AA 218 - Problem 8.3

Solve the second order ODE

$$
y y_{x x}-\left(y_{x}\right)^{2}-a^{2} y^{3}=0
$$

Symmetry Groups by inspection

Commutator table

Since x does not appear explicitly the equation is invariant under a simple translation in x .

	X^{a}	X^{b}
X^{a}	0	$-X^{a}$
X^{b}	X^{a}	0

$$
\begin{aligned}
& \tilde{x}=x+s \\
& \tilde{y}=y X^{a}=\frac{\partial}{\partial x}
\end{aligned}
$$

X^{a} is the ideal of the Lie algebra. Use this to achieve the first reduction.

Try a dilation group

$$
\begin{array}{lccc}
\tilde{x}=e^{a} x & e^{2 b-2 a} y y_{x x}-e^{2 b-2 a}\left(y_{x}\right)^{2}-e^{3 b} a^{2} y^{3}=0 & \tilde{x}=e^{a} x & \\
\tilde{y}=e^{b} y & 2 b-2 a=3 b & \tilde{y}=e^{-2 a} y & X^{b}=x \frac{\partial}{\partial x}-2 y \frac{\partial}{\partial y}
\end{array}
$$

First reduction

$$
\begin{gathered}
y y_{x x}-\left(y_{x}\right)^{2}-a^{2} y^{3}=0 \\
X^{a}=\frac{\partial}{\partial x} \\
\frac{d x}{1}=\frac{d y}{0}=\frac{d y_{x}}{0}=\frac{d y_{x x}}{0}
\end{gathered}
$$

Invariants

$$
\phi=y \quad G=y_{x}
$$

$$
\frac{d G}{d \phi}=\frac{y_{x x}}{y_{x}}=\frac{y_{x}}{y}+\frac{a^{2} y^{2}}{y_{x}}=\frac{G^{2}+a^{2} \phi^{3}}{\phi G}
$$

Phase Portrait

$$
\frac{d G}{d \phi}=\frac{G^{2}+a^{2} \phi^{3}}{\phi G}
$$

Second reduction

Use the second group

$$
\frac{d G}{d \phi}=\frac{G^{2}+a^{2} \phi^{3}}{\phi G}=\frac{B}{A}
$$

$$
\xi=-2 \phi \quad \eta=-3 G
$$

Integrating factor

$$
\begin{gathered}
M=\frac{1}{A \eta-B \xi}=\frac{1}{-3 \phi G^{2}+2 \phi\left(G^{2}+a^{2} \phi^{3}\right)}=\frac{1}{2 a^{2} \phi^{4}-\phi G^{2}} \\
d \psi=\frac{a^{2} \phi^{3}+G^{2}}{2 a^{2} \phi^{4}-\phi G^{2}} d \phi-\frac{\phi G}{2 a^{2} \phi^{4}-\phi G^{2}} d G \\
d \psi=\frac{a^{2} \phi^{3}+G^{2}}{2 a^{2} \phi^{4}-\phi G^{2}} d \phi-\frac{G}{2 a^{2} \phi^{3}-G^{2}} d G \\
\psi=\frac{1}{2} \ln \left(2 a^{2} \phi^{3}-G^{2}\right)+f(\phi) \\
\psi=\ln \left(\frac{1}{\phi}\left(2 a^{2} \phi^{3}-G^{2}\right)^{1 / 2}\right)
\end{gathered}
$$

$$
\psi_{\phi}=\frac{3 a^{2} \phi^{2}}{2 a^{2} \phi^{3}-G^{2}}+f^{\prime}(\phi)=\frac{a^{2} \phi^{3}+G^{2}}{2 a^{2} \phi^{4}-G^{2}}
$$

$$
f^{\prime}(\phi)=\frac{-2 a^{2} \phi^{3}+G^{2}}{2 a^{2} \phi^{4}-\phi G^{2}}=-\frac{1}{\phi}
$$

$$
f(\phi)=-\ln (\phi)
$$

Integrate once to get to the general solution

$$
\begin{aligned}
& \psi=\ln \left(\frac{1}{\phi}\left(2 a^{2} \phi^{3}-G^{2}\right)^{1 / 2}\right) \quad \text { Let } \quad \psi=\ln \left(C_{1}^{1 / 2}\right) \\
& C_{1}=\frac{1}{\phi}\left(2 a^{2} \phi^{3}-G^{2}\right)^{1 / 2} \\
& C_{1}^{1 / 2}=2 a^{2} \phi-\frac{G^{2}}{\phi^{2}} \\
& G= \pm\left(2 a^{2} \phi^{3}-C_{1}\right)^{1 / 2} \\
& y_{x}= \pm\left(2 a^{2} y^{3}-C_{1}\right)^{1 / 2} \\
& d x=\frac{d y}{ \pm\left(2 a^{2} y^{3}-C_{1}\right)^{1 / 2}} \\
& x=\int \frac{d y}{ \pm\left(2 a^{2} y^{3}-C_{1}\right)^{1 / 2}}+C_{2}
\end{aligned}
$$

Mathematica will integrate the solution

$$
x=\int \frac{d y}{ \pm\left(2 a^{2} y^{3}-C_{1} y^{2}\right)^{1 / 2}}+C_{2}= \pm 2 y \frac{\sqrt{-C_{1}+2 a^{2} y}}{\sqrt{C_{1}} \sqrt{y^{2}\left(-C_{1}+2 a^{2} y\right)}} \operatorname{ArcTanh}\left(\frac{\sqrt{-C_{1}+2 a^{2} y}}{\sqrt{C_{1}}}\right)
$$

Search for an invariant solution under the dilation group

Express the invariant solution in
terms of ϕ and G

$$
y=\frac{2}{a^{2} x^{2}}
$$

$$
\begin{gathered}
\tilde{x}=e^{a} x \\
\tilde{y}=e^{-2 a} y
\end{gathered} \quad X^{b}=x \frac{\partial}{\partial x}-2 y \frac{\partial}{\partial y}
$$

Assume an invariant solution of the form

$$
\begin{aligned}
\Psi & =y-f(x)=0 \\
X^{b} \Psi & =-x \frac{d f}{d x}-2 y=0
\end{aligned}
$$

$$
x \frac{d f}{d x}=-2 f
$$

$$
f=\frac{C_{3}}{x^{2}}
$$

Invariant solution

$$
y=\frac{2}{a^{2} x^{2}} \quad y_{x}=-2^{1 / 2} a y^{3 / 2}
$$

Substitute f into the original equation to determine the constant

$$
\begin{gathered}
y y_{x x}-\left(y_{x}\right)^{2}-a^{2} y^{3}= \\
\frac{C_{3}}{x^{2}}\left(6 \frac{C_{3}}{x^{4}}\right)-4 \frac{C_{3}}{x^{6}}-a^{2}\left(\frac{C_{3}}{x^{2}}\right)^{3}= \\
\frac{C_{3}}{x^{2}}\left(6 \frac{C_{3}}{x^{4}}\right)-4 \frac{C_{3}^{2}}{x^{6}}-a^{2}\left(\frac{C_{3}}{x^{2}}\right)^{3}= \\
2 \frac{C_{3}^{2}}{x^{6}}-a^{2}\left(\frac{C_{3}}{x^{2}}\right)^{3}=0 \\
C_{3}=\frac{2}{a^{2}} \\
\frac{d G}{d \phi}=\frac{G^{2}+a^{2} \phi^{3}}{2 G} \\
-2^{\frac{1}{2} \frac{3}{2}} a \phi^{\frac{1}{2}}=-\frac{2 a^{2} \phi^{3}+a^{2} \phi^{3}}{2^{1 / 2} a \phi^{5 / 2}} \\
-2^{\frac{1}{2}} \frac{3}{2} a \phi^{\frac{1}{2}}=-\frac{3 a \phi^{1 / 2}}{2^{1 / 2}}
\end{gathered}
$$

$$
G=\overline{+} 2^{1 / 2} a \phi^{3 / 2}
$$

Phase Portrait

$$
\frac{d G}{d \phi}=\frac{G^{2}+a^{2} \phi^{3}}{\phi G}
$$

Invariant solution

$$
G=\mp 2^{1 / 2} a \phi^{3 / 2}
$$

What about the translation group? Is there an invariant curve?

$$
a=1
$$

$$
\begin{gathered}
\Psi=y-f(x)=0 \\
X^{a}=\frac{\partial}{\partial x} \\
X^{a} \Psi=-\frac{d f}{d x}=0 \\
f=C_{4}
\end{gathered}
$$

Substitute f into the original equation to determine the constant

$$
\begin{gathered}
y y_{x x}-\left(y_{x}\right)^{2}-a^{2} y^{3}=0 \\
0-0-a^{2}\left(C_{4}\right)^{3}=0 \\
C_{4}=0
\end{gathered}
$$

Invariant solution

$$
y=0
$$

$$
\begin{gathered}
\text { or } \\
\phi=0
\end{gathered}
$$

