K—Ref. 9 deals
with positive values of K and Schlichting**) gives solutions for positive and negative
values of K. This family of velocity distributions is interesting for several reasons,
especially for K > 0. Watson''' has proved that as K —> -+ o the velocity distribu-
tion tends to the asymptotic suction distribution.t Thus the negative range for m
is 0= m =-0.25 which covers the range necessary in the flat plate constant-suction
problem. For K <0, the distributions are curious (physically this corresponds to
blowing out of the surface with velocity proportional to x-!). As K increases
m increases but reaches a maximum of about 0.031 and then appears to tend to

zero as K tends to —oo. [ (m) steadily decreases as K decreases and also tends
to zero.

(vi) Iglisch’s solution of the flar plate, constant-suction problem. ('?

This and the next solution described are of considerable interest because they
deal with velocity distributions obtained when boundary suction exists. There is
reason to suppose that the general type of distributions under conditions of boundary
suction may show rather different characteristics from those at solid boundaries,
especially in regions where suction is delaying or preventing separation. This
solution of Iglisch was obtained by numerical methods, there being no exact solution
in finite terms known. The distribution is Blasius’ at the leading-edge of the plate(*?)

and changes progressively until the asymptotic suction distribution is reached. Thus
0<m=-025.

(viiy U=U,(x/c), vs=0:

This represents the flow from a stagnation point under conditions of boundary
suction. The solution is a particular casc of Falkner's gencral solution (cquation (12))
with k=1 and f(0)=K, and has been calculated for various values of K by
Schlichting and Bussmann®. 1In this flow, the velocity gradient reinforces the
general effect of the suction, and m takes only negative values.

1 v s0r , v = v
t1f f(,,):K+7\;q,(Kr,), f=¢ f"=Kp", f”=K¥" equation (13) becomes [ T 21{‘, P,
with ¢ (0)=9¢ (0)=0, ¢ (x)=1. As Ko~ , the equation tends to ¢"” +1¢” =0, of which the

. ., u ,
solution is ¢’ (1)=1—e—?% or U= 1 —ev '

If U is not constant a similar result holds, for if U=o (vo), u=o(v.) the continuity

3* Y
equation gives v=uv,+ O(U), so that the equation of motion is v, -g—; —v %Jf =0 ( —g) the
4 2 y

. . & u
solution of which as vo—> o is U= I —evo?/y
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5. COMMENTS AND COMPARISONS

() In Section 4, all the known solutions of laminar boundary layer flow have
been mentioned. The functions /(m) and H (m) have been drawn for all thest
solutions and are shown in Figs. 1-4. Each point on these curves represents a certaitt -
velocity distribution and therefore in these figures are collected a large range o
different distributions, each of which is known to exist.

Values of m divide naturally into the two ranges of positive and negative values.
since for solid boundaries positive values of m occur when U’ <0, negative values
when U’ > 0.1 (For conditions of continuous suction this is no longer true.)

Consider first negative values of m. Fig. 1 shows the function [ (m) drawd:
for the various flows. The range of m shown is 0 =m =-0.12, which is sufficient :
for all distributions computed except for Iglisch’s solution. For this, as has bee?
already pointed out, there is the point for which [=0.5, m= —0.25. Ttis remarkabl¢
that the various values of [ (m) for any particular m do not differ by more that.
about 10 per cent., although the distributions are those of widely differing types of
flow. The suction distributions for U=U, (x/c) differ by about 10 per cent. from
the other distributions for —0.02 = m = -0.04, in which region these distributions
differ from each other by only about three per cent. The general comment upof
Fig. 1 therefore is one of surprise that the various curves of [(m) lie so closely
together. Fig. 3 gives H (m) and here again the values of H (m) do not differ by
more than five per cent. H (m) increases steadily with m, and its minimum val:
appears to be 2.0 at m= -0.25.

Figure 2 gives [ (m) for m=0. and it is at once obvious that no such clost
agreement exists as for m <<0. We can dismiss the curve for f +3ff” =0, for not
only does this curve correspond to distributions obtained by blowing out through
the boundary but also the shape of the curve itself has no practical interest. The
three exact solutions are grouped fairly well together, with the solution fof

"U=8, - B,x in the middle. The value of m for separation in U =U, (x/c¥ is 0.068
whereas the value for U — 8, 8,x is 0.084. Had Hartree predicted separation fot
Schubauer’s ellipse, the value of m would have been near to.0.084. The differenct
between the Schubauer and the Howarth curves lies in the fact that in the formef
a boundary layer of some thickness already exists where U’ becomes negative, while
for the latter the boundary laver has zero thickness at m =0. Finally the Pohlhause?
curve lies well away from the other curves. Pohlhausen’s [ (m) takes values which
are too large and this means that in regions of negative velocity gradient the skin
friction is given values systematically too high. The value of m at separation is 0.157

—— e

. oovUm v’
¥ For. from equation (3.0 - U7 oo m= =
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The reason for Pohlhausen’s method giving inaccurate results in regions of
increasing pressure is therefore clear, and it would seem that Falkner’s method,
which is based on the profiles of U=U, (x/c)* would give better results. Fig. 4
shows H (m) for m = 0. Here also the various curves are fairly widely scattered,
¢ aithough those of the three exact solutions are roughly of the same gencral shape.
Pohlhausen’s H (m) gives values which are much too low.

(i7) In general, to any flow along a surface corresponds an [ (m) curve and an
H (m) curve. There is an exception in the case of flows with “similar” velocity
distributions, when single values of /, m and H describe a flow. Thus in Figs. 1-4
the curves for U=U, (x/c)* do not represent a single flow but a very large variety
of different flows and it is all the more remarkable that the curves lie closely to
those of other flows.

It was shown in Section 2 (if) that integration of the momentum equation
- requires only a relationship between the terms in (7) or the / (m) function and also
the A (/) function. Thus the probable accuracy obtained by using any approximate
method upon a certain flow can be assessed by a comparison of the approximate
and exact [ (m) and H (m). Thus if an approximate method has the same [ (m) and
H (m) as an exact solution, then it will yield exact results. An immediate corollary
is that, since no two exact solutions have identical / (m) and H (n), an approximate
method which gives excellent results in one case may not be successful in another.
In other words, there is a limit to the degree of accuracy obtainable by an approxi-
mate method used on any flow. But, in fact, the accuracy obtainable in any case
can be quite sufficient for practical purposes, and the formulz developed in this
paper give what are in effect the best results possible in all cases.

6. THE CONSTRUCTION OF A METHOD

() It was pointed out in Section 2 (i) that the integration of (2) in conjunction
with the boundary conditions (3) requires only the functions ! (m) and H (m), and
to construct a method of integration the choice of these functions has to be made.

_ We refer now to Figs. 1-4, in which [ (m) and H (m) are plotted for all known
: solutions. The choice of [ (m) and H (m) for use in the present method will be
made by taking an average value of these solutions.

When m =<0, the choice is easy, for the curves of Fig. 1 lie closely together.
¢ When m =0 the choice is more difficult. It is first necessary to choose the value
. for m at separation. (The fact that an arbitrary choice is involved is the fundamental
disadvantage of the use of the momentum equation.) For U=8,-B,x, m=0.084
- at separation and for U =U, (x/c)=>°"* [=0 and m=0.068. For Hartree’s solution
' of Schubauer’s ellipse the value of m at separation, had it been predicted, would
appear to be about 0.082. This last value will be taken in the present method to
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represent separation, since the flow about the ellipse is similar to flow about af
aerofoil to which approximate methods of calculation are most applicable.

It is desirable to make [ (/m) and H (m) take certain values which correspend
to particularly common exact solutions. Blasius’ distribution occurs at the leading
edge of a plate in a stream if there is no stagnation point, and if there is a stagnation
point the distribution there is that for U=U, (x/c). These two distributions should
be included in our solution. The asymptotic suction distribution should also b
included, if only because its large negative value of /m will avoid the possibility of
a breakdown in the method.

Thus we require:

U=U,: 1(0)=0.220
H (0)=2.591
Asymptotic suction distribution: 1(-0.25=05 { (14) '
H(-025=20 ) ) ’
Separation distribution: 1(0.082)=0
H (0.082)=3.7

U=U,xjc: 1(-0.0854)=0359
H (-0.0854)=2.218

Furthermore the function / (/m) appears to have an infinite gradient at /=0.

It would be simple to express [ (1) by a short analytic form. It is surprising
how definite a curve one wants to draw when taking a reasonable mean of the
curves in Fig. 1, but in fact it is difficult to choose a function for [ (m) which s
short, simple and suitable. Therefore we have no hesitation in defining numerically
1 (m) for the present method, and in Table I [ (m) is tabulated. This ! () includes
the points (14) but its value at m= — 0.0854 (corresponding to a stagnation point)
1s 0.344 instead of 0.359, which is not a serious inaccuracy.

The function H (m) is found in precisely the same way and is given in Table L
Values of ! and H at valucs of m intermediate to those given can be found by
simple interpolation.

With [ (m) and H (m) now fixed, the momentum equation can be integrated.

(@) The equations (2) and (3) become, after substituting from (8): —

de ueé vi(m)
dx -(H+2) U + U
, vUm

OZUU+—02—‘
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On re-arrangement and substitution the first of these becomes

1 U db? .
v de (L (m)y+2)ym =1 (m)
and if Lm)=2[Hm)+2)m -1(m)] . . . (15
/ 2 g2
then l;— C—j;} =L (m), m= - qv-»— (16)

The method of solving equations (16) is now obvious. At any point of the
system under consideration we know U, U’ and #. These define m and thus L (m)
and therefore the gradient of 6 is known. A simple step-by-step method can be
used and the only requirement for finding the distribution of # with x is the function
L (m) which is tabulated in Table I. For obtaining the other properties of the
boundary layer, we require to know / (m) and H (m).

It is clear that the aim to use 6 as the principal dependent variable, to avoid
algebraic work and to simplify greatly the equation to be integrated, has been
attained.

(i) A method is required for the integration of (16) which is simple but
which gives a high degree of accuracy.

The equation is of the form

de?
dx

=M@, U) . . . . . . 1n

in which % and U are regarded as independent of one another. Let suffixes 0 and 1
denote values at x=x,, x=x, respectively, and let X, —X,=35 We assume that
x, U and partial derivatives of M of any order are O (1), and 3=o (1).

d6?
Then we have 6,2=6,%+§ (E> +0 (%)

or from (17), 6,*=0,*+0 (8
Where 02 = 902 + 8M (002’ Uo) -. . . s . R . (18)

We wish to refine this formula to give 6,% to O (3°).
Now,

M@©.% U)=M (8., ‘U1)+0(012"802)=M(®02: Un+0@) . (19
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In general, fi=fo+8 () + :Z—z () + 0 (5)
and =0 +3 (" +0 (&%)
and elimination of (f”), from these two equations gives
fo=for 30N+ (1) + O 6.
With f=6? and using (17) and (19.) we get
0,020+ LIM 6, U+ MO, U)1+0 ()

©,? being defined in (18).

This formula gives by simple means the value of #,* correct to O (&°).

(iv) The flow away from a stagnation point presents a formal difficulty in the
integration of (16) which must be resolved, for if U=0 an infinite number of }
integral curves exists unless L (m)=0. Thus at a stagnation point we must have
L (m)=0 or, from Table I, m=—0.075. This value of m immediately fixes the

g,
value of 6 at the stagnation point, and the value of ~ [ is found as follows. |

<

Near m= - 0.075, L (m)=6 (m+0.075)+a, (m+0.075)*+ . . . Z

Hence from (16), when U=U, (x/¢),

192
Lim (47 1 im {0075 o)
dx ;r—-;.o

z-50 U
2
, e+ U’ 2Ld
=—6 Llim dx
r=30 U,
. UII
=-6oLim{5 ) Qv ((mz)
d6* 0450/ U” )
Therefore (dx )ho — 7 HE

e

+ The gradient of L(m) at m= —0.075 from Table I is not exactly 6, but is taken here as 6
for convenience in fitting a later formula
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TABLE It
m I (m) H(m) L (m)

+0.082 0 3.70 0.938
+0.0818 0.011 3.69 0.953
+0.0816 0.016 3.66 0.956
+0.0812 0.024 3.63 0.962
+0.0808 0.030 3.61 0.967
+0.0804 0.035 3.59 0.969
+0.080 0.039 3.58 0.971
+0.079 0.049 3.52 0.970
+0.078 0.055 3.47 0.963
+0.076 0.067 3.38 0.952
+0.074 0.076 3.30 0.936
+0.072 0.083 3.23 0.919
+0.070 0.089 3.17 0.902
+0.068 0.094 3.13 0.886
+0.064 0.104 3.05 0.854
+0.060 0.113 2.99 0.825
+0.056 0.122 2.94 0.797
+0.052 0.130 2.90 0.770
+0.048 0.138 2.87 0.744
+0.040 0.153 2.81 0.691
+0.032 0.168 2.75 0.640
+0.024 0.182 2.71 0.590
+0.016 0.195 2.67 0.539
+0.008 0.208 2.64 0.490

0 0.220 261 0.440
-0.016 0.244 2.55 0.342
-0.032 0.268 2.49 0.249
-0.048 0.291 2.44 0.156
- 0.064 0.313 ’ 2.39 0.064
—-0.080 0.333 2.34 —-0.028
-0.10 0.359 2.28 -0.138
-0.12 0.382 2.23 ~0.251
-0.14 0.404 2.18 -0.362
-0.20 0.463 2.07 -0.702
-0.25 0.500 2.00 - 1.000

. I _ - _

t The solution ¢t a laminar boundary layer is given on page 280
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The values of 6* and its derivatives are therefore known and the integration
of (16) can proceed from the stagnation point.

(v)  The distribution of I/, m and H with x having been obtained. it may be
required to construct the velocity distribution at any point.

If the distribution is expressed in the usual way, u/U=f(y/d), it is very tedious
to find expressions for the coefficients implied in this expression in terms
of I.m and H.

If however the distribution is expressed as

br(z)-ro

the work becomes a great deal easier. This form of the velocity distribution is
considered in detail in Ref. 14. Tt can be verified that:

l

2 2 ’”
f-('?‘f) R S 9—“) =m=- O g H:J F (1) dr,
U aV y=0

F’ (0) U\oy*/y=o (F (O F
1
whence F (0)= % F” (0)= - 'Trz H= I F@ad:. . . (20
Suppose that g =F(O=at+a,t* +a,;r*, t<1.
. 1 m a a, a,
Then (20) gives at once a, = 7 2a,= — o4t 3 +4—— =H,

y_Lu ) ( _2_'2_2_>(L"
whence 5 =7 7 213( M+ -3 N\y) -

- The velocity distribution can be calculated from this form, and the simplification
resulting from the use of the form 61 =F (5) is clear.
When a separation distribution is required, the form taken above for F (1)

is insufficient, for then /=0 and the a’s take infinite values. This can be remedied
by the use of the form F (rf)=b,'+bt, for which it is easy to obtain

bo=+(=2/m), b,=2H-(4/3)y(=2/m).

An example of the use of this construction of distribution is given in 3
later paragraph.
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Better approximations to the velocity distribution can be obtained by using
. 'u .
more of the boundary conditions (for example (ET‘) =0) and also by using
. y=0

a function F which tends to infinity as («/U)—> 1. However, since the approximate
method gives only three pieces of information about the velocity distribution, it
is doubtful whether better representations than those above could be obtained
without very great complication. Even then, it is doubtful whether the approximate
distribution would be sufficiently good for calculations such as stabiliiy calculations
to be performed.

(vi) It 1s worth while to remark here upon a test which is commonly applied
to methods using the momentum equation but which has no significance, as will
now be shown. In the flow U =U, (x/c¥, a separation distribution is maintained
for the value k= - 0.0904.

The test applied to approximate methods is to assume a stream velocity
U=U, (x/cyand find the value of k for which a separation distribution is maintained.
The closeness of the value of k so obtained to - 0.0904 is taken as an indication
of the accuracy of the method.

However, the value of & so given depends only upon the value of H of the
distribution which is assumed by the method to be a separation distribution.

For suppose a distribution of constant “shape” is maintained for which
ou
—) =0, and so [=0.
0y/y=0
Then since the “shape” is constant, m has a constant value. Under these conditions,

the momentum equation together with the boundary condition become, from (16):

92 o
2(H+2Dm= ¥ %; = - U((f; ’J,) = —UIIléi(;,), whence ~-- — =2 (H +2).

On the assumption of U =U, (x/c),
kk-1)/k*=2(H+2) or k= —1/(2H +3).

Thus the value of k obtained depends only upon the value of H assumed at
separation, and clearly there is little significance in testing an approximate method
in this way. ‘
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7. THE SIMPLEST METHOD

(i) With the values assumed in Table I for [ (m) and H (m), L (m) is found
to be nearly a linear function of m, especially in the most common region of m,
say m>-0.1. This fact suggests a comparison of the L (1) curves for all the
solutions known. Using the curves in Figs. 1-4 it is simple to calculate L (/n) for all
the flows considered and in Fig. 5 the comparison is shown graphically.

Two features of these curves are surprising. Firstly, it is curious that although
the flows considered are of very different characters, the L (m) curves do not differ
greatly from each other, and they differ by much less than the separate / () and
H (m) curves, especially towards a point of separation. Secondly, it is curious that,
at least in the range of m which is most common, i.e. m > - 0.1, the curves are
almost linear.

These facts suggest strongly that a good approximation to all types of flow
will be obtained by assuming a linear form for L (m) (or at most a quadratic form)
in (16). By taking a reasonable mean of the curves in Fig. 5 we may assume

L (m)=045+6m . . . . . . @b

It may be remarked that the possible range of choice for the two coefficients
in (21), expressed as a percentage of their values, is about two per cent., which
gives an indication of the error which may arise by the use of the form @2n.

A slightly more satisfactory form of L (m) would include the asymptotic suction
distribution. For this, m= - 0.25, H=2.0, /=0.5 and hence L(-0.25=-1.0. The
value of L (m) given by (21) at m=-0.25is —1.05. A quadratic form of L (m)
to satisfy the relations: L (-0.25)= —1.0, L (0)=0.455, L (0.075)=0.925, is

L (m)=0.455+6.16m+ 1.37m>.

In the next section the consequences of the assumption (21) will be demon-
strated, and similar consideration could be given to the quadratic assumption. The
author feels that (21) is perfectly adequate.

(i) Substituting L (m)=0.45+6m in (16), we get

2 /762
U df 045 - 6U

v dx v

which can be integrated to give

X

02 - 0.45\1U"“f Usdx . . : . . (2D
0

268



APPROXIMATE CALCULATION OF THE LAMINAR BOUNDARY LAYER

X
o /
K
—--—U=U.(3). X
——=————-SCHUBAUER'S ELLIPSE (HARTREE). /
A— A— A IGLISCH. o //
U= P, P, x (HOWARTH). /
'I
O-8 y2
0-6
L(m)

N

-02 |
—010 -O008 -006 -0-04 -002 (o] 0-02 0-04 0-06 0-08
m

Fig. 5
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Thus (22) gives at once the distribution of # with x. At a stagnation point, it
. . . 6* .
can casily be verified that (22) gives the values of * and (%;) which have already
been given in Section 6 (iv).

The distribution of m with x is known from that of 6% and then [ and H can be .

calculated from Table I. Thus the local coefficient of skin-friction, =, given by
To _ _L * .

S0 = UG [ and 8* are obtained. -

i d

Notice that although (22) was derived by a consideration of the momentum
equation, that equation is not now required. The functional relationship between
U db* u’e*

v dx d -

are required to obtain the skin-friction and displacement thickness. Now [ (m)
and H (m) assumed in Table I do not give a linear form for L (m) while (22) does.
and so (22) in conjunction with Table I does not satisfy the momentum equation
exactly. This is not necessarily a defect of the method, and indeed it may even
give a greater “total ” of accuracy on all r,,  and 8*. If for example a method

leads at once to (22) and then only the [ (m) and H (m) functions

gives inexact values for =, and @, then satisfaction of the momentum equation will
only lead to inexact values of 8*, whereas a different choice of H (m), while violating
the momentum equation, might nevertheless give better values of 3*. We have
therefore quite exhausted the possibilities of the momentum equation as a basis
for approximate methods, and its prime and most important use must now remain
as a test of the accuracy of exact and numerical solutions of the equation of motion.

@fii) Young and Winterbottom(*) obtained a similar equation by making an

approximation to Pohlhausen’s method, their equation being (in our notation)

X

92:0.47vU—“‘J U***dx. It is clear from the foregoing analysis that this is
. 0
equivalent to choosing L (m)-0.47 +6.28m. The gradient of this is rather (00

large, for when m > 0 this L (m) is rather greater than that for Schubauer’s ellipse,

and when m <0 its value becomes rather too small.

Falkner® also derived an equation which in our notation becomes

X

2
0*=cvlU-13 U Usde by varying the power of U occurring in the integral until a
0
best agreement was reached with the family of distributions given by U=U., (x/c)

It is not possible to derive an equivalent function L (/) from this, the accuracy of
which it is difficult to estimate.
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Tetervin*®) has given a general method of integration of the momentum

) . . . To v [du )
equation using the assumption that  is constant and —%, = - ( - ) =kRy" In
= pU?  U? \0y/y=o

which Rs= (JL—G and k and n are constants. In the laminar flow case, n=1 (see
Section 7 (ii)), and Tetervin’s assumptions are equivalent to assuming H (m) and
[ () to be constant, which is clearly insufficient for our purposes. From (15) it is
clear that this assumption gives a linear form for L (m) so that the momentum

equation is integrable to give a form for ¢ similar to (22).

8. THE DIFFICULTY OF CONTINUOUS SUCTION

This section is properly out of place in a paper which deals only with solid
boundaries, but it is thought as well to explain the occurrence of a difficulty when
there is a normal velocity at the boundary. Few exact solutions of flow exist with
such continuous suction, and it certainly is desirable that an approximate method
should be devised. An extremely brief discussion of the difficulties is given below.

Putting y=0 in (1) and using the forms (8) we get

6*U’ 6, . . .
— = o [ (m), w, being the suction velocity.

v

In Fig. 6 are drawn curves of +m—(v.8/v)/l (m) against [ (m), Table I being
used in the calculation. (For the sake of simplicity in the argument, let us assume
v, varies inversely as ¢ and that v,6/v= —0.3. The argument does not lose generality
by this.) Each point on the curve 6v,/v= —0.3 in Fig. 6 corresponds to a point on
a boundary in a region of retarded flow in which separation takes place. Assume
for simplicity that U’ is constant. Then for separation [/ (m)=0 and - 6*U’/v must
equal +0.082. This is the first disadvantage of the present method, for separation
is given by a constant value of —6*U’/v for all values of v,, which cannot even be
approximately true. Now as x increases, ¢ increases and also - U’6?/v. Thus x
increases “up ” the curve v,6/v= —0.3 in Fig. 6 from right to left. Eventually the
maximum of this curve is reached, at [ (n)=0.08, and - 6*U’/v must then decrease
to reach the separation point. Thus the momentum equation must be so arranged
that - 6°U’/v can decrease just at the right moment. Unfortunately this does not
happen, and in any example a maximum value for - U’6%/v is reached beyond
which the solution cannot be taken. Thus the separation value of U’6%/v is never
reached and the method is unworkable.

The real reason for the breakdown is the maximum in the curve of

271



0-08

0-04

O |~ m—(8vo/v)l(m)

B. THWAITES

N

-0-04
|
-0-08
-
(o] Ol 0O-2 o3 035
m)
Fig. 6

272



APPROXIMATE CALCULATION OF THE LAMINAR BOUNDARY LAYER

m—=(#v,/v) [ (m) against [ (), which in turn is duc to the zero eradient of the
(m, [(m)) curve at [ (m)=0. For a method to be applicd to continuous suction,
the (i, [ (1)} curve must have a negative gradient at / on)—0 and the solution will
be valid only as long as #v,/v is such that there is no maximum of 7 — (Fvo/v) [ (m)
azainst [ (m). Families of distributions which satisfy these conditions occur in the
solution of U =U., (x/¢), m <~ 0.0904 in which ;,U Varics as <:>Hk“h and a paper

is being prepared to show that these distributions do. in fact, resolve the difficulty.

It is, however, very necessary to be able to estimate the accuracy of any
approximate method, and for this reason an exact solution of a flow in which
continuous suction is insufficient to prevent separation is urgently required.
Watson®) has used his asymptotic theory to estimate the amount of suction
required to produce a constant separation profile for the flow U=U,(x/c¥* but it
is most necessary to have not only a solution for small velocities of suction, but
also for some other flows. For example, a full solution of flow for U =8, - B8,x
for various values of ©, would be of inestimable use.

9. EXAMPLES
Two examples will be given.
(1) U=g,-3x, which has been solved by Howarth®),

. . . 3,62 . 3.
(22) gives immediately 6" -=0075((1-6)"°~1 '—/3‘{ .

&
s &
h

8,

Also, — #*=n1 in this case, and I (n) and H (m) can be immediately cvaluated

from Table I. Table Il gives the various properties of the boundary layer for

several positions of x. The whole work took less than an hour.

. B, B, 1 17—<(71(
> 2o ,",,,' (\* . - . .
In Fig. 7 are plotted the values of N f, \ v V* and R 8y>,=o

against £. These quantities are non-dimensional. Also on Fig. 7 are shown the
exact values obtained by Howarth. It is clear that the approximate method gives
good results.  The separation point given by 1 =0.082 is at ¢=0.117, whereas the
exact result gives £=0.120. Thus the agreement is good, and could obviously be
made better by assigning a slightly greater value to m at separation. This arbitrari-
ness is at once a virtue and a vice of such an approximate method.
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As a test of the accuracy of the construction of distributions given in (v) of
Section 6, let us construct by that method the distribution at £=0.05 in this example.
At this point, [ (1n)=0.178, m =0.0270 and H (m)=2.71. Hence from (20) a, =5.62,
a,= —2.39,a,=2.8 and the distribution can bz quickly calculated. Table I1 tabulates
some values, and also gives the exact distribution. Fig. 8 demonstrates the results
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10 T - ‘ . : :
VELOCITY DISTRIBUTION AT .
E—O'OS U—p'((_e) ! // : i

»Q EXACT s YL I !

————— APPROXIMATE

and it is seen that the agreement is good, even though the approximate method gives
a finite value of y/6 at /U -=1. It is doubtful, however, whether this distribution
is sufficiently accurate for the purpose of, for example, stability calculations.

iy Schubauer's observed pressure distribution

The distribution of velocity over an cllipse which Schubauer observed has been
used as a test of many approximate methods. The validity of Schubauer’s results
has been discussed by scveral authors and need not concern us here since we are
primarily intercsted in the accuracy of an approximate method of solving the
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boundary layer equation. Hartree™' has solved the equation on the differential
analyser, using a distribution of velocity U which he obtained from Schubauer’s

results; this may be regarded as an exact solution with which comparison is profitable.
The complete solution according to the simplest method of this paper is shown

A U (U\ 2 - -
in Table II1.  The values of v\ ) , U—:UU which are not denoted thus t are

) . ) .U\ ,
taken directly from Hartree's tables. The values of (L ) denoted thus + are

obtained by integration of UU’ and they in turn cave the values of U/U.

2¢
U,y
denoted thus *. In the columns marked §, and S. are tabulated the summations
L . , . (UYL : .
occurring in the use of Simpson’s rule to integrate \Uﬁ . The approximate solution

is started at x/c=:0.2 since at that point Hartree started the analyser solution. A
0.2
. . . X . I\? ¥ .
series solution was applied for . <0.2. The value of J (J) d () is
. c
0
obtained from (22) and is given by

0.2

{ (g ) dx ?7_,<H-’U")
0./ ¢ 77 \el. e

0
in which # and U take the values given by Hartree. Thus the integral J <l(j)

5 dx
c

0

can be continued properly for x>0.2. From this U,6*/(vc) is obtained, and

c Jv au) ! [U.c &% e diveet]
TN T o and — -~ ---can be directly
U.) \ U,c a_)'. y=u \ v I K

obtained. The whole work as set out in Table 111 took almost one hour. For an

thence mn, [ (i) and H (m) from which

arbitrarily given distribution of U ' U, whose gradient must be found, the work would

~take considerably longer.

In Fig. 9, these approximate results are compared graphically with the exact
results. The error in @ is less than 0.5 per cent. for x/c << 1.75. As x/c increases
from 1.75, the error increases to a final value of about two per cent. at x= 1.95. This
degree of accuracy in an approximate method is very good and justifies to a
remarkable extent the use of the simplz form (21). For x/c << 1.5, the error in #* is
less than 0.5 per cent., but for x/c > 1.5 the value of H (i) is systematically too
high (as can be seen at once from Fig. 4) and thus in this range the error in &*
increases to a final value of about five per cent. The error in the skin friction.

e o (2
Uo\'UOC a_\/' v=0
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APPROXIMATE CALCULATION OF THE LAMINAR BOUNDARY LAYER

1-8 B | - T
¢ [U [ou T
cEze, N\ ] |

Y
6 T SCHUBAUER'S ELLIPSE
EXACT (HARTREE) i

______ APPROXIMATE I

8% U
v

o8

0-2

18 less than one per cent. for x/c < 1.4, but thercafter increases to a maximum of
15 per cent. at x/c=1.8. At x/c=1.95 however the skin friction given by the
approximate method takes the exact value.

CONCLUSIONS -

A method has been derived in this paper for determining approximately, but
with a good degree of accuracy, the principal characteristics of the laminar boundary
layer. The method is extremely simple in use and has none of the disadvantages
common to nearly all other approximate methods.

Much of the paper discusses the uses af the momentum equation and a certain
comparison of all known solutions of laminar boundary laver flow shows clearly
the reasons for success or otherwise of an approximate method. It is also shown
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B. THWAITES

that no advantage is gained by making more complicated initial assumptions when
using the momentum equation, the possibilities of which as the basis of an
approximate method are now exhausted.

The solution of a laminar boundary laver (se¢ Table I, page 265) is given by:

A

B-0450 " | U .. . . . D

o [}
m=— U (i
cu U i
<9.\;>y—o = tem N
d*=0H (m) . . . . . NG
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