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Chapter 9 - Viscous flow along a wall 
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9.1  The no-slip condition 

Mean free path in a gas. 

Slip velocity. 

At ordinary temperatures and pressures the mean 
free path is very small. 
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9.2  The equations of motion 

Steady 2-D flow. 
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9.3  Plane, Compressible Couette Flow 

The upper wall moves at a velocity U∞ while the lower 
wall is at rest. The temperature of the upper wall is T∞ . 

The flow is assumed to be steady and extends to plus 
and minus infinity in the x-direction. Therefore the 
velocity and temperature only depend on y. 
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Both the pressure and shearing stress are uniform throughout the flow. The shearing 
stress is related to the velocity through the Newtonian constitutive relation. 

The equations of motion reduce to 

Where       is the shear stress at the lower wall.  

Energy integral 

The energy equation can be integrated with respect to the velocity. 
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In terms of the friction coefficient and Reynolds number 

the wall friction coefficient for an adiabatic wall is determined in 
terms of the Prandtl, Reynolds and Mach numbers.  

Qw = 0 

The Reynolds number can be expressed as 
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9.4  The viscous boundary layer on a wall 

The figure depicts the flow at low Reynolds number less than 100 or so. 

Reference: Boundary 
Layer Theory by 
Schlichting 
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As the Reynolds number is increased to several hundred or more the velocity 
profile near the wall becomes quite thin and the guiding effect of the plate leads to a 
situation where the vertical velocity is small compared to the horizontal velocity. 
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First consider the y - momentum equation. 

Using the approximations just discussed this equation reduces to. 

Integrate from the wall to the edge of the boundary layer. 

Substitute for the pressure in the x - momentum equation. 
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The energy equation 

simplifies to 
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Neglect the normal stress terms.  

where 
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Newtonian stress.  

Fourier's law.  

The laminar boundary layer equations.  
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Measures of boundary layer thickness.  

Displacement thickness 

Momentum thickness 
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9.6  The laminar incompressible boundary layer 
The equations of motion reduce to 

Boundary conditions 

The pressure 
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Introduce the stream function 

The continuity equation is identically satisfied and the 
momentum equation becomes: 

U =
∂ψ
∂y

V = −
∂ψ
∂x

ψ yψ xy −ψ xψ yy =Ue
dUe

dx
+ νψ yyy

ψ x,0( ) = 0 ψ y x,0( ) = 0 ψ y x,∞( ) =Ue

Boundary conditions 
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The zero pressure gradient, incompressible boundary layer.  

Similarity variables 

Velocity components 

Reynolds number is based on distance from the leading edge 

ψ yψ xy −ψ xψ yy = νψ yyy

ψ = 2νU∞x( )1/2 F α( ) α = y
U∞

2νx
⎛
⎝⎜

⎞
⎠⎟
1/2
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Vorticity 

Derivatives 

Substitute into the stream function equation and simplify 
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The Blasius equation 

Boundary conditions 
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Friction coefficient 

Normal velocity at the edge of the layer 

Boundary layer thickness 

Boundary layer shape factor 

H = δ *

θ
= 2.5916

Cf =
2
Rex

Fαα 0( )
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The Blasius equation can be expressed as 

Let 

Let Then 

Vorticity at the edge of the layer decays exponentially with distance from the 
wall. This support the approach where we divide the flow into separate regions 
of rotational and irrotational flow. 
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Numerical solution 
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The Blasius equation is invariant under a dilation group and 
this group can be used to generate the solution in one step! 

 
Fα α 0[ ] = e−3b 0.2( )     ⇒      Fα α 0[ ] = 0.46965
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Another perspective:  the dilational symmetry of the problem 

ψ yψ xy −ψ xψ yy = νψ yyy

ψ x,0( ) = 0 ψ y x,0( ) = 0 ψ y x,∞( ) =Ue

Transform the governing equation 

 x = eax  y = e
by  ψ = ecψ

 
ψ y ψ xy − ψ x ψ yy −ν ψ yyy = e

2c−a−2bψ yψ xy − e
2c−a−2bψ xψ yy −νe

c−3bψ yyy = 0

The equation is invariant if and only if 

 x = eax  y = e
by  ψ = ea−bψ
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Transform boundary curves and boundary functions 

  
ψ x,0( ) = 0 all x ⇒ ea−bψ eax,0( ) = 0⇒ψ x,0( ) = 0 all x

  
ψ y x,0( ) = 0 all x ⇒ ea−2bψ y e

ax,0( ) = 0⇒ψ y x,0( ) = 0 all x

  
ψ y x,∞( ) =U∞ all x

⇒ ea−2bψ y e
ax,∞( ) =U∞ all x

At the wall 

At y→∞

The freestream boundary condition is invariant if and only if a = 2b
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The governing equations and boundary conditions are invariant 
under the group: 

 x = e2bx  y = e
by  ψ = ebψ

The infinitesimal transformation. Expand near  b = 0
ξ = 2x ζ = y η =ψ

Characteristic equations  
dx
2x

=
dy
y
=
dψ
ψ

Invariants  α =
y
x

F =
ψ
x

Since the governing 
equations and 
boundary conditions 
are invariant under 
the group we can 
expect that the 
solution will also be 
invariant under the 
group. We can expect the solution to be of the form  

ψ = xF α( )
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9.7 Falkner-Skan laminar boundary layers 

Substitute.  

Free stream velocity .  
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Apply a three-parameter dilation group to the equation.  

For invariance we require the parameters to be related as follows  

Boundary functions and boundary curves must also be invariant. 
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Free stream boundary condition. 

For invariance 

The group that leaves the problem as a whole invariant is 

The solution should be invariant under the same group 
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In summary  

Allow for a virtual origin in x  

Dimensionless similarity variables  
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The Falkner-Skan equation.  

H =
δ *

θ

− 0.0904
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Homework 4  
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9.5 The von Karman integral equation 

Integrate the boundary layer equations with respect to y 

Shape factor 
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9.8 Thwaites' method for approximate calculation of 
boundary layer parameters. 

From the momentum equation 

From the von Karman equation 

Nondimensionalize using  θ Ueand  

Thwaites argued that there should exist a universal function relating m and l(m). 

Define 
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L m( ) = 0.45 + 6m
Thwaites suggests using  



Stanford University Department of Aeronautics and Astronautics  

Thwaites functions can be calculated explicitly for the Falkner-Skan boundary layers 
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N. Curle adjusted Thwaites' functions slightly especially near separation. 

Several researchers of the era suggest using    

which is consistent with the friction coefficient for the Blasius case   

L(m)
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The von Karman equation becomes   

which integrates to   
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Example - surface velocity from the potential flow about a circular cylinder. 

Thwaites' method gives a finite momentum thickness at the forward stagnation point. 
This is useful in a wing leading edge calculation. 
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The parameter m. 
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9.9  Compressible laminar boundary layers 
The boundary layer admits an energy integral very 
similar to the one for Couette flow. 

Let .   Substitute into the energy equation. 
Use the momentum equation to simplify and introduce 
the Prandtl number 
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Adiabatic wall, Prandtl number equals one.  

Stagnation temperature is constant through the boundary layer. 

Non-adiabatic wall, zero pressure gradient, Prandtl number equals one.  
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9.10  Mapping a compressible to an 
incompressible boundary layer 

Flow at the edge of the compressible boundary layer is isentropic. 
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Assume viscosity is linearly proportional to temperature 

Viscosity of the virtual flow is the viscosity of the gas 
evaluated at the stagnation temperature of the gas. 
Continuity and momentum equations 

Transformation of coordinates between the real and virtual flow 

TS    - Sutherland 
reference 
temperature, 
110K for Air. 
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Partial derivatives 

= ?? 

Introduce the stream function for steady compressible flow. Let 

Real and virtual stream functions have the same value. 
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Partial derivatives of the stream function from the chain rule. 

Velocities 

Partial derivatives of U from the chain rule. 
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Convective terms of the momentum equation 

Cancel terms 



Stanford University Department of Aeronautics and Astronautics  

Pressure gradient term 

Now 
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At the edge of the boundary layer 

Now 
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Note that 

Where we have used 
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Viscous term. Note 
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The boundary layer momentum equation becomes 
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Drop the common multiplying factors 
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Now the momentum equation is expressed entirely in tildaed variables.  

=0 
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For an adiabatic wall, and a Prandtl number of one the factor in brackets 
is one and the equation maps exactly to the incompressible form.  

with boundary conditions 

Skin friction 
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In order to solve for the physical velocity profiles we need to 
determine the temperature in the boundary layer. Look at the case 

The energy equation was integrated earlier 

Use and 

We need to relate wall normal coordinates in the real and virtual flow 
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The spatial similarity variable in the virtual flow is 
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Spatial similarity variables in the two flows are related by 

The thickness of the compressible layer increases with Mach number. 
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Now 
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Impirical relations for the thickness of the  incompressible case, 
useful over a limited range of Reynolds number. 

Or for a wider range of 
Reynolds number 

9.11  Turbulent boundary layers 



Stanford University Department of Aeronautics and Astronautics  



Stanford University Department of Aeronautics and Astronautics  



Stanford University Department of Aeronautics and Astronautics  



Stanford University Department of Aeronautics and Astronautics  

The incompressible wall friction coefficient 
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An impirical form of the velocity profile; the so-called 1/7th power law 

The problem with this profile is that it fails to capture one of the most 
important features of the turbulent boundary layer profile which is 
that the actual shape of the profile depends on Reynolds number. 

A much better, though still impirical, relation is the law of the wake 
developed by Don Coles at Caltech coupled with the universal law of 
the wall. In this approach the velocity profile is normalized by the 
wall friction velocity. 

Define dimensionless wall variables 

Reference: D. Coles, 
The Law of the Wake 
in the Turbulent 
Boundary Layer, J. 
Fluid Mech. Vol 1, 
1956 
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The thickness of the boundary layer in wall units is 

and 

Once the Reynolds number is known most of the important 
properties of the boundary layer are known. 
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Velocity profile 

Viscous sublayer - wall to A 

Buffer layer - A to B 

Logarithmic and outer layer - B to C to D 

C = 5.1 κ = 0.4
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Measurements of velocity in the logarithmic layer can be used 
to infer the skin friction from the law of the wall.  

C increase with increasing roughness Reynolds number  

Res =
ksu

*

ν
< 3

Res =
ksu

*

ν
> 100

Hydraulically smooth  

Fully rough  

ks Roughness height  
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Separating turbulent boundary layer 
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δ

Ue x( )

x

The method of M. Head 1960 applied to incompressible 
turbulent boundary layers 

At any position x the area flow in the boundary layer is  

Q = U dy
0

δ

∫
This can be arranged to read 

Q = U dy
0

δ

∫ = Ue dy0

δ

∫ − Ue 1−
U
Ue

⎛
⎝⎜

⎞
⎠⎟
dy

0

δ

∫ =Ue δ −δ *( )
Entrainment velocity 

Ve =
d
dx

Ue δ −δ *( )( ) Reference: M.R. Head, Entrainment in 
the Turbulent Boundary Layer, Aero. 
Res. Council. R&M 3152, 1960 
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Head defined the boundary layer shape factor 

H1 =
δ −δ *( )
θ

His model consists of two assumptions: 

1) Assume  

Ve
Ue

= 1
Ue

d
dx

Ue δ −δ *( )( ) = F H1( )

2) Assume  
H1 = G H( )

In addition he assumed that the skin friction followed the 
impirical formula due to Ludweig and Tillman 

Cf =
0.246

100.678H Rθ
0.268 Rθ =

Ueθ
ν

H = δ *

θ
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We will use F H1( ) = 0.0306
H1 − 3.0( )0.6169 G H( ) = 3.0445 + 0.8702

H −1.1( )1.2721

H1 =
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Calculation of Separation Points in Incompressible Turbulent Flows 
T. CEBECI, G. J. MOSINSKIS, AND A. M. O. SMITH 
Douglas Aircraft Company, Long Beach, Calif.  
J. AIRCRAFT VOL. 9, NO. 9 

Also 

Boundary Layer Theory  H. Schlichting 

Recommend 
Schlichting uses 0.0306 

Several classical references recommend different functions for F and G 

+3.3 is missing 
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Cebeci - Schlichting  

G

H

dG
dH

H

Gap 
Discontinuity 

G

H

dG
dH

H
G H( ) = 3.0445 + 0.8702

H −1.1( )1.2721

dG
dH

= − 0.8702 ×1.2721
H −1.1( )2.2721

I prefer a single smooth function   
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Comparison 
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From Head’s paper 
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Typical range of H vs Rex for turbulent boundary layers 
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Recall the von Karman integral momentum equation 

For given initial conditions on theta and H and known 
free stream velocity distribution Ue(x) this equation is 
solved along with the auxiliary equations 

Cf =
0.246

100.678H Rθ
0.268

Rθ =
Ueθ
ν

H1 = G H( ) = 3.0445 + 0.8702
H −1.1( )1.2721

1
Ue

d
dx

UeθH1( ) = F H1( ) = 0.0306
H1 − 3.0( )0.6169
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Zero pressure gradient turbulent boundary layer Cp = 0 

Ludweig-Tillman 

Rθinitial = 0.664 Rxmin( )1/2

Rxmin = 10,000

H Rxmin( ) = 1.7028 / 0.664 = 2.59

Rθ

Rex Rex

Ln Rex( )

Ln Cf( )

Blasius 

H

Cf =
0.0592
Rex

1/5
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Potential flow about a circular cylinder 

Thwaites' method gives a finite momentum thickness at the forward stagnation point. 
This is useful in a wing leading edge calculation. 
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Rθinitial =
0.664
12

Rcylinder
⎛
⎝⎜

⎞
⎠⎟
1/2

Rexmin = 10,000

H Rxmin( ) = 1.7028 / 0.664 = 2.59

Rθ

Rex Rex

Ln Rex( )

Ln Cf( )

H

Rex

Cf

Rcylinder =
U∞R
ν

= 105

φseparation = 151°
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Rθinitial =
0.664
12

Rcylinder
⎛
⎝⎜

⎞
⎠⎟
1/2

Rexmin = 10,000

H Rxmin( ) = 1.7028 / 0.664 = 2.59

Rθ

Rex Rex

Ln Rex( )

Ln Cf( )

H

Rex

Cf

Rcylinder =
U∞R
ν

= 107

φseparation = 166°
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9.12  Transformation between flat plate and 
curved wall boundary layers 

Boundary layer equations 
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Transform variables by adding an arbitrary function of x to the 
y coordinate 

 
ρ U ∂ U

∂x
+ ρ V ∂ U

∂y
+
∂ Pe
∂x

−
∂ τ xy
∂y

= ρU ∂U
∂x

−
dg
dx

∂U
∂y

⎛
⎝⎜

⎞
⎠⎟
+ ρ V +U

dg
dx

⎛
⎝⎜

⎞
⎠⎟
∂U
∂y

+
∂Pe
∂x

−
∂τ xy
∂y

= ρU ∂U
∂x

+ ρV ∂U
∂y

+
∂Pe
∂x

−
∂τ xy
∂y



Stanford University Department of Aeronautics and Astronautics  

Insert the transformations of variables and derivatives into the 
equations of motion. The result is that the equations are 
mapped to themselves. 
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Viscous-inciscid interaction algorithm 

in Figure 9.29 


