Stanford University Department of Aeronautics and Astronautics

AA200

Chapter 9 - Viscous flow along a wall



Stanford University Department of Aeronautics and Astronautics

9.1 The no-slip condition

9.2 The equations of motion

9.3 Plane, Compressible Couette Flow (Review)
9.4 The viscous boundary layer on a wall

9.5 The laminar incompressible boundary layer
9.6 Compressible laminar boundary layers

9.7 Mapping a compressible to an incompressible boundary layer
9.8 Turbulent boundary layers

9.9 Falkner-Skan boundary layers
9.10 Transformation between flat plate and curved wall boundary layers

9.11 The Von Karman integral momentum equation

9.12 Thwaites method for integrating the Von Karman equation,
discussion of M. Head’s method for turbulent boundary layers

9.13 Problems



Stanford University Department of Aeronautics and Astronautics

9.1 The no-slip condition

Ue /e

Figure 8.1  Slip versus no-slip flow near a solid surface.

Mean free path in a gas.

A = _J—E
J2nno
Slip velocity.
oU
vslip - C}\.a—y

At ordinary temperatures and pressures the mean
free path is very small.
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9.2 The equations of motion

Steady 2-D flow.

o”pU+ opV _ 0
0x dy
&(pUU+P—rxx)+ A(pUV -7)) 0
ox dy
o'?(pVU—rxy) N o"(pVV+P—ryy) _ 0
dx dy
o(phU+Q,) d(phV +Q,) 9P P
N _ (U——— 4 V——)
0x ay 0x ay
—|T Q_g+r 9__({ —| T ?—‘—/'i'f Q‘Y =0
( XX 9x =Xy ay) ( Yox VY ay)
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9.3 Plane, Compressible Couette Flow
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Figure 8.2  Flow produced between two parallel plates in relative motion

The upper wall moves at a velocity U, while the lower
wall is at rest. The temperature of the upper wall is T, .

The flow is assumed to be steady and extends to plus
and minus infinity in the x-direction. Therefore the
velocity and temperature only depend on y.
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oy
Jd(phU x)+a(,p + 0O - U?—- _)
0x ay X 0y
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ox XY 9y x Yoyl
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The equations of motion reduce to

&rxy _ 0

dy
IP
dy
a(Qy—‘rny) _ 0
ay B

=0

Both the pressure and shearing stress are uniform throughout the flow. The shearing
stress is related to the velocity through the Newtonian constitutive relation.

T = d—(]_T = constant
xy 'udy T Tw

Where 7, is the shear stress at the lower wall.

The energy equation can be integrated with respect to the velocity. Cp

2
U Qu E int |
CpTw = CpToo + P, + U, nergy Integra

2 T
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In terms of the friction coefficient and Reynolds number

c - T, pPU d
fo 2 Re =

the wall friction coefficient for an adiabatic wall is determined in
terms of the Prandtl, Reynolds and Mach numbers.

2

oo

1+Pr(%1)M
Cp=2 R Q, =0

e

The Reynolds number can be expressed as

1 2

=P U
R = Pl od B 2PV e _dynamic pressure at the upper plate

€ U, ;7 Uy, characteristic shear stress

2Me"g
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9.4 The viscous boundary layer on a wall

|

by u)
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Figure 8.4 Low Reynolds number flow about a thin flat plate of length L.

PLU L

ReL = U,

Reference: Boundary
Layer Theory by
Schlichting

The figure depicts the flow at low Reynolds number less than 100 or so.
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Figure 8.5 High Reynolds number flow developing from the leading edge of
a flat plate of length L. R ,; is several hundred or more.

As the Reynolds number is increased to several hundred or more the velocity
profile near the wall becomes quite thin and the guiding effect of the plate leads to a
situation where the vertical velocity is small compared to the horizontal velocity.

§«] Z«] a()«a() Ua_(__)... & ﬂjﬁ'—ﬂ/
L U dx  dy 0x dy dx  dy
2
Poels Us 8 1
r W27 L" 172
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First consider the y - momentum equation.

d(pVU - rxy) N dpVV + P — ‘L’yy) 0
0x dy

Using the approximations just discussed this equation reduces to.
d(P — ryy) _
dy

Integrate from the wall to the edge of the boundary layer.

P(x,y) = 7,(x, y) + P,(x)

Substitute for the pressure in the x - momentum equation.

oU U 4P, 4 9T,

U—+pV— = - + - +
P 0x P dy dx ax(rxx T)’)’) dy
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The energy equation

a(phU+Q ) a(phV+Qy)_
6y

V)~ (medy ) -
0 Txx ax Txy oy

+ oV
( Xy 9x }’}’ 6y>

simplifies to

oh on 99, dP,
pUa—x+pVa—y+a_y—UE+ Ua—x(Txx—Tyy)—

a(Vryy) ) I(Ut,,) . aU
a0y 0x XY dy

= 0
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Neglect the normal stress terms.

opU + apV

=0
ox dy
oU oU dp, aTxy
U— +pV— = —
p 0x P oy dx ay
Uﬂl+ V—h+g—U&— U _ 0
0 0 dy dx %y dy
where
d
T, =T, +7T, = Uomt T,
Y Yllaminar Ylturbulent dy Ylturbulent
U,(x),T,(x),P,(x)
P
P. YA U(y)I
E—
Te B
Uoo ‘6 T Qw W x_»
. \ o0
I
-
B
R

Figure 8.6  High Reynolds number flow developing from the leading edge
of a semi-infinite flat plate.
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Newtonian stress.

2
T = 2uS;- (}”‘ “v) 0 kk

<6U GV) oU
— +

ay " ox) Moy

'ny = ay

Fourier's law.

The laminar boundary layer equations.

dpU + apV

=0
ox ay

dP

oU oU e 0/ U
U + pV— = _+_< _>
P p dy dx dy l'tay

2
oUC 2=+ pve &= = U—2+ L (x5 +u(‘?9—(yj)

9T oT _ 4P, a( aT)
Pox Py dx dy\ dy




Stanford University Department of Aeronautics and Astronautics

Measures of boundary layer thickness.

Displacement thickness
d
0 peUe

Momentum thickness
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9.6 The laminar incompressible boundary layer

The equations of motion reduce to

dU + av 0
ox dy
dP 2
U%]+ V‘Z—U = _£7;+ v(ﬂ;)

Y Y Jy
Boundary conditions
U0) = v(0) = 0 U@®) = U,
The pressure

dP dU

1 2 1% e e

P, = P (x)+ épUe(x) => e _UeE
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Introduce the stream function

_9v y=_o¥

U= ay ax

The continuity equation is identically satisfied and the
momentum equation becomes:

e

dU
l//yl//xy B l//xl//yy — Ue dx T VI//)’W

Boundary conditions

y(x,0)=0 v, (x,0)=0 v, (x,00)=U,
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The zero pressure gradient, incompressible boundary layer.

VYV, -Y.Y,=VV¥,,

Similarity variables

y=(2vU_x)" F(a) o= y( U j

Velocity components

U 4
= F —=(
U x U

00 0.0

v \2
ZUOOx) (aFo=F)

Reynolds number is based on distance from the leading edge

R ==

ex vV



Stanford University Department of Aeronautics and Astronautics

Vorticity
_vV_u_ (&)’”F
~ 9x 9y ©\2vx aa
Derivatives
U(D
wxy = _XGFO.G.
U, 1/2
Uy = Ua(3ey)  Fao

e

lpyyy - mFa(xa

Substitute into the stream function equation and simplify

2

U, v \1/2 Uy 1/2 U,
UaFo( 33 Fae) Uanl(3p5)  (Fa=P)Valzey)  Faa = ViyeFaan
—F (0F, )+ (aF, ~F)F,, = F,,

~aF F —~FF  +aFF  —~F, . =0

aao
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The Blasius equation

Faaa+FFaa = 0
Boundary conditions

F(0) = 0 F (0) =0

1.0

0.8

Fa().()

04

0.2
| R T R S—

(04

Figure 8.7  Solution of the Blasius equation (8.76) for the streamfunction,
velocity and stress (or vorticity) profile in a zero pressure gradient laminar
boundary layer.
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Friction coefficient

c, - 'cw2=0.664 C:ﬁ
(1/2)pUs,  JR,, "R,

Normal velocity at the edge of the layer

Ve  0.8604

U, A/ITwc

Boundary layer thickness a, = 4906/ 2 = 3.469

0099  4.906 d " _ 1.7208 0 _ 0.664
o /VRex o '\/Rex o '\/Rex
Boundary layer shape factor

H = o =2.5916
0
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aa

The Blasius equation can be expressed as
dt
T

= —Fdo

3

Vorticity at the edge of the layer decays exponentially with distance from the
wall. This support the approach where we divide the flow into separate regions

of rotational and irrotational flow.
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1.
Free
stream
0.8
Fa
0.6}
0.4
0.2}
Wall
, , ) ) o«
1 2 3 4 5

Fig. 10.4. The Blasius velocity profile.

c ©  0.664
f0 = = .
1pU2 ™ /Re
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Numerical solution

1t - A Tg = 0.46965
Iteration 3 T, = 0.4
0.8 Iteration 2 *
Fa ? TO = 0.3
Iteration 1
0.6 —
T = 0.2
0.4}
0.2
. . . .«
1 2 3 4 5

Fig. 10.5. Iteration process leading to the correct match with the free-stream boundary
condition limy_, o Fp = 1.
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The Blasius equation is invariant under a dilation group and
this group can be used to generate the solution in one step!

a@ = éba,

F =ePF,
o ,—2b
FCY € Fou

1 =¢2(0.566067) = b= —0.284557.

Ty = 0.46965
Fg 1r Target
F (@)  solution
0.8
T, = 02
0.6 0 Tnitial

Fola)  guess

F1g }0.6. Mapping of an initial guess to the correct solution along the pathlines of the
dilation group of the Blasius equation.

F_[0]=¢(02) = F_[0]=0.46965

ool
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Another perspective: the dilational symmetry of the problem

VYV, —V.V,, =VY,,

y(x,0)=0 v, (x,0)=0 v, (x:)=U,
Transform the governing equation
b

XxX=e"x y=e’y U =ey

~ 2¢c—a-2b 2c—a-2b

WiV — Wil — VW =€ vy, -e€ yy, —ve Yy, =0

The equation is invariant if and only if

2c —a —2b=c—3b.

a b ~ a—b

X=e'x y=ey y=ey
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Transform boundary curves and boundary functions
At the wall
1/7(56,0) =0

= e“‘bl//(e“x,O) =0=y(x,0)=0

all x all x

1/7y ()'Z,O) = 0|CM = e“‘zbl//y (e“x,O) =0= v, (x,O) = O|

all x

a=2b a _
=€ Y (e x,oo) =U_

'ﬁy ()NC’°°) =U.,

all x

The freestream boundary condition is invariant if and only if a =2b
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The governing equations and boundary conditions are invariant
under the group:

~/

X=e""x y=e"y W =ey

The infinitesimal transformation. Expand near b =0

§=2x =y n=vy
Characteristic equations Since the governing
equations and
dx — dy — dy boundary conditions
2x 'y vy are invariant under
_ the group we can
Invariants o= =Y expect that the
Vx Jx solution will also be
invariant under the
We can expect the solution to be of the form group.

v =JxF(a)
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9.7 Falkner-Skan laminar boundary layers

du,
YWy = Va¥yy ~ Ve = V¥yyy = 0. (9.111)
Free stream velocity .
U = Mxﬁ (9.112)
e - .
ir=1"F. (9.113)

Substitute.

(28-1)
RTINS TN BM x -V, =0 9.114)



~ a ~ b ~ c
X = e Xx y =eYy Yy =eyY (9.115)
L L 2.2-1 .
Vs¥iy — Wx¥yy —PMIx - Vs = ©0.116)
2c—a-2b 2B-1 2 2p-1 ~3b, -~ '
et (wywxy—wxwyy)—e( g )a(ﬁM x )¢~ Y555) = 0

For invariance we require the parameters to be related as follows
2c—a-2b = c-3b = (2B-1)a. (9.117)

Boundary functions and boundary curves must also be invariant.

~

y = eby = 0$y = 0
P(x 0) = e p(ex, 0) = 0=y(x,0) = 0 (9.118)

Cc

P3(3,0) = € Py (e"x,0) = 0=y (x,0) = 0
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Free stream boundary condition.

- . _ B
1/)5)()6, ) = e bt/)y(eax, ) = eﬁaMx (9.119)
For invariance

c—b = Ba (9.120)

The group that leaves the problem as a whole invariant is

2 1+p

]—ﬁb
X =e x y==ey Y = e Y (9.121)

Y _ - p|lY 9.122)
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In summary

dU

e —
VyWyy = Wi¥yy ~ U — V¥, = 0. (9.111)

Allow for a virtual origin in x

B
U, = M(x + x,)

it =P 1.

Dimensionless similarity variables

i
M\ 2 y
@ = (3)
2v (1-pB)/2
(x + x;) . (9.123)
F = v
(x+ xo)(z n ﬁ)/2(2vM)1/2
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(x + x) P TI(F (1 + F - (1~ p)aF,) -

(9.124)
F ool (1 + BYF = (1= B)aF ) -2B—F g0,0,) = 0
The Falkner-Skan equation.
2
F,,,tU+BFF_ —2B(F,) +28 =0 (9.125)
F[0] = 0 ; F_[0] =0 ; F [o] =1 (9.126)

dU,/dx<0 dU,/dx>0

,,,,,,,,,,,,,,,,,,,,,

B = —0.0904

(zero shear stress)

B = -0.07
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Homework 4

AA200A Homework 4 2013 -2014
Due Tuesday April 29
Read Chapter 9

Problem - Consider a zero pressure gradient laminar boundary layer on a flat plate with mass transfer at the
wall. Let the vertical component of velocity at the wall be a power law of the form

V(x,0)= Mx”

Identify a value of ﬂ that leads to a similarity solution. Numerically solve this case and show how the
blowing affects the skin friction coefficient at the wall.

Chapter 9, Problem 6
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9.5 The von Karman integral equation

Uelx) Po(x)

y
A | A

/_» U(y) p(Y) 5()6)

T "
w

»
|

Figure 9.7  Boundary layer velocity and density profiles.

____apU.*.M =0

ox dy

(9.64)
opU’ opuv _ 4P, 0Ty

dx dy  dx ay

Integrate the boundary layer equations with respect to y

£ (70 - o

(9.65)
8(x) (3pU° 8x) (apUV\ S 4P, 8(x) (ITxy
N A A L A v LA A e L
46 14U, Cg
Zi—+(26+6 )——; e —2— (9.80)
6*
Shape factor H == 081)
46 pdU, C;
C7—+(2+H U, = > (9.82)




Stanford University Department of Aeronautics and Astronautics

boundary layer parameters.

. 2 U,dU
From the momentum equation Y = __¢ ¢
5 2 v dx
Yl 2o
2
udu, U
From the von Karman equation U - (2+ H)g-S—2¢ 4 <49
dy y=0 v dx v dx
(9_2)«72_11 _ g9l
Nondimensionalize using 6 and U, Ue) gy° -0 v dx
2dU, U, p9°
6\ dU 0 e ed0
@)% e nw
y=0
2\ .2
. 6°\o°U 0\ U
Deﬂne m = (—[j-e);—z— l(m) = (ﬁ;);’};

Thwaites argued that there should exist a universal function relating m and /(m).

U 2
"5%% = 2((2 + Hym + (m)) = L(m)

9.8 Thwaites' method for approximate calculation of

(9.151)

(9.152)

(9.153)

(9.154)

(9.155)
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04 -] T

t(m) NG

2,7|,ﬁ —

=" T e

1
2 ="

S— — | W E— -
012 0.10 -008 006 4y 004 -0m -00
[

-02

Thwaites suggests using

L(m) =045+ 6m

20.10-0.08-0.06-0.04-0.02 00 0.02 0.04 0.06 0.08

m

Figure 9.14 Data collected by Thwaites on skin friction, [(m), shape factor
H(m) and L(m) for a variety of boundary layer solutions.
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Thwaites functions can be calculated explicitly for the Falkner-Skan boundary layers

o 2 a 2
m = Faaa(O)U Fa(I—Fa)da) = —Zﬁ(f Fa(]—Fa)da)
0 0

I(m) = F,(0) faFa(] ~F)do
0

(9.157)
o
, (I-F,)da
H =
(m) = =
F (I-F,)da
0
0.10 dU,/dx<0  dU,/dx>0 04 . _— — : — — : 4 e
b ~ !
. t Se 1
005 1, 03 . | 3
mo £(m) | H(m) —m00® ¢
[ 0.2 | 2
0.00
o y 0.1 . !
-005 ! .. ! 1
Lo : * . . 0.0 — . — e | R
010 4 L -0.10 -0.05 000 5 005 : 0.0 RIT) -0.05 000 ;4 005 i 0.0
-02 100 02 04 8 06 08 10 B=0904 B=0904
0.904

Figure 9.15 The variable m definedin (9.154) versus the free stream velocity Figure 9.16 Thwaites functions for the Falkner-Skan solutions (9.157).
exponent f for Falkner-Skan boundary layers.
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N. Curle adjusted Thwaites' functions slightly especially near separation.

TABLE 5

Universal functions for Thwaites’s method

m U(m) H(m) m U(m) H(m)
—0-25 0-500 2-00 0:040 0-153 2-81
—0-20 0-463 2-07 0-048 0-138 2-87
—0-14 0-404 2-18 0-056 0-122 2:94
—0-12 0-382 2-23 0-060 0-113 2-99
—0-10 0-359 2:28 0-064 0-104 304
—0-080 0-333 2-34 0-068 0-095 3-09
—0-064 0-313 2-39 0-072 0-085 315
—0-048 0-291 2-44 0-076 0-072 322
—0-032 0-268 2-49 0-080 0-056 3-30
—0-016 0-244 255 0-084 0-038 3-39

0 0-220 2-61 0-086 0-027 3-44
+0-016 0-195 2-67 0-088 0-015 3:49

0-032 0-168 275 0-090 0 3:55

Figure 9.18 Curle’s functions for Thwaites’ method.

05 T . T ] 1.0 [ [Thwaite’s —5, ]
Falkner-Skan solution 1 | method
04 i 3 / 1
[ (m) | 0.5 Falkner-Skan solution Curle’s |
03 ! L (m) | \ method |
| | 0.0 | Thwaite’s method and
0'2 | Curle’s | | Curle’s method ccincidc\
| method | |
i -05!
0.1} i
| Thwaite’s | | H(m)=0.441+6m
method \‘ |

0955 ~020 —0.15 010 —005 000 005 010 =935 -020 —0.15 ~DN0 005 000 005 0.10
m m
L(m)
Figure 9.17 Comparison between Curle’s functions and Thwaites’ functions.

Several researchers of the era suggest using
L(m) = 0441 + 6m. (9.158)

which is consistent with the friction coefficient for the Blasius case
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The von Karman equation becomes

d 92 92 dUe
U,=(%) = 0441-6(=) — (9.159)
which integrates to
X
o? = 041V Ue(x')5dx' (9.160)
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The procedure for applying Thwaites’ method is as follows.

1) Given U (x) , use (9.160) to determine 6 (x).
Atagiven x:
2) The parameter m is determined from (9.154) and (9.151).

_B_ZdUe

m =
v dx

(9.161)

3) The functions /(m) and H(m) are determined from the data in Figure 9.18.

4)The friction coefficient is determined from

C, = =—I(m). (9.162)

5) The displacement thickness 6*(m) is determined from H(m).

The process is repeated while progressing along the wall to increasing values of
x . Separation of the boundary layer is assumed to have occurred if a point is

reached where [(m) = 0.
The key references used in this section are

1) Thwaites, B. 1948 Approximate calculations of the laminar boundary layer, VII
International Congress of Applied Mechanics, London. Also Aeronautical Quar-
terly Vol. 1, page 245, 1949.

2) Curle, N. 1962 The Laminar Boundary Layer Equations, Clarendon Press.
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Example - surface velocity from the potential flow about a circular cylinder.
U

e

_€ - 2sm<§) (9.163)

)
/ R —2Sm
v, X ) 6=x/R

Figure 9.19 Example for Thwaites’ method.

z 0441
(g) R, = n’(¢)dg 9.164)
Sin (¢
U_2R
Re = y (9.165)

Thwaites' method gives a finite momentum thickness at the forward stagnation point.
This is useful in a wing leading edge calculation.

lim R 0441 odp = 244 9.166)

¢—>0 0 6
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The parameter m.

g°dU, - 2. d(Ue) _ 0.882C0s(9)
v dx % Sin6(¢) 0

-0.1 '\
o2 m(9)
0.0 0.5 10 ¢ 15 20 3”? /4
Figure 9.20 Thwaites’ functions for the freestream distribution (9.163). Figure 9.21 Friction coefficient for the freestream distribution (9.163).

Figure 9.22 Boundary layer thicknesses and shape factor for the freestream
distribution (9.163).
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9.9 Compressible laminar boundary layers

The boundary layer admits an energy integral very
similar to the one for Couette flow.
dpU + apV _
o0x dy

0

oU oU dPe+_<_9_< a_g)
ox p dy  dx 9y ”ay

UM 2
“u(3)

Let T = T(U) . Substitute into the energy equation.
Use the momentum equation to simplify and introduce

the Prandtl number
e+ o)+ [ ) + (<5

pUC —+pVC — = U—=+ —

oT oT _ 4P a<Kg)
Pox Poy dx 0dy\ dy

dx\"rau ") T au ay\M oy

= 0
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Adiabatic wall, Prandtl number equals one.

1
T,,-T = ZTU
TW =T +2_-C—U
T, 2 )7 T T,

Stagnation temperature is constant through the boundary layer.

Non-adiabatic wall, zero pressure gradient, Prandtl number equals one.

1 Qw
T =T +—U_ U
w o0
2C erp 0.
Cf - ZSt St B pooUoon(Tw_T a)
2
=T (.U (Y U<]__U_>
T, T,)Us \2C,T)U,\" U,
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U,(x), T,(x),P,(x)

y

A w~T
— \\\\\

0
U(y) oUdy
P(y) 0
ZZ7 27 7777777772 — X

T

Real compressible flow

9.10 Mapping a compressible to an
incompressible boundary layer

U, (%), Po(%)

Ll
=

L L L

Virtual incompressible flow

Figure 8.8 Mapping of a compressible flow to an incompressible flow.

Flow at the edge of the compressible boundary layer is isentropic.

p, = pe<1+<

Yy —1
2

)MZ)I/(Y—J)
e

"

P

|

L

T

(4

)Y/(Y—I) (

a,

a
(4

)(2Y)/(Y—1)
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Assume viscosity is linearly proportional to temperature

T +T
u T &=(_T_3/2(t S)
— = O T T+T
u, T, U ) +iy

1/2
Viscosity of the virtual flow is the viscosity of the gas o = (ZT”—”) (TT’J;TTS)
evaluated at the stagnation temperature of the gas. veos

t

Continuity and momentum equations ItP = Itheno =1

gpU  dpV _ , T - Sutherland
o0x dy reference
temperature
oU U 199, 19/ aU\ 19Ty <
UO—+V— = - =—+=-—(u—\| + - :
v 0 pay(“’ ay) T 110K for Air

Transformation of coordinates between the real and virtual flow
X/P (a
X = of (——e(—f))dx' = f(x)
o\P:\ 9
a 1
- (—E)Jy(——p(x’y))dy' = g(x,y)
aG)JoN Py

=
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Partial derivatives

X Pe A
e i)

t\t

—_ = = (
0y fy

dy _

Py 8 =177

0y _ , _ (Ze)(p
a0y - gy Bl (at)(p)

Introduce the stream function for steady compressible flow. Let

oy 0y
U=p— V=—p—
Real and virtual stream functions have the same value.

Y(x,y) = P(x(x), ¥(x, y))
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Partial derivatives of the stream function from the chain rule.

oy _ 99o%, 09oy _ 0pdi , 990
dx  dxdx dydx  dxdx dydx

oy _ 99ox 9905 _ 093
dy  dxdy 9dydy dydy

Velocities Uzp_’a_”’: 62@: a_ef]
p dy ay a,

Pray op (P a )aw Ptampay

vV = 12 % =
p dx p{P,adx pdyodx

Partial derivatives of U from the chain rule.
AU _ 0 (%) ow dx+i a_w 9y _
ax  dx ;) 0y )dx ;) 8y ) dx
Oliea_ez <1 aaeaw+azfp NEREKE
Pla dx dy 9xdy %) 53

~\ o~ ~\ o~ 2 ~
W _ 3 ((%)00)0%, o (%0)2)55 _ (%) o’p
dy  dx\\a,)dy)dy dy\la,)ay)ay a, p) 65)2

[\
°’|
= I
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Convective terms of the momentum equation

U U
Vax *V5%y =
3 Noi (520 85
P,la, ( )aa (aw>2 o 8" o (9°Pd
ol =|— + — - — | —==| -
P\ a, ax \ady 0y 0x0Yy at oy 65}2 X

(o e ()" (LD 28, (%) (D) oy
P,a|\a, ay ax at 65)2 dy 0x

Cancel terms

U 9U
UB; v-a?_
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Pressure gradient term 2y
-1
P, ay
Yy +1 y+1
Wo | 20 (97701 Dedx _ (Pe(0e)) 2V (061701 2%
dx  (y-1) a, a,dx dx B Pla,)|(y-1)\a, a, dx
y+1
2 T
e ol )| () L
dx P,\a, (y - 1)\aq, a,dx
Now
oU aU 19P,
U—+V—+-— =
ax dy pdx (6(]))2
5 Po(a\(op 0”9 (9°D) oD . ay
P\a,) )\ 059505 | 552) 0%
2
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At the edge of the boundary layer

_ da _ dU
a’ = ai + (Y—Z 1) Ue2 Le . —(Y—————I) U —=

Now
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Note that 2
2 v ]
2(y —1)(%) IYPt(ae Y
U > = e =
Zae a, pae a4
2y 2
2 v _ ] v 7
Uzw—n(f_r) +8_ev_”f_1_(fz)v (?_e)Y g
2a§ a, P P a‘e2 a, t
2 (y-1),,2
a, af
Where we have used
2v/(y-1) 2

Pt/Pe=(at/ae) yPe/p=(yP)/p=a
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Viscous term. Note  p7 = P/R = Pe/R

|laminar

Q
=
-~
—_
Q|Q
o
N———
N
P S
N
h\_l/
NN
'O|-o
oY)
'~<z|°-’
NN
Q|
\<|-€—
S———
|
Q
T
Q|Q
o
S~N———————
N
P S
Lo
N
\_/
P S
=
-~
Q.>|°-’
<« 1
S———
[l
Q
e
Q|Q
o
N————
N
—_
NS
-~
N~——————
1]

3
19 1P¢(%\" 4 /-

TR ET
PIY\ *Vlturbulent p,P;\a;) 9y turbulent
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The boundary layer momentum equation becomes

dP
U.a_U+ V.a_U+ 1._e_£_a_(MaU) —
dx dy pdx pay

3 - - - -
P 0y 9xdy | .~2)ox|
a yoxady 9% X
)i

t\t

2 (y=-1),,2
3 4
w3 =5 -
Pt at e af € dx
3 ~ 3
MtPe ae 6311) 1 Pe ae 0 /~
o——|—| [—|-0o—=|— —:(1: ’ ) =0
PP\ a, 35,3 p;P;\a;) oy Ylturbulent
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Drop the common multiplying factors

2 (y=-1),,2
o 2 -\ - 4(a” + U
dy 0x0dy 6572 0x a, af ¢ dx
3.~
K¢l 0 1 90 ,-~
MO Lo
P; 9y P9y turbulent
~ a,
Ue - a—Ue

~ 2
- dU, 4y 1 2 (y—-1,2 du,
Uegz = (5’) (7)(“e+< 2 )Ue}Uedi =
e
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Now the momentum equation is expressed entirely in tildaed variables.

2 (y-1),,2 .
~ 2~ A\ o U
o 9% B 9’ ) o1 - ¢ T l~]dUe_
L . 2 R o
0y dxady 85;2 0x a2 dx
t
W 33{1) 19
o\ 557) B rputend) =
P; 3y P,0y turbulent
~ d ~ d
=2 AL
ay - 9x
2 (y-1),2 .
(032 ()9 -| gy
0Xx ay a2+(y—1)U2 € dx
e 2 e
3’0\ 10
V| —|-—%= =
t( 35,2) ptay( ‘turbulent)
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For an adiabatic wall, and a Prandtl number of one the factor in brackets
is one and the equation maps exactly to the incompressible form.

~ ~ -~ 2~
~oU (dU\N=\ = AU, (3°U\ 1 9/~
U ,,+( ~>V>—U——=——v —————-z(r ):0
( 0x ay ¢ dx t( 65)2) p,0y xy‘turbulent
with boundary conditions
U) =0 V(0) = 0 Uu®) =U,
Skin friction
1((& f_)
Eff = Ty _ o\4) Pe) ™ _ lpept( Ty ) _ ]th
T =2 2 _ opP 2| ~ oT. [
(1/2)p,U, (1/2)(& N &) Ui OPe\(1/2)p,U; oT,
C
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~ ~ g 2~
~oU  (dU\z\ = 4Ue (9°U) 1 9 -
U—~+<—~)V)—U < v |22 ——-—:(r ) =0 (9.143
< 0x ay ¢ dx t( 85)2) P, 0y xy’turbulent ( )
with boundary conditions
U0) = 0 V(0) = 0 U®) = U, (9.144)

The implication of (9.143) and (9.144) is that the effects of compressibility on the
boundary layer can be almost completely accounted for by the scaling of coordi-

nates presented in (9.112) which is driven in the y direction by the decrease in

density near the wall due to heating and in the x direction by the isentropic
changes in free stream temperature and boundary layer pressure due to flow accel-
eration or deceleration imposed by the surrounding potential flow.
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In order to solve for the physical velocity profiles we need to
determine the temperature in the boundary layer. Look at the case

dUe/dx =0 Txy‘ =0

turbulent

_ _ _ _ 1 .2
The energy equation was integrated earlier 7 =T7,- 2—C_I;U

r = 1+ ()M ()

e

Use U/U, = (~J/(~Je and PT =pT,

£l (8) 5

(4

We need to relate wall normal coordinates in the real and virtual flow

o (e ()
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The spatial similarity variable in the virtual flow is

~

3 i Ue 1/2
*= 2v x
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Spatial similarity variables in the two flows are related by

o = (1 (552 (2)

a(d) = & +<\%])M§f:(] _(g)Z)da.

a, = 4.906/ 2 = 3469

a, = 3469 + 1.67912(\%])M

The thickness of the compressible layer increases with Mach number.



Now

5 10 5 N
t’Ut‘ U -

y(P J [ PU.
2u,x 2u,x

Figure 8.9 Compressible boundary layer profiles on an adiabatic plate for

15

Pr = 1, viscosity exponent ® = 1,andy = 14.
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9.11 Turbulent boundary layers

P
P, i vw) transition v®)
Te | - | 6turbul ent
Us y > laminar X
_> % 11111111111111111111111111111111 _»w
—> _

Figure 8.10 Sketch of boundary layer growth in the laminar and turbulent
regions.

Impirical relations for the thickness of the incompressible case,
useful over a limited range of Reynolds number.

0 0.37 : 0 0.14
- = Or for a wider range of —
. wi g el G(Ln(Rex))

r 173 Reynolds number x In(R

ex ex)
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—P>
Poo
P, i M» transition u®)
— .
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* | /3 6turbulent

3 5laminar X
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\

i
/
T

Figure 8.10 Sketch of boundary layer growth in the laminar and turbulent
regions.
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Klebanoff [24]u”
Klebanoff [24] v’
Klebanoff [24]w’
Presentu’
Presentv’
Presentw’

(b)
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Klebanoff [24]
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The incompressible wall friction coefficient

Transition depends on plate roughness,
free stream turbulence, etc.

Cf:/

0001,  Laminar solution
\ 0.664 Turbulent measurements
- ’ =
0.0005 R,
0.0001 ;
0.00005
10° 10° 10° 107 10°® 10°

R

ex

Figure 8.11 Friction coefficient for incompressible flow on a flat plate.
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An impirical form of the velocity profile; the so-called 1/7th power law

1/7
£

e

The problem with this profile is that it fails to capture one of the most
important features of the turbulent boundary layer profile which is
that the actual shape of the profile depends on Reynolds number.

A much better, though still impirical, relation is the law of the wake
developed by Don Coles at Caltech coupled with the universal law of
the wall. In this approach the velocity profile is normalized by the
wall friction velocity.

T
ur= | T = ng Reference: D. Coles,
P w oy y=0 The Law of the Wake
in the Turbulent
Define dimensionless wall variables Boundary Layer, J.
Fluid Mech. Vol 1,

Y, u*



Stanford University Department of Aeronautics and Astronautics

The thickness of the boundary layer in wall units is

*
5t = ou
A%
and
u* (Tw)”z B ( ﬂ (00592)“2 0.172
U 2 o\ 2 1/5 1/10
€ pUe Rex

7/10

1/5 1/10
R

ex ex

*Ux
+ durYYe _( 0.37 )(0.172)Re — 00636R’
R

Once the Reynolds number is known most of the important
properties of the boundary layer are known.
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Velocity profile

1.0, 25

U 0.8 20
0.6}
Ue 15}

0.4

0.2

”1‘1_0 02 04 0.6 0.8 1.0 5 10
' /8 Y

Figure 8.12 Turbulent boundary layer velocity profile in linear and log-lin-

50 100 500 1000

ear coordinates. The Reynolds number is R, = 1 06

, +
Viscous sublayer -walltoA 0<y <7

U+=y+
+

Buffer layer-AtoB 7 <y <30

+

yho= U++e_KC<eKU —]—KU+—§(KU+)2—é(KU+)3——ZIZ(KU+)4)
Logarithmic and outer layer - Bto C to D dP,/dx = 0,11 = 0.62
v Lyt M(x)g,2(ny” _ _
Uu = Kln(y )+ C+2 . Sin (25+) C=5.1 k=04
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1 .O Re_r — l()l()

N

Blasius solution

00002 03 6 0% 70

+ +O
y'/6

Figure 8.13 Incompressible turbulent boundary layer velocity profiles at sev-
eral Reynolds numbers compared to the Blasius solution for a laminar

boundary layer.

Measurements of velocity in the logarithmic layer can be used

to infer the skin friction from the law of the wall.
C increase with increasing roughness Reynolds number

* ks Roughness height
U 1 y
— = =In((==) +C ki
=3 < H
U vV o= Hydraulically smooth
ku
R = > 100 Fully rough

1%
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Separating turbulent boundary layer

VERTICAL SCALE _ 24
HORIZONTAL SCALE - 6 ‘ |

MEAN VELOCITY

t725 185 135 205 ks 225 235 245 2527
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The method of M. Head 1960 applied to incompressible
turbulent boundary layers

e A A T

R A A Attt | ; x

At any position x the area flow in the boundary layer is

Q

This can be arranged to read

Q= J.osUdy: JOSUe

Entrainment velocity

d

e

dx

V,=—(U

a’y—jer 1—% dy=U,(5-5")

e

* Reference: M.R. Head, Entrainment in
e (5 - 5 )) the Turbulent Boundary Layer, Aero.
Res. Council. R&M 3152, 1960
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Head defined the boundary layer shape factor

5-6
- 6=0)

His model consists of two assumptions:

1) Assume
U, U, 4o UA0-8)=F (1)
2) Assume .
H =G(H) H=o
0

In addition he assumed that the skin friction followed the
impirical formula due to Ludweig and Tillman

_ 0246 U
f 100.678H R90.268 0 — v
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0-01 A \g’b _
*z ﬂ%":ﬁ: =
0 2 4 [ 8 10 12
Ho-g= ,
¥ 1 d 1 .
1G. 1. T [U(8 — 8*)] as a function of Hy_. .
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FIG. 2. Variation of Ho\_a* with
conventional form parameter H.

0.8702

G(H)=3.0445+ TR
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Several classical references recommend different functions for F and G

Calculation of Separation Points in Incompressible Turbulent Flows
T. CEBECI, G. J. MOSINSKIS, AND A. M. O. SMITH

Douglas Aircraft Company, Long Beach, Calif.

J. AIRCRAFT VOL. 9, NO. 9

Also

Boundary Layer Theory H. Schlichting

Recommend
Schlichting uses 0.0306

Entrainment Relation /

(1/u)(d/dx) (w0 H,) = 0.0299(H, — 3.0)~ 06162 (5)

Shape Factor Relation +3.3 is missing
H; = G(H) where
0.8234(H — 1.1)~1-287 H<1.6

G(H) =
(H) {1.5501(H—0.6778)‘3'°6“ +33 H=16
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Cebeci - Schlichting

15 /—r 25 30 H
5:4\ -10
15 55
G Gap - aG
5.1 dH . . .
10 '
/ 156 158 1.60 1.62 1.64 _30 Dlscontlnurty
5 ~— —40
=50
1.0 1.5 20 2.5 30 H

| prefer a single smooth function

20
0.8702 1.5 ; 25 30 H
N G(H)=3.0445+ TENG 10
G aG dG  0.8702x12721

10 dH dH - (H _1 1)2.2721

-30 '
5

—40

10 15 20 25 7o H -5
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Comparison

20
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From Head’s paper

2.3. Determination of Functions F and G. For this purpose the experimental data of Newman?
and of Schubauer and Klebanoff®> have been usedf. In each case values of 3 were obtained from
tables of the measured profiles, & being arbitrarily defined as the value of y for which #/U = 0-995.

From the values of 8 and the corresponding values of H, 0, U and #, the quantities -ll—]—g—c [U(s — §%)]

and H;_; were obtained and are shown plotted in Figs. 1 and 2. If the assumptions made in the
previous Sections had been correct, and if both the analysis and the experimental data had been
~entirely free from error then, of course, the points obtained from the two sets of results should have
coincided with common curves defining the two functions. In fact, however, as will be seen from
the Figures there is considerable scatter of the points, and in Fig. 1 there is a fairly marked and
consistent discrepancy between the two sets of results which makes the drawing of a hypothetical
common curve, representing the function F(H;_;), a somewhat arbitrary procedure. However,
such a curve has been drawn, its justification being found a poszeriorz, in the accuracy with which it
has enabled the form-parameter development to be predicted in the cases considered below. The
curve relating H;_s to the normal form parameter H is rather more accurately defined, although
here also there is some discrepancy between the two sets of results, and the values of H given by
Schubauer and Klebanoff for the region where the pressure gradient was favourable appear
somewhat high. '
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Typical range of H vs R, for turbulent boundary layers

I8
( 4 N‘ﬁ + N
+ T‘:?;‘min o |
T+ .-‘:-‘t“ .|.‘; +\.*¢‘Fh
3 =
+ R P
H | + EXPERIMENT (SMITH AND WALKERS) A
- PRESENT CALCULATION
'8 }= — — _ COLES®
o
O
| 2 3 4 5678310 20 30 40 30

REYNOLDS NUMBER (MILLIONS)

F16. 3. Flat-plate results compared with experiment.
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Recall the von Karman integral momentum equation

do pdU, C;
i —_ = L 82
&g = 3 052

For given initial conditions on theta and H and known
free stream velocity distribution U.(x) this equation is
solved along with the auxiliary equations

0.246 U0
Cf — T N0678H 15 0268 Ry =
10777 R, v
1 d 0.0306
— Y (UeH,)=F(H,)=
Ue dx( e 1) ( 1) (H1_3.0)O.6169
0.8702

H =G(H)=3.0445+
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Zero pressure gradient turbulent boundary layer C, = 0

172 30,
100000 R, .. =0.664 ( R ) H(R,,;,)=17028/0.664 =259
25
80000 _
R.. =10,000 2o
0 60000 H
1.5
40000 Lol
20000 05
0 2><I107 4><.107 6x.107 8><.107 1><.108 ex 0 2x107 4x107 6x107 8x107 1x108 Rex
0.0050 0.0592
R 1/5
Ln (C f ) e
0.0030
Ludweig-Tillman
0.0020
Blasius
0.0015 L
\ n (R )
10° 109 107 ex
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Potential flow about a circular cylinder

Ye _ 25in<-}§> (9.163)

U,(x
‘ / = m
R PAY!
U, X ¢=x/R
_> ¢

Figure 9.19 Example for Thwaites’ method.

2 0441
(I-g) R, = n’(¢)dg 9.164)
Sin (¢ 0
U,2R
R, = — (9.165)

Thwaites' method gives a finite momentum thickness at the forward stagnation point.
This is useful in a wing leading edge calculation.

Jim B)R 0441 dy = 2441 9.166)
R , 6
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1/2

1000 R 0.664 R 4,
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9.12 Transformation between flat plate and
curved wall boundary layers

Boundary layer equations

apU+ apV — 0
0x dy
dP, dt
pUﬁj + pVaU -2 =9
0x dy dx dy
dP, aQ
pUC or +pVC o _y Y AT

_'E ——
Pox Poy dx 0y XY dy
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Transform variables by adding an arbitrary function of x to the
y coordinate

¥ = x 0U _ U _dgaU 9P _ dp
y = y+g(x) 0x dx dxdy ) ady dy

_ dg(x) ay 0y 0x dx dxady
V(-x’ y) = V(X, y)+U(xa y)T 62(~J aZU ai-v oT
= — = 5 " oy
p(x y) = p(xy) 05 8y Y y

.. (X%, y) = ~ 0 0
Tey(% ¥) = Ty (5 y) vV _ aV  dgoU _agy _ _aQ_y
S e 3y  dy dxady y y
ap a_p _ (156_9 atxy(x, y) _ a'cxy(x, y)

P, (%) = P,(x) L =

_~oU _-oU oP 07 oU dg ( dg\oU oP. 0t oU oU oP, 01
U—+pV—+—=-—=pU| ——F— |+p| V+U +—~-—=pU—+pV—+—=—-—=
P P e e o F (ax /zfag ) P A ay oy a Py T
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Insert the transformations of variables and derivatives into the

equations of motion. The result is that the equations are
mapped to themselves.

ap~U+ap~V _ o”pU+c9pV — 0
ox dy 0x dy
~~5(~] ~~0"(~] di)e a%xy U oU dPe a":ch
U—=+pV—=+———=pU— + pV— + - =
Prax TPV T ax oy PP ax TP ey T dx T oy
= T .~ . dT =-dP, 00, . ol
UC —+pVC —-U——+ —= — - =
P pax TP ey TV ax T oy oy
dP, 9Q
pUC £+pVC I _py—e, 23 1 W _

Pox Poy dx dy X dy
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Vxu = 0

U,(x), P(x)

Vxu#0

Figure 9.29 Mapping of the boundary layer developing over an airfoil to the
boundary layer on a flat plate with a pressure gradient.
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Viscous-inciscid interaction algorithm

An iterative algorithm can be used to determine the viscous flow over a complex
shape such as the airfoil shown in Figure 9.29

1) Solve for the potential flow over the airfoil.
2) Use the potential flow velocity at the airfoil surface as the U (x) for a bound-
ary layer calculation beginning at the leading edge.

3) Determine the displacement thickness of the boundary layer and use the data
to define a new airfoil shape. Repeat the potential flow calculation using the new

airfoil shape to determine anew U (x).

4) Using the new U ,(x) repeat the boundary layer calculation.

A few iterations of this viscous-inviscid interaction procedure will converge to an
accurate solution for the viscous, compressible flow over the airfoil.



