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14.1 Compressible potential flow

14.1.1 The full potential equation

Governing equations

V+(pU)=
V(U-U}LVP _o
2 p

P_ (ﬁ)y
B \po
The gradient of the isentropic relation is

VP = a Vp.
Note that

)= (5)%

The momentum equation becomes.

(55 30 =0
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The continuity equation can be written in the form
— 2 2 —
UeVa +(y-1)a VeU = 0.

Equate the Bernoulli integral to free stream conditions.
2 2 2

2 = = U a
a UelU % oo oo( y—1 2)_ _
- = ] _‘—"M —CT—
=1 2 y—1+2 y—IU T2 e pTe=h,
Thus (QZJ Uell
= h —
y—1 ! 2

The continuity equation becomes

(y—z)(ht—U‘U)v-U-U-v(U‘U) =0

2 2

In terms of the velocity potential U = V&

Vb e VO Ve VD Full potential
(Y- 1)(’1,— —2——)V2‘p* Vo e V(_Z__) = 0. equation




B;E%{i}i?&% 14.1.2 The nonlinear small disturbance approximation

ASTRONAUTICS

Flow past a thin 3-D airfoil

4"
U U_+u /y=f(x,z)

L»X
U=U_+u
V=uy
W =
where
u/U_«1, v/U_«1, w/U_ «1.
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freestream values

=P_+ P
T =T_+T
P=P+P

and

— U
a = aoo+a.

Now substitute this decomposition of variables into

(y—J)(ht—U;U)v-‘U-U- V(U;U) = 0

11/15/20
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2 2 2 2 2

V(U;U) = (uono+uux+vvx+wwx,

u U +uu_+vv_+ww
y y y

uZUoo+ uu, + vvz+wwz)

Ue V(U;U) = uin+uuxU°°+vva°°+wwa°°+

uu U +u2u +uvv_+uww_+
X oo X X X
vu U _+vuu +v2v +vww_ +
y Yy Yy y
11/15/20
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Neglect terms that are third order in the disturbance velocities
and divide through by the freestream speed of sound squared.

Small near Mach one

(Y—UO@—Q%Q)VoU—UoV{U;U)E

) (y+1)M_,

/(1 -M_)u, + vy +w, — ————5—————uux_
MOO
E—((y— ])(uvy - uwZ) + vu, +wu, + Vv, + wwx)

oo

We can neglect all of the quadratic terms except that involving the
derivative of u in the x-direction. The small disturbance equation is

(y+ )M,
+w, - . uu, = 0.

oo

2
(1-M_)u, +v,

Introduce the disturbance velocity potential @ = U.x+ ¢(x, ¥, 2).

5 M_ Transonic small
(I-M_ )¢+ ¢y + ¢, = (¥ + ])—a—¢X¢xx disturbance
°° potential equation
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For subsonic or supersonic flow not near Mach one the nonlinear small
disturbance potential equation reduces to the linear wave equation.

B oux—(9,,+9,) = 0

where f = ,/Mi-—].
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ﬁ2¢xx—¢yy = 0.

General solution for supersonic flow

¢(x,y) = F(x—By) + G(x + By).

x — By = constant
y /

U

M_>1

. -]
U = Sin (I/Moo) \ x+ﬂy = constant
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Potential for the upper and lower surfaces

F(x-By) y>0
G(x + By) y<0

¢(x, y)
o(x, y)

Let y= f(x) define the coordinates of the upper surface and
y = g(x) define the coordinates of the lower surface.

Boundary condition on the upper surface

_df
y=f dx

A4
U
For a thin airfoil this can be approximated by the linearized form

-4
dx
y=0

.
UOO

1
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This can be written as

dP(x, y)

or

o 548

On the lower surface

o= 14)

The linearized boundary conditions are valid on thin 2-D
wings and thin planar 3-D wings.

12
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14.1.4 The pressure coefficient

Work out the linearized pressure coefficient

c, = 1Fe 2 (P )

The stagnation temperature is constant throughout the flow.
The static temperatures at any two points are related by

T _ L_ (% —@w?+/°+wh).

Since the flow is isentropic
_Y_

P 1 2 2 2 2.0\ 1
_ (”2c (Ve (U 4w )))

13
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The pressure coefficient is

Y
1

7_...
C =-41a(1+ ! (Ui—(02+v2+w9») iy

2C,T.,

The velocity term in this equation is small
Ui—(U2 +v2 +w2) = —(2uU°°+u2 +v2 + w2).

The pressure coefficient is approximately

2u 2 u2 v2+w2
C =—-|—+({U-M_) + )

©o ©o

Note that the binomial expansion has to be carried
out to second order.

A
.

14
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dU 1 AP M dP dU
(M~ - 1) (M = 1)
c_P-P _ PP _ dP _ dU

Lov? Ypm> Yyop
2 2 2

For 3-D flows over slender, approximately axisymmetric bodies

2 2
_Zu V +w

p=\T_" >

oo

C

I
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If the airfoil is a 2-D shape defined by the function y=f(x) the

boundary condition at the surface is

df 1%
dx  U_+u

oo

= tan@

For a thin airfoil

?y
U,

i
n
o)

SIS

For a thin airfoil in supersonic flow

c ooz (4
pwall — ( 2 12\ dx)’

M. -1

16
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) 4////////////////1
X
+) //////////////'

Let the y-coordinate of the upper surface of the airfoil be

y(x) = A Sin(’lc’f)

Where C is the airfoil chord and the thickness to chord ratio is small, 2A/C <<1. The
drag integral is

D = ZJ’C(P— P_)Sin(o)dx
0

Where alpha is the local angle formed by the upper surface tangent to the airfoil and
the x-axis.

11/15/20 17
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C

D

Since the airfoil is thin the drag coefficient can be written as

o= 12 = 175 (M)

200 e o]

The pressure coefficient is
P-P_

_ ..__2__52)
CP 1 2 2 (a’x
EPOOUOO M_-1

The drag coefficient becomes

4 - S B

18



TSTANFORD

AERONAUTICS &
ASTRONAUTICS

Potential flow pressure distribution on a symmetric thin airfoil in several flow regimes -
subsonic to hypersonic Mach numbers

| | |
Subsonic | Transonic } Supersonic | Hypersonic
| |
| I I I
I | I I
| | I I
I | I I
XY 7T T T T X | | | |
| | |
| I |
I | I
| I I
| I |
| I I |
I | I |
| | |
| I I
y | | : |
> | | -~ |
Ve ] S B
\ /1N /] \ | I |
' : | |
| [ |
| | I
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Shock boundary layer interaction from Van Dyke

249. Shock waves on a laminar boundary layer be-
coming turbulent. The local Mach number on a curved
plate remains almost fixed at 1.2 or 1.3 as the Reynolds
number is doubled, progressing from 1,320,000 at the left

250. Shock wave in transonic flow over a bump. An
infinite-fringe interferogram shows transonic flow over a
7-per-cent-thick circular-arc bump on a channel wall. The
local region of supersonic flow terminates in a shock wave

to 2,680,000 at the right. As the boundary layer changes
from laminar to turbulent ahead of the shock wave, the
oblique leg of the lambda shock wave gradually disappears.
Ackeret, Feldmann & Rott 1946

that interacts with the turbulent boundary layer on the
wall, as in the preceding two photographs. Délery, Chattot
& Le Balleur 1975

20
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14.1.6 Thin airfoil with lift and camber at a small angle of attack

y

- \>|ly:_5 X

-
C

Upper surface

0)- (2t
) +42) 240

1) © O 40) = ) = 0 0'(%) ;' 0(0) = o(I) = 0

Tan(o) = —g

21
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Lift

= _[Z(Plower N Pm)cos(alower)dx B J.Z(Pupper Bl P”)Cos(aupper)dx

Cos (alower) =1 Cos (aupper) =1
L
__\&_ J' dé - J' g%
1 2 Plower upper C
2 af\ _ 2 d‘L’ dO'
¢ (@) - =1+ *% )

Pu er -
T Mt~ c./M—1
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Drag

C
D = J.Z(Pupper - Pw)Sm(aupper)dx + _[0 (Piywer — Po)Sin(-qy,,,,.)dx

_ D o Pupper_Poo 1 Prower = Poo
CD =7 2 = JO[— Ji UZ (aupper)d§+J‘0 ] 2 (_alower)d5

PV

zpoo oo

~_ dy lower

. —_ —_ T .
Sln(aupper) = aupper = Sll’l(—a lower dx

dx lower) =0

1 1 dyupper 1l dylower
- EJ.OCPupper( dé )dé * EJ‘OCPlower(_ d& )dé

cp = __2___2_2____;[]'(1)(,4% + ng_ 5)2d£j N J(J)(_Agé + Bf?%‘ a)zdé]

co- (R (T e (2 b (1

23
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14.2 Similarity rules for high speed flight

Inviscid, incompressible flow

- C g

Voo
— ¢t1 >

-0.4}

2 2
Governing equation 99, + I, =0

ax;  dy;
Pressure 1,2 1,2
Pt 5PlUcs = Pgp+3PLUs)
Pressure coefficient P -P
Cp = 1 ;
EpooUool

24
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How can we map an incompressible flow to a compressible flow?

, : -
—}ml ¢tl >
M_, <<l
Equation 2 2
a qZI + a ¢;1 — O
ox;  dy,
Airfoil shape
Y1

- = 7,8[x;/¢c] T, = 1,;/c

Boundary condition

9, U dy; dglx;/c]
i = —_ = T, —
ay] y; =0 = dx) body Ui d(x;/c)

¢1x1—)oo -

Surface pressure

25



T;TANFORD

AERONAUTICS &
ASTRONAUTICS

11/15/20

Transform variables as follows

Xy = X N Yy = 1 y . ¢ _ ][UooZ}q)
R P et A\ U0 A
2 [ ]
where A is an arbitrary constant
2824’2 82‘7’2 32¢] 82(1)]_
(]_Mooz)—‘—2+——2=0 : _— —
dxy dy, 32x] sz]
a¢2 dy, dglx, /c] (%J _ Ux[ AT, Jdg[xl/c]
[a_yzlz =0 = sz[‘gzlwdy =U,,7 d(x,/c) :> Iy, y; =0 1 ,71—Miz d(x,;/c)
¢2x2—>oo =0 ¢1x1_)°<, = ¢2x2_)°o =0
The transformation is completed by choosing
¢ T(Z)
Pressure coefficient
2 “ﬂ C, =—C
Cp2 = 7| 7% — P2 Pl
P2 Uw2(8x2 y, =0 A

26
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Prandtl-Glauert rule

2
Choose A = ,I-M_, — ===

In this case the airfoils have the same shape and thickness ratio.

The pressure coefficient scales as

C.. = Cpi
P27 T
[1-M",
M=05 . M =075

inaccurate at the
leading edge

27
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M, =0.40 l
I I

20 40 60 80
Percent chord \

-08pF= K—
Critical Cp

0 I |
20 40 60 80\

0.2 0.2

Experimental
———-— Calculated from values at M, = 0.40

F16. 10-1 Comparison of Prandtl-Glauert similarity rule with experiment. (Experimental
data for NACA 0012 airfoil, taken from NACA Tech. Note 2174 by J. L. Amick.)
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Supersonic case - everything is the same with

1-M? — M -1

(e o)

Mapping

» 99, 99 ¢ 99,
M’—1 - = — - =0 M_ =~
(M2 )Ebé 9y, ’ Y2

Pressure coefficient

This is limited to thin airfoils with no shocks.

29
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Transonic case

2 2
2 d¢; d

6 (v + DMy 99,5 ¢,

dx; Jy;

Transform variables

2
1-m,;, ]

xZ:x] N

The transonic equation is invariant only if

]+y1 ]_MioZ 2

(1 ¥ yz) 1-M2)\ (M2,
M,

Pressure coefficient

2
002
2
co]

1-M2)\ (M

C

1+ }’2)
p2

Cpr = (]+yl

2

Thickness-to-chord ratio
3
2 \2/:,2
1, _ (1+y1) I-M 5" (My; i{

C I+y2 ]_Mi] Mizc

2 2 U g ox 5x]2

Yy = > Y > ¢2:Z
/]—MOOZ

30
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A

(2, /1,)

Other choices of A
Cpy =Cpy b l—Mizl‘—1
C C

Cp is constant if thickness is
reduced as Mach number is
increased

Cp is proportional to
thickness/chord for fixed
Mach number

31
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14.3 Problems

Problem 12 - A thin, 2-D, airfoil is situated in a supersonic stream at Mach
number M and a small angle of attack as shown below.

y

e X y =58 ’
- o —>

The y-coordinate of the upper surface of the airfoil is given by the function .

f(x) = Aé(] - %) - -gx

and the y-coordinate of the lower surface is

g(x) = —A%(] - g) - gx

where2A/C « 1 and 8/C « 1. Determine the lift and drag coefficients of the
airfoil.
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