Compositionality or systematicity?

Christopher Potts

Stanford Linguistics

Franklin Institute Symposium:
The Past, Present, and Future of Formal Semantics
April 19, 2021

The thrill of scientific inquiry

My central questions

When linguists seek compositional analyses of linguistic

phenomena:

- What principles guide their investigations?
- What higher-level goals are they actually pursuing?

Where the questions lead me

- Learning semantic representations can lead to richer theories of language and language use,
- but compositionality is too constraining in these situations. Systematicity might be a better goal.

Plan

- 1. The compositionality principle
- 2. The compositionality heuristic
- Semantic parsing
- 4. Recursive deep learning models
- 5. Conclusions

The compositionality principle

- 1. The compositionality principle
- 2. The compositionality heuristic
- 3. Semantic parsing
- 4. Recursive deep learning model
- Conclusions

Informal statement

Compositionality

The meaning of a phrase is a function of the meanings of its immediate syntactic constituents and the way they are combined.

The usual motivation

- 1. Modeling all meaningful units $[every] = \lambda f \lambda g \ \forall x \ ((f \ x) \rightarrow (g \ x))$
- 2. "Infinite" capacity
- 3. Creativity
- 4. Systematicity

Partee (1996) on Montague (1970):

The central idea is that anything that should count as a grammar should be able to be cast in the following form: the syntax is an algebra, the semantics is an algebra, and there is a homomorphism mapping elements of the syntactic algebra onto elements of the semantic algebra.

[...]

Overview

It is the homomorphism requirement, which is in effect the compositionality requirement, that provides the most important constraint on UG in Montague's sense [...].

Formal results

Overview

Zadrozny (1994)

Any meaning function (map from forms to meanings) can be turned into a compositional one in the sense of the homomorphism requirement.

Kazmi & Pelletier (1998) respond "Wait, what?"

Here is a non-compositional semantics:

- [sleep] = [doze]
- [sleep tight] ≠ [doze tight]

Zadrozny showed how to create a kind of syntactic layer where compositionality holds. A similar argument is made by Dever 1999.

Dowty's context-free compositionality

Dowty (2007):

Overview

When a rule f combines $\alpha, \beta(...)$ to form γ , the corresponding semantic rule g that produces the meaning γ' of γ , from α' and β' , may depend only on α' "as a whole", it may not depend on any meanings from which α' was formed compositionally by earlier derivational steps (similarly for β).

The compositionality heuristic

- 1. The compositionality principle
- 2. The compositionality heuristic
- 3. Semantic parsing
- 4. Recursive deep learning model:
- Conclusions

Compositionality as methodology

Janssen (1997:461)

Overview

Compositionality is not a formal restriction on what can be achieved, but a methodology on how to proceed.

Example: Subjectless predicational adjuncts

1. Entering the restaurant, the chef greeted Sandy.

2.

1. Entering the restaurant, the chef greeted Sandy.

Potential rule

The implicit argument of a front subjectless predicational adjuncts must be the subject of the matrix clause.

1. Entering the restaurant, the chef greeted Sandy.

Potential rule

The implicit argument of a front subjectless predicational adjuncts must be the subject of the matrix clause.

Assuming context-free compositionality, the rule cannot be correct as stated.

Example: Subjectless predicational adjuncts

From http://arnoldzwicky.wordpress.com/category/danglers/:

- 1. "Having been in Australia for 17 years, a foreign national wishing to work in Australia must be of good character."
- "Fearing a massive lay-off, there was a general sense of relief when the boss announced there would be no new budget cuts."
- 3. "Rich and creamy, your guests will never guess that this pie is light."

Pragmatic constraint

The free variable in a subjectless predicational adjuncts should refer to a discourse topic.

Example: Subjectless predicational adjuncts

Pragmatic constraint

The free variable in a subjectless predicational adjuncts should refer to a discourse topic.

1. Entering the restaurant, the chef greeted Sandy.

Pragmatic constraint

The free variable in a subjectless predicational adjuncts should refer to a discourse topic.

1. Entering the restaurant, the chef greeted Sandy.

Subjects/topic correlation

In English, subjects are often topics.

Example: Compounds and systematicity

Partee (1995:341):

Overview

In compounds [...] there is no general rule for predicting the interpretation of the combination

Levin et al.'s (2019) novel compounds experiment:

Modifier	Head	Example	Event	Perceptual Environmental/
Artifact	Artifact	stew skillet	93%	7%
Natural kind	Artifact	stream wheel	88%	12%
Artifact	Natural kind	stew chickpea	66%	34%
Natural kind	Natural kind	stream vegetable	15%	85%

flat tire/beer/note/file

Deep learning

Overview

Semantic parsing

- 1. The compositionality principle
- 2. The compositionality heuristic
- 3. Semantic parsing
- 4. Recursive deep learning model
- Conclusions

Every student attended a lecture

$$\forall Z \ ((\textbf{student} \ Z) \rightarrow (\exists X \ (\textbf{lecture} \ X) \land (\textbf{attended} \ X \ Z)))$$

$$\lambda g \ \forall z \ ((\textbf{student} \ z) \rightarrow (g \ z)) \ \lambda Q \ (Q \ (\lambda y \ (\exists x \ (\textbf{lecture} \ x) \land (\textbf{attended} \ x \ y)))$$

$$\lambda f \ \lambda g \ \forall z \ ((f \ z) \rightarrow (g \ z)) \ \textbf{student}$$

$$\textbf{attended}_S \qquad \lambda g \ (\exists x \ (\textbf{lecture} \ x) \land (g \ x))$$

$$\lambda f \ \lambda g \ (\exists x \ (f \ x) \land (g \ x)) \ \textbf{lecture}$$

Every student attended a lecture

$$\exists x \; (\textbf{lecture} \; x) \; \land \; (\forall z \; ((\textbf{student} \; z) \to (\textbf{attended} \; x \; z)))$$

$$\lambda g \; \forall z \; ((\textbf{student} \; z) \to (g \; z)) \; \lambda Q \; (\exists x \; (\textbf{lecture} \; x) \land (Q \; (\lambda y \; (\textbf{attended} \; x \; y)))))$$

$$\lambda f \; \lambda g \; \forall z \; ((f \; z) \to (g \; z)) \; \textbf{student}$$

$$\lambda f \; \lambda g \; (\exists x \; (f \; x) \land (g \; x)) \; \textbf{lecture}$$

The semanticist's ideal

Every child ate a lollipop

$$\forall Z \ ((\textbf{child} \ Z) \to (\exists X \ (\textbf{lollipop} \ X) \land (\textbf{ate} \ X \ Z)))$$

$$\lambda g \ \forall z \ ((\textbf{child} \ z) \to (g \ z)) \ \lambda Q \ (Q \ (\lambda y \ (\exists x \ (\textbf{lollipop} \ x) \land (\textbf{ate} \ x \ y)))$$

$$\lambda f \ \lambda g \ \forall z \ ((f \ z) \to (g \ z)) \ \textbf{child}$$

$$\textbf{ate}_S \qquad \lambda g \ (\exists x \ (\textbf{lollipop} \ x) \land (g \ x))$$

$$\lambda f \ \lambda g \ (\exists x \ (f \ x) \land (g \ x)) \ \textbf{lollipop}$$

The semanticist's ideal

Overview

Every child ate a lollipop

$$\exists x \; (\textbf{lollipop} \; x) \; \land \; (\forall z \; ((\textbf{child} \; z) \to (\textbf{ate} \; x \; z)))$$

$$\lambda g \; \forall z \; ((\textbf{child} \; z) \to (g \; z)) \; \lambda Q \; (\exists x \; (\textbf{lollipop} \; x) \land (Q \; (\lambda y \; (\textbf{ate} \; x \; y))))$$

$$\lambda f \; \lambda g \; \forall z \; ((f \; z) \to (g \; z)) \; \textbf{child}$$

$$\lambda g \; (\exists x \; (\textbf{lollipop} \; x) \land (g \; x)) \; \textbf{lollipop}$$

$$\lambda f \; \lambda g \; (\exists x \; (f \; x) \land (g \; x)) \; \textbf{lollipop}$$

Every child ate a lollipop

$$\exists x \; (\textbf{lollipop} \; x) \; \land \; (\forall z \; ((\textbf{child} \; z) \to (\textbf{ate} \; x \; z)))$$

$$\lambda g \; \forall z \; ((\textbf{child} \; z) \to (g \; z)) \; \lambda Q \; (\exists x \; (\textbf{lollipop} \; x) \land (Q \; (\lambda y \; (\textbf{ate} \; x \; y))))$$

$$\lambda f \; \lambda g \; \forall z \; ((f \; z) \to (g \; z)) \; \textbf{child}$$

$$\lambda g \; (\exists x \; (\textbf{lollipop} \; x) \land (g \; x))$$

$$\lambda f \; \lambda g \; (\exists x \; (f \; x) \land (g \; x)) \; \textbf{lollipop}$$

But is this really so ideal?

Crude grammars refined via learning

Crude grammars refined via learning

Chat80 (Warren & Pereira 1982):

```
/* Sentences */
sentence(S) --> declarative(S), terminator(.) .
sentence(S) --> wh question(S), terminator(?) .
sentence(S) --> yn question(S), terminator(?) .
sentence(S) --> imperative(S), terminator(!) .
/* Noun Phrase */
np(np(Agmt, Pronoun, []), Agmt, NPCase, def, , Set, Nil) -->
  {is pp(Set)},
  pers pron (Pronoun, Agmt, Case),
  {empty(Nil), role(Case, decl, NPCase)}.
/* Prepositional Phrase */
pp(pp(Prep, Arg), Case, Set, Mask) -->
 prep (Prep),
  {prep case (NPCase) },
  np (Arg, , NPCase, , Case, Set, Mask) .
```

Crude grammars refined via learning

for w ∈ Words
 for X ∈ Categories
 for d ∈ Domain
 yield 'X → w : d'

Crude grammars refined via learning

```
for w \in Words
          for X \in Categories
3
                 for d \in Domain
4
                        yield 'X \rightarrow w : d'
    N \rightarrow dog : dog
    V \rightarrow dog
                    : dog_{v}
    N \rightarrow dog : cat
    N \rightarrow cat : cat
    N \rightarrow cat : dog
    V \rightarrow jump : dog
    V \rightarrow jump : jump
```

```
1 for w \in Words dog : dog
2 for X \in Categories
3 for d \in Domain
4 yield (X \rightarrow w : d)
```

```
1 N \rightarrow dog : dog

0 V \rightarrow dog : dog<sub>V</sub>

0 N \rightarrow dog : cat

0 N \rightarrow cat : cat

0 N \rightarrow cat : dog

0 V \rightarrow jump : dog

0 V \rightarrow jump : jump
```

```
dog: dog
   for w \in Words
          for X \in Categories
3
                 for d \in Domain
4
                       yield 'X \rightarrow w : d'
                                                   dog: dog_{V}
    N \rightarrow dog : dog
    V \rightarrow dog
                   : dog_{v}
    N \rightarrow dog : cat
    N \rightarrow cat : cat
    N \rightarrow cat : dog
    V \rightarrow jump : dog
    V \rightarrow jump : jump
```

```
dog: dog
   for w \in Words
          for X \in Categories
3
                 for d \in Domain
4
                       yield 'X \rightarrow w : d'
                                                  dog: dog_{V}
    N \rightarrow dog : dog
    V \rightarrow dog : dog_V
                                                        N
    N \rightarrow dog : cat
                                                   cat : cat
    N \rightarrow cat : cat
    N \rightarrow cat : dog
    V \rightarrow jump : dog
    V \rightarrow jump : jump
```

Crude grammars refined via learning

```
dog: dog
   for w \in Words
          for X \in Categories
3
                 for d \in Domain
4
                       yield 'X \rightarrow w : d'
                                                  dog: dog_{V}
    N \rightarrow dog : dog
    V \rightarrow dog : dog_V
    N \rightarrow dog : cat
    N \rightarrow cat : cat
                                                   cat : cat
    N \rightarrow cat : dog
    V \rightarrow jump : dog
                                                       N
    V \rightarrow jump : jump
                                                  dog: dog
```

```
Ν
                                                  dog: dog
                                                                  dog: dog
   for w \in Words
          for X \in Categories
3
                for d \in Domain
4
                       yield 'X \rightarrow w : d'
                                                 dog: dog_{V}
    N \rightarrow dog : dog
    V \rightarrow dog : dog_V
    N \rightarrow dog : cat
    N \rightarrow cat : cat
                                                  cat : cat
    N \rightarrow cat : dog
    V \rightarrow jump : dog
                                                       N
    V \rightarrow jump : jump
                                                  dog: dog
```

```
Ν
                                                 dog: dog
                                                                 dog: dog
    for w \in Words
          for X \in Categories
3
                for d \in Domain
4
                      yield 'X \rightarrow w : d'
                                                dog: dog_V
                                                               jump : jump
    N \rightarrow dog : dog
    V \rightarrow dog : dog_V
    N \rightarrow dog : cat
    N \rightarrow cat : cat
                                                  cat : cat
    N \rightarrow cat : dog
    V \rightarrow jump : dog
                                                      N
    V \rightarrow jump : jump
                                                 dog: dog
```

Semantic parsing

```
Crude grammars refined via learning
```

```
Ν
                                                 dog: dog
                                                                 dog: dog
   for w \in Words
          for X \in Categories
3
                for d \in Domain
4
                      yield 'X \rightarrow w : d'
                                                dog: dog_V
                                                               jump : jump
   N \rightarrow dog : dog
   V \rightarrow dog : dog_V
   N \rightarrow dog : cat
                                                 cat : cat
                                                                 cat: cat
    N \rightarrow cat : cat
   N \rightarrow cat
                  : dog
   V \rightarrow jump : dog
                                                     N
    V \rightarrow jump : jump
                                                 dog: dog
```

→ cat

→ jump

jump

Overview

Ν

Crude grammars refined via learning

dog dog

jump

```
dog: dog
                                                              dog: dog
   for w \in Words
         for X \in Categories
3
               for d \in Domain
4
                     yield 'X \rightarrow w : d'
                                              dog: dog_V
                                                            jump: jump
                    dog
          dog
                  : dog<sub>v</sub>
          dog
                  : cat
                                                cat : cat
                                                               cat: cat
          cat
                  : cat
```

```
1 for w \in Words
2 for X \in Categories
3 for d \in Domain
4 yield (X \rightarrow w : d)
```

```
/* Sentences */
sentence(S) --> declarative(S), terminator(.)
sentence(S) --> wh_question(S), terminator(?)
sentence(S) --> yn_question(S), terminator(?)
sentence(S) --> imperative(S), terminator(!)

/* Noun Phrase */
np(np(Agmt, Pronoun, []), Agmt, NPCase, def,_, Set, Nil) -->
{is_pp(Set)},
pers_pron(Pronoun, Agmt, Case),
{empty(Nil), role(Case, decl, NPCase)}.

/* Prepositional Phrase */
pp(pp(Prep, Arg), Case, Set, Mask) -->
prep(Prep),
{prep_case(NPCase)},
np(Arg,_, NPCase,_, Case, Set, Mask).
```

Crude grammars refined via learning

Liang et al. (2013):

Some river traverses every city.

(c) Quantifier scope ambiguity (Q, Q)

city traversed by no rivers

(d) Quantification (Q, E)

Additional feature functions

I previously showed some features that correspond to local trees. Those look nicely compositional. However, a smart NLPer will also have features like:

- 1. How many distinct lexical items are in the sentence?
- 2. Am I in the c-command domain of a negation?
- 3. Does this structure contain a specific set of tree fragments?
- 4. What is the average sentiment of words in this sentence?

The linguist's ideal again

Every child ate a lollipop

Overview

$$\forall Z \ ((\textbf{child} \ Z) \rightarrow (\exists X \ (\textbf{lollipop} \ X) \land (\textbf{ate} \ X \ Z)))$$

$$\lambda g \ \forall z \ ((\textbf{child} \ z) \rightarrow (g \ z)) \ \lambda Q \ (Q \ (\lambda y \ (\exists x \ (\textbf{lollipop} \ X) \land (\textbf{ate} \ X \ Y)))$$

$$\lambda f \ \lambda g \ \forall z \ ((f \ z) \rightarrow (g \ z)) \ \textbf{child}$$

$$\textbf{ate}_S \qquad \lambda g \ (\exists x \ (\textbf{lollipop} \ X) \land (g \ X))$$

$$\lambda f \ \lambda g \ (\exists x \ (f \ X) \land (g \ X)) \ \textbf{lollipop}$$

Score: +5

Every child ate a lollipop

Overview

$$\exists x \; (\textbf{lollipop} \; x) \; \land \; (\forall z \; ((\textbf{child} \; z) \to (\textbf{ate} \; x \; z)))$$

$$\lambda g \; \forall z \; ((\textbf{child} \; z) \to (g \; z)) \; \lambda Q \; (\exists x \; (\textbf{lollipop} \; x) \land (Q \; (\lambda y \; (\textbf{ate} \; x \; y))))$$

$$\lambda f \; \lambda g \; \forall z \; ((f \; z) \to (g \; z)) \; \textbf{child}$$

$$\lambda g \; (\exists x \; (\textbf{lollipop} \; x) \land (g \; x)) \; \textbf{lollipop}$$

Score: -2

Recursive deep learning models

- 1. The compositionality principle
- 2. The compositionality heuristic
- 3. Semantic parsing
- 4. Recursive deep learning models
- Conclusions

Composition with functions or with vectors

Functions

Vectors

$$f([X]^{DL}, [Y]^{DL}) = \mathbf{g}([[X]^{DL}; [Y]^{DL}] \mathbf{w})$$

$$[A]^{DL} = \mathbf{g}([[B]^{DL}; [C]^{DL}] \mathbf{w})$$

$$[B]^{DL} = \mathbf{g}([[D]^{DL}; [E]^{DL}] \mathbf{w})$$

Lexicon				
В	-0.42	0.10	0.12	
D	-0.16	-0.21	0.29	
Е	-0.26	0.31	0.37	

Simple example

Overview

$$tanh \left(\begin{bmatrix} -0.10 & 0.10 & -1.00 & 1.00 \end{bmatrix} \begin{bmatrix} 0.06 & 0.32 \\ -0.14 & -0.53 \\ 1.24 & 0.00 \\ 0.02 & 1.06 \end{bmatrix} \right) = \begin{bmatrix} -0.85 & 0.75 \end{bmatrix}$$

$$\begin{bmatrix} -0.10 & 0.10 \end{bmatrix} \begin{bmatrix} -1.00 & 1.00 \end{bmatrix}$$
not terrible

Recursive deep learning models

Overview

Recursive deep learning models

Recursive deep learning models

All our parses are wrong, but perhaps we can discover the right one(s).

A new perspective on compositionality

Deep learning

A new perspective on compositionality

Partee (1984):

Context-dependence, Ambiguity, and Challenges to Local, **Deterministic Compositionality**

Partee (1984):

Overview

Context-dependence, Ambiguity, and Challenges to Local, Deterministic Compositionality

Global parameters creating local lexical effects

Partee (1984):

Overview

Context-dependence, Ambiguity, and Challenges to Local, Deterministic Compositionality

Global parameters creating local lexical effects

$$\tanh \left(\begin{bmatrix} -0.10 \ 0.10 \ -1.00 \ 1.00 \end{bmatrix} \begin{bmatrix} 0.06 & 0.32 \\ -0.14 \ -0.53 \\ 1.24 & 0.00 \\ 0.02 & 1.06 \end{bmatrix} \right) = \begin{bmatrix} -0.85 \ 0.75 \end{bmatrix}$$

$$\begin{bmatrix} -0.10 \ 0.10 \end{bmatrix} \begin{bmatrix} -1.00 \ 1.00 \end{bmatrix}$$
not terrible

The linguist's ideal again

Every child ate a lollipop

Examples from Socher et al. 2013

Semantics Semantic parsing Deep learning Recursive Recursive Recursive Symbolic Symbolic Not symbolic Compositional Partly compositional Compositional? Precise Precise Not precise Preferences learned Preferences learned Purely representational Open-class lexicon often Learned symbolic Learned lexical neglected **lexicon** embedding Rich treatment of Possible rich treatment No functional/open-class functional lexicon of functional lexicon distinctions Sharp sem/prag division Blurry sem/prag division No sem/prag division Semi-scalable Not at all scalable Highly scalable Deep analytic insights Indirect analytic insights Often opaque

Conclusions

Overview

Measuring the relative compositionalit integrating

Sriram Venkatapathy¹

Language Technologies Research Centre, International Institute of Information Technology - Hyderabad,

Deep Recursiv

Ozan İrsov

Department of Computer Science Cornell University

Probing Linguis

timothy.odon

Emily Goodwin, 4,5 Koustuv Sir

¹Department of Linguistics, ²School of Co ³Facebook AI Research (FAIR), Mont ⁵Ouebec Artificial Inte

⁵Quebec Artificial Inte {emily.goodwin, koustu

Systematicity Natural Language?

ke Bekki³, and Kentaro Inui^{4,1}
University, ⁴Tohoku University
abelard.flet.keio.ac.jp,
acei.tohoku.ac.jp

. Ng edu

ositionality 2011: d Results

Lugenie Giesbrecht chungszentrum Informatik d-und-Neu-Str. 10-14 31 Karlsruhe, Germany esbrecht@fzi.de

References I

- Biemann, Chris & Eugenie Giesbrecht. 2011. Distributional semantics and compositionality 2011: Shared task description and results. In Proceedings of the workshop on distributional semantics and compositionality. 21–28. Portland, Oregon. USA: Association for Computational Linguistics. https://www.aclweb.org/anthology/W11-1304.
- Dever, Josh. 1999. Compositionality as methodology. Linguistics and Philosophy 22(3). 311–326. doi:10.1023/A:1005410301126.
- Dowty, David. 2007. Compositionality as an empirical problem. In Chris Barker & Pauline Jacobson (eds.), *Direct compositionality*. 23–101. Oxford: Oxford University Press.
- Goodwin, Emily, Koustuv Sinha & Timothy J. O'Donnell. 2020. Probing linguistic systematicity. In Proceedings of the 58th annual meeting of the association for computational linguistics, 1958–1969. Online: Association for Computational Linguistics. doi:10.18653/v1/2020.acl-main.177. https://www.aclweb.org/anthology/2020.acl-main.177.
- Irsoy, Ozan & Claire Cardie. 2014. Deep recursive neural networks for compositionality in language. Advances in neural information processing systems 27. 2096–2104.
- Janssen, Theo M. V. 1997. Compositionality. In Johan van Benthem & Alice ter Meulen (eds.), Handbook of logic and language, 417–473. Cambridge, MA and Amsterdam: MIT Press and North-Holland.
- Kazmi, Ali & Francis Jeffry Pelletier. 1998. Is compositionality formally vacuous? Linguistics and Philosophy 21(6). 629–633. Levin, Beth, Lelia Glass & Dan Jurafsky. 2019. Systematicity in the semantics of noun compounds: The role of artifacts vs. natural kinds. Linguistics 57(3). 429–471. doi:10.1515/jinq-2019-0013.
- Liang, Percy, Michael I. Jordan & Dan Klein. 2013. Learning dependency-based compositional semantics. Computational Linguistics 39(2): 389–446. doi:10.1162/COLI a 00127.
- Montague, Richard. 1970. Universal grammar. Theoria 36. 373–398. Reprinted in Montague (1974), 222–246.
- Montague, Richard. 1974. Formal philosophy: Selected papers of Richard Montague. New Haven, CT: Yale University Press. Partee, Barbara H. 1984. Compositionality. In Fred Landman & Frank Veltman (eds.), Varieties of formal semantics,
 - 281–311. Dordrecht: Foris. Reprinted in Barbara H. Partee (2004) Compositionality in formal semantics, Oxford: Blackwell 153–181. Page references to the reprinting.
- Blackwell 153–181. Page references to the reprinting.

 Partee, Barbara H. 1995. Lexical semantics and compositionality. In Lila R. Gleitman & Mark Liberman (eds.), Invitation to
- cognitive science, vol. 1, 311–360. Cambridge, MA: MIT Press.

 Partee, Barbara H. 1996. The development of formal semantics in linguistic theory. In Shalom Lappin (ed.), The handbook
- Partee, Barbara H. 1996. The development of formal semantics in linguistic theory. In Shalom Lappin (ed.), The handbook of contemporary semantic theory, 11–38. Oxford: Blackwell.
- Socher, Richard, Brody Huval, Christopher D. Manning & Andrew Y. Ng. 2012. Semantic compositionality through recursive matrix-vector spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, 1201–1211. Stroudsburg, PA. http://www.aclweb.org/anthology/D12-1110.

References II

- Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng & Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013 conference on Empirical Methods in Natural Language Processing, 1631–1642. Stroudsburg, PA: Association for Computational Linguistics. http://www.aclweb.org/anthology/D13-1170.
- Venkatapathy, Sriram & Aravind Joshi. 2005. Measuring the relative compositionality of verb-noun (V-n) collocations by integrating features. In Proceedings of human language technology conference and conference on empirical methods in natural language processing, 899–906. Vancouver, British Columbia, Canada: Association for Computational Linguistics. https://www.aclweb.org/anthology/H05-1113.
- Warren, David H. D. & Fernando C. N. Pereira. 1982. An efficient easily adaptable system for interpreting natural language queries. *American Journal of Computational Linguistics* 8(3–4). 110–122.
- Yanaka, Hitomi, Koji Mineshima, Daisuke Bekki & Kentaro Inui. 2020. Do neural models learn systematicity of monotonicity inference in natural language? In Proceedings of the 58th annual meeting of the association for computational linguistics, 6105–6117. Online: Association for Computational Linguistics. doi:10.18653/v1/2020.acl-main.543. https://www.aclweb.org/anthology/2020.acl-main.543.
- Zadrozny, Wlodek. 1994. From compositional to systematic semantics. Linguistics and Philosophy 17(4). 329–342. doi:10.1007/BF00985572.