Ion Activity, Ion Association and Solubility CEE 373

--Roadmap-----

EQUILIBRIUM THERMODYNAMICS

OBJECTIVES

- Build a modeling framework for equilibrium chemistry
- 2. Examine and understand computer code.
- 3. Produce model results and interpret critically.

EQUILIBRIUM THERMODYNAMICS

- I. Ion activity
 - Review of general expressions
 - Activity coefficient calculations
 - Implementation in computer code
- 2. Ion pairing
 - Calculation of ion pairing
 - Implementation in computer code
 - Calculation of CaSO₄⁰ formation
- 3. Solubility
 - Saturation Index (SI)
 - Interpretation of SI results
 - Model calculations (Wateq4f, Visual Minteq)

A QUICK REVIEW OF RELEVANT EXPRESSIONS

Generalized chemical reaction: $aA + bB \Leftrightarrow cC + dD$

Activity,
$$a_i = m_i \gamma_i$$

Ionic Strength,
$$I = \frac{1}{2} \sum_{i} m_i z_i^2$$

$$K_{eq} = \frac{a_C a_D}{a_A a_B} = \frac{m_C \gamma_C m_D \gamma_D}{m_A \gamma_A m_B \gamma_B}$$

Mean activity coefficient, $\gamma_{\pm} = \sqrt{\gamma_{+}\gamma_{-}}$

A QUICK REVIEW OF RELEVANT EXPRESSIONS

Debye-Hückel equation

The chemical potential or activity of ions cannot be determined on a purely thermodynamic basis. This is due to the fact that the effects of an ion cannot be separated from the effects of the accompanying counter-ion, or in other terms, the electrochemical potential of the ion cannot be separated into the chemical and the electrical component. Such a separation must necessarily be based on a non-thermodynamic convention. The present convention is based on the assumption that the molal activity coefficient of the chloride ion in dilute aqueous solutions ($I < 0.10 \text{ mol kg}^{-1}$) can be estimated by means of the Debye–Hückel equation:

$$-\lg \gamma_B = z_B^2 A I^{1/2} / (1 + \mathring{a} B I^{1/2})$$

where I is ionic strength, z is the charge number of the ion, \mathring{a} is ion size parameter and A and B are temperature-dependent constants.

According to the Bates–Guggenheim convention ^{a}B is taken to be 1.5 (mol kg⁻¹) at all temperatures and for all compositions of the solutions.

See also pH.

1984, 56, 569

A QUICK REVIEW OF ACTIVITY COEFFICIENT FORMULAE

Debye-Hückel Limiting Law Very low ionic strength (I<10^{-2.3} M)

$$\log \gamma_i = -0.5 z_i^2 \sqrt{I}$$

Extended Debye-Hückel Equation Low ionic strength (I<10-1 M)

$$\log \gamma_i = -Az_i^2 \frac{\sqrt{I}}{1 + B\dot{a}\sqrt{I}}$$

Davies Equation
Low ionic strength (I<0.5 M)

$$\log \gamma_i = \frac{-Az_i^2 \sqrt{I}}{1 + \sqrt{I}} + 0.3Az_i^2 I$$

B-dot Equation
Designed for NaCl solutions

$$\log \gamma_i = \frac{-Az_i^2 \sqrt{I}}{1 + B\mathring{a}_i \sqrt{I}} + \dot{B}I$$

IMPLEMENTATION IN CODE

Davies Equation Low ionic strength (I< 10-5 M)

$$\log \gamma_i = \frac{-Az_i^2 \sqrt{I}}{1 + \sqrt{I}} + 0.3Az_i^2 I$$

```
From HYDRAQL.FOR ---
```

```
C****************
      ENTRY IONCOR(XMU)
      NC=NN(1)+NN(2)+NN(3)+NN(4)+NN(5)+NN(6)
      NX=NNN
C The A-factor in ACTCOF calculation is obtained
C using a regression fit of Helgeson/
C Kirkham data 25-225 deg and Harned/Owen
C data below 25 TO 0.
\mathbf{C}
      DT=TEMP-25.
      AFACTR=0.50886+0.0008*DT+0.00001*DT*DT
      ET=-AFACTR
      XIS=SQRT (XMU)
      GF(1)=ET*(XIS/(1.0+XIS)-0.3*XMU)
      DO 2100 IZ=1,5
          GF(IZ)=GF(1)*IZ*IZ
          ACTCOF(IZ)=10.**GF(IZ)
 2100 CONTINUE
```

IMPLEMENTATION IN CODE

```
C
                                      CALCULATE ACTIVITY COEFFICIENTS
                                 AMU=-A*MUHALF
                                 BMU=B*MUHALF
                                 CMU=-A*(MUHALF/(1.0D0+MUHALF)-0.3D0*MU)
From
                                 ZCHRG=0.1D0*MU
                                 LG(1)=AMU/(1.0D0+DHA(1)*BMU)
                                 IF (IOPT(6).EQ.1) LG(1)=CMU
phreeqe.f
                                 LG(2)=0.0D0
                                 LG(3)=0.0D0
Revision 1.14
                                 DO 70 I=4,LASTS
                                 IF (SFLAG(I).EQ.0) GO TO 70
(1993)
                                 IF (DABS(ZSP(I)).LT.1.0D-40) GO TO 40
                                 IF (GFLAG(I).EQ.1) GO TO 50
                                 IF (DHA(I).LE.0.0D0) GOTO 60
                                 IF (IOPT(6).E0.1) GO TO 60
                           \mathbf{C}
                                              EXTENDED DEBYE-HUCKEL WITH ION SIZE PARAMETER
                                 LG(I)=AMU*ZSP(I)*ZSP(I)/(1.0D0+DHA(I)*BMU)
                                 GO TO 65
                           \mathbf{C}
                                              GAMMA FOR UNCHARGED SPECIES
                              40 LG(I)=ZCHRG
                                 GO TO 65
                           C
                                              WATEO DEBYE-HUCKEL
                              50 LG(I)=AMU*ZSP(I)*ZSP(I)/(1.0D0+ADHSP(I,1)*BMU)+ADHSP(I,2)*MU
                                 GO TO 65
                                              DAVIES GAMMA
                              60 LG(I)=CMU*ZSP(I)*ZSP(I)
                              65 CONTINUE
                                 IF(LG(I).LT.-1.0D1) LG(I)=-1.0D1
                                 IF(LG(I).GT.1.0D1) LG(I)=1.0D1
                              70 CONTINUE
                                 RETURN
```

Generalized Steps for Computational Solution

- I. Compose a balanced chemical reaction. If more than one reaction occurs simultaneously, write a reaction for each.
- 2. Invoke Law of Mass Action and write equilibrium constant expression(s), and relate to numeric values of $K_{\rm eq}$.
- 3. Produce other pertinent expressions such as mass balance and charge balance. Need to have as many relations as unknowns.
- 4. Solve algebraically. Typically, successive approximations are needed to converge on a value.

Application to Ion Pairing

CaSO₄⁰ in 0.01M CaSO₄ Solution

$$CaSO_4^0 \Leftrightarrow Ca^{2+} + SO_4^{2-}$$


```
Private Sub Command1_Click()
pKCaSO4 = -2.274
IPFC = 10 \land pKCaSO4
tolerance = 0.01
maxIterations = 30
loops = 0
oldIS = 0
conc = Val(Text1.Text)
CaTot = conc
SO4Tot = conc
Ca = CaTot * 0.5
S04 = S04Tot * 0.5
electron = 2 * (CaTot - SO4Tot)
IonStrength = (2 * (Ca + SO4)) + (0.5 * electron)
Do
oldIS = IonStrength
loops = loops + 1
RootIS = Sqr(IonStrength)
Gamma2 = 10 \land (-1 * (2 * (RootIS / (1 + RootIS) - 0.3 * IonStrength)))
IPCaSO4 = Gamma2 * Gamma2 * Ca * SO4 / IPFC
Ca = CaTot - IPCaSO4
SO4 = SO4Tot - IPCaSO4
IonStrength = (2 * (Ca + S04)) + (0.5 * electron)
ChangeIS = Abs(IonStrength - oldIS)
Loop While (ChangeIS > tolerance) Or (loops < maxIterations)
ActCa = Ca * Gamma2
Text2.Text = "{Ca2+} = " & ActCa
End Sub
```

Solubility Calculations

Solubility Reaction Solid phase, dissociated species

Solubility Product, K_{SD} Relationship to equilibrium

constant

Ion Activity Product, IAP Product of free ion species

activities

Saturation Index, SI $= log (IAP/K_{sp})$

Solubility Calculations

$$SI = \log \frac{IAP}{K_{sp}}$$

If IAP<K_{sp}, then SI is -ve. Mineral dissolves.

If IAP>K_{sp}, then SI is +ve. Mineral precipitates.

If IAP=K_{sp}, then SI is zero. Mineral equilibrium with solution.

How do you interpret saturation indices?

- Possibility vs Reality
- Ideal Equilibrium vs Local Equilibrium
- Supersaturation why would it occur?

Solubility Calculations

Vadose Cave ("Ceiling Leaks") Water Example

T (°C) = 12 pH = 7.56 DO (ppm) = 6.8
Concentrations (mg/l)

$$Ca = 92$$
 $Cl = 6.0$
 $Mg = 24.9$ $SO_4 = 0.4$
 $Na = 1.6$ $HCO_3 = 366.0$
 $Sr = 0.02$ $SiO_2 = 8.0$

- What do the modeling results tell you about the chemistry in the cave?
- What would you need to know to make a sound interpretation of the results?

Numeric Types: Visual BASIC

Visual Basic type	Common language runtime type structure	Nominal storage allocation	Value range
Boolean	System.Boolean	2 bytes	True or False.
Byte	System.Byte	1 byte	0 through 255 (unsigned).
Char	System.Char	2 bytes	0 through 65535 (unsigned).
Date	System.DateTime	8 bytes	0:00:00 on January 1, 0001 through 11:59:59 PM on December 31, 9999.
Decimal	System.Decimal	16 bytes	0 through +/-79,228,162,514,264,337,593,543,950,335 with no decimal point; 0 through +/-7.9228162514264337593543950335 with 28 places to the right of the decimal; smallest nonzero number is +/-0.00000000000000000000000000000000000
Double (double- precision floating-point)	System.Double	8 bytes	-1.79769313486231570E+308 through -4.94065645841246544E-324 for negative values; 4.94065645841246544E-324 through 1.79769313486231570E+308 for positive values.
Integer	System.Int32	4 bytes	-2,147,483,648 through 2,147,483,647.
Long (long integer)	System.Int64	8 bytes	-9,223,372,036,854,775,808 through 9,223,372,036,854,775,807.
Object	System.Object (class)	4 bytes	Any type can be stored in a variable of type Object .
Short	System.Int16	2 bytes	-32,768 through 32,767.
Single (single- precision floating-point)	System.Single	4 bytes	-3.4028235E+38 through -1.401298E-45 for negative values; 1.401298E-45 through 3.4028235E+38 for positive values.