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The thrill of scientific inquiry
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Central questions

My central questions

When linguists seek compositional analyses of linguistic
phenomena:

• What principles guide their investigations?
• What higher-level goals are they actually pursuing?

Where the questions lead me

• Learning semantic representations can lead to richer
theories of language and language use,

• but compositionality is too constraining in these
situations. Systematicity might be a better goal.
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Informal statement

Compositionality

The meaning of a phrase is a function of the meanings of its
immediate syntactic constituents and the way they are
combined.
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The usual motivation

1. Modeling all meaningful units

JeveryK = λf λg ∀x ((f x)→ (g x))

2. “Infinite” capacity

3. Creativity

4. Systematicity
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Montague: Unconstrained compositionality

Partee (1996) on Montague (1970):

The central idea is that anything that should count as a
grammar should be able to be cast in the following form: the
syntax is an algebra, the semantics is an algebra, and there
is a homomorphism mapping elements of the syntactic
algebra onto elements of the semantic algebra.

[. . . ]

It is the homomorphism requirement, which is in effect the
compositionality requirement, that provides the most
important constraint on UG in Montague’s sense [. . . ].
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Formal results

Zadrozny (1994)

Any meaning function (map from forms to meanings) can be
turned into a compositional one in the sense of the
homomorphism requirement.

Kazmi & Pelletier (1998) respond “Wait, what?”

Here is a non-compositional semantics:
• JsleepK = JdozeK
• Jsleep tightK 6= Jdoze tightK

Zadrozny showed how to create a kind of syntactic layer
where compositionality holds. A similar argument is made by
Dever 1999.
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Dowty’s context-free compositionality

Dowty (2007):

When a rule f combines α, β(. . .) to form γ, the
corresponding semantic rule g that produces the meaning γ′

of γ, from α′ and β′, may depend only on α′ “as a whole”, it
may not depend on any meanings from which α′ was formed
compositionally by earlier derivational steps (similarly for β).

γ′

α′

a′1 a′2

β′

b′1 b′2

Chris Barker (2003 Brown workshop): ‘Compositionality on demand’
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The compositionality heuristic

1. The compositionality principle
2. The compositionality heuristic
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4. Recursive deep learning models
5. Conclusions
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Compositionality as methodology

Janssen (1997:461)

Compositionality is not a formal restriction on what can be
achieved, but a methodology on how to proceed.
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Example: Subjectless predicational adjuncts
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1. Entering the restaurant, the chef greeted Sandy.
2.

entering γ

(the chef) (greet sandy)
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Example: Subjectless predicational adjuncts

1. Entering the restaurant, the chef greeted Sandy.
2.

entering γ

(the chef) (greet sandy)

Potential rule
The implicit argument of a front subjectless predicational
adjuncts must be the subject of the matrix clause.

Assuming context-free compositionality, the rule cannot be
correct as stated.
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Example: Subjectless predicational adjuncts

From http://arnoldzwicky.wordpress.com/category/danglers/:

1. “Having been in Australia for 17 years, a foreign national
wishing to work in Australia must be of good character.”

2. “Fearing a massive lay-off, there was a general sense of
relief when the boss announced there would be no new
budget cuts.”

3. “Rich and creamy, your guests will never guess that this
pie is light.”
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Example: Subjectless predicational adjuncts

Pragmatic constraint

The free variable in a subjectless predicational adjuncts
should refer to a discourse topic.

1. Entering the restaurant, the chef greeted Sandy.
2.

(entering x) γ

(the chef) (greet sandy)

Subjects/topic correlation

In English, subjects are often topics.
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Example: Compounds and systematicity

Partee (1995:341):
In compounds [. . . ] there is no general rule for predicting the
interpretation of the combination

Levin et al.’s (2019) novel compounds experiment:

Perceptual
Modifier Head Example Event Environmental/

Artifact Artifact stew skillet 93% 7%
Natural kind Artifact stream wheel 88% 12%
Artifact Natural kind stew chickpea 66% 34%
Natural kind Natural kind stream vegetable 15% 85%

flat tire/beer/note/file
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Semantic parsing

1. The compositionality principle
2. The compositionality heuristic
3. Semantic parsing
4. Recursive deep learning models
5. Conclusions
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The semanticist’s ideal

Every student attended a lecture

∀z ((student z)→ (∃x (lecture x)∧ (attended x z)))

λg ∀z ((student z)→ (g z))

λf λg ∀z ((f z)→ (g z)) student

λQ (Q (λy (∃x (lecture x)∧ (attended x y))

attendedS λg (∃x (lecture x)∧ (g x))

λf λg (∃x (f x)∧ (g x)) lecture

But is this really so ideal?
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Crude grammars refined via learning
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Crude grammars refined via learning
Chat80 (Warren & Pereira 1982):
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Crude grammars refined via learning

1 for w ∈ Words
2 for X ∈ Categories
3 for d ∈ Domain
4 yield ‘X→ w : d’

0 N → dog : dog
0 V → dog : dogv
0 N → dog : cat
0 N → cat : cat
0 N → cat : dog
0 V → jump : dog
0 V → jump : jump

N

dog : dog

N

dog : dog

V

dog : dogv

V

jump : jump

N

cat : cat

N

cat : cat

N

dog : dog
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Crude grammars refined via learning
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Crude grammars refined via learning

Liang et al. (2013):

Liang, Jordan, and Klein Learning Dependency-Based Compositional Semantics

Figure 8
Examples of DCS trees that use the mark–execute construct with the E and Q mark relations.
(a) The head verb borders, which needs to be returned, has a direct object states modified by
which. (b) The quantifier no is syntactically dominated by state but needs to take wider scope.
(c) Two quantifiers yield two possible readings; we build the same basic structure, marking
both quantifiers; the choice of execute relation (X12 versus X21) determines the reading. (d) We
use two mark relations, Q on river for the negation, and E on city to force the quantifier to be
computed for each value of city.

with information to be retrieved when that marked node is executed. A store σ for a
marked node contains the following: (i) the mark relation σ.r (C in the example), (ii) the
base denotation σ.b, which essentially corresponds to denotation of the subtree rooted at
the marked node excluding the mark relation and its subtree (!⟨size⟩"w in the example),
and (iii) the denotation of the child of the mark relation (!⟨argmax⟩"w in the example).
The store of any unmarked nodes is always empty (σ = ø).

Definition 3 (Denotations)
Let D be the set of denotations, where each denotation d ∈ D consists of! a set of arrays d.A, where each array a = [a1, . . . , an]∈ d.A is a sequence of

n tuples for some n ≥ 0; and

405
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Additional feature functions

I previously showed some features that correspond to local
trees. Those look nicely compositional. However, a smart
NLPer will also have features like:

1. How many distinct lexical items are in the sentence?

2. Am I in the c-command domain of a negation?

3. Does this structure contain a specific set of tree
fragments?

4. What is the average sentiment of words in this sentence?
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The linguist’s ideal again

Every child ate a lollipop

∀z ((child z)→ (∃x (lollipop x)∧ (ate x z)))

λg ∀z ((child z)→ (g z))

λf λg ∀z ((f z)→ (g z)) child

λQ (Q (λy (∃x (lollipop x)∧ (ate x y))

ateS λg (∃x (lollipop x)∧ (g x))

λf λg (∃x (f x)∧ (g x)) lollipop

Score: +5

19 / 33



Overview Compositionality principle Compositionality heuristic Semantic parsing Deep learning Conclusions

The linguist’s ideal again

Every child ate a lollipop

∃x (lollipop x)∧ (∀z ((child z)→ (ate x z)))
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Recursive deep learning models

1. The compositionality principle
2. The compositionality heuristic
3. Semantic parsing
4. Recursive deep learning models
5. Conclusions
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Composition with functions or with vectors

Functions

JAK = fa(JBK, JCK)

JBK JCK = fa(JDK, JEK)

JDK JEK

Vectors

f (JXKDL, JYKDL) = g
��

JXKDL; JYKDL
�

W
�

JAKDL = g
��

JBKDL; JCKDL
�

W
�

JBKDL JCKDL = g
��

JDKDL; JEKDL
�

W
�

JDKDL JEKDL

Lexicon

B −0.42 0.10 0.12 . . .
D −0.16 −0.21 0.29 . . .
E −0.26 0.31 0.37 . . .
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Simple example

tanh







�

−0.10 0.10 −1.00 1.00
�







0.06 0.32
−0.14 −0.53

1.24 0.00
0.02 1.06












=
�
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�

�

−0.10 0.10
�
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�
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�

terrible
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Recursive deep learning models

S1 = f
�

NP1 , VP1

�

NP1 = f
�

The , NYT
�

The

The

NYT

NYT

VP1 = f
�

reported , S2

�

reported

reported

S2 = f
�

NP2 , VP2

�

NP2 = f
�

the , deal
�

the

the

deal

deal

VP2 = f
�

fell , through
�

fell

fell

through

through
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Recursive deep learning models

h1 = f
�

h0 , The
�

The

The

h2 = f
�

h1 , NYT
�

NYT

NYT

h3 = f
�

h2 , reported
�

reported

reported

h4 = f
�

h3 , the
�

the

the

h5 = f
�

h4 , deal
�

deal

deal

h6 = f
�

h5 , fell
�

fell

fell

h7 = f
�

h6 , through
�

through

through
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Recursive deep learning models

h0 h1 h2 h3 h4 h5 h6 h7

The NYT reported the deal fell through

The NYT reported the deal fell through
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Recursive deep learning models

All our parses are wrong, but perhaps we can discover the
right one(s).

h0 h1 h2 h3 h4 h5 h6 h7

The NYT reported the deal fell through

The NYT reported the deal fell through
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A new perspective on compositionality

Partee (1984):
Context-dependence, Ambiguity, and Challenges to Local,
Deterministic Compositionality

Global parameters creating local lexical effects
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Figure 6: Accuracy curves for fine grained sentiment classification at each n-gram lengths. Left: Accuracy separately
for each set of n-grams. Right: Cumulative accuracy of all � n-grams.

5.2 Full Sentence Binary Sentiment
This setup is comparable to previous work on the
original rotten tomatoes dataset which only used
full sentence labels and binary classification of pos-
itive/negative. Hence, these experiments show the
improvement even baseline methods can achieve
with the sentiment treebank. Table 1 shows results
of this binary classification for both all phrases and
for only full sentences. The previous state of the
art was below 80% (Socher et al., 2012). With the
coarse bag of words annotation for training, many of
the more complex phenomena could not be captured,
even by more powerful models. The combination of
the new sentiment treebank and the RNTN pushes
the state of the art on short phrases up to 85.4%.

5.3 Model Analysis: Contrastive Conjunction
In this section, we use a subset of the test set which
includes only sentences with an ‘X but Y ’ structure:
A phrase X being followed by but which is followed
by a phrase Y . The conjunction is interpreted as
an argument for the second conjunct, with the first
functioning concessively (Lakoff, 1971; Blakemore,
1989; Merin, 1999). Fig. 7 contains an example. We
analyze a strict setting, where X and Y are phrases
of different sentiment (including neutral). The ex-
ample is counted as correct, if the classifications for
both phrases X and Y are correct. Furthermore,
the lowest node that dominates both of the word
but and the node that spans Y also have to have the
same correct sentiment. For the resulting 131 cases,
the RNTN obtains an accuracy of 41% compared to
MV-RNN (37), RNN (36) and biNB (27).

5.4 Model Analysis: High Level Negation
We investigate two types of negation. For each type,
we use a separate dataset for evaluation.
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Figure 7: Example of correct prediction for contrastive
conjunction X but Y .

Set 1: Negating Positive Sentences. The first set
contains positive sentences and their negation. In
this set, the negation changes the overall sentiment
of a sentence from positive to negative. Hence, we
compute accuracy in terms of correct sentiment re-
versal from positive to negative. Fig. 9 shows two
examples of positive negation the RNTN correctly
classified, even if negation is less obvious in the case
of ‘least’. Table 2 (left) gives the accuracies over 21
positive sentences and their negation for all models.
The RNTN has the highest reversal accuracy, show-
ing its ability to structurally learn negation of posi-
tive sentences. But what if the model simply makes
phrases very negative when negation is in the sen-
tence? The next experiments show that the model
captures more than such a simplistic negation rule.

Set 2: Negating Negative Sentences. The sec-
ond set contains negative sentences and their nega-
tion. When negative sentences are negated, the sen-
timent treebank shows that overall sentiment should
become less negative, but not necessarily positive.
For instance, ‘The movie was terrible’ is negative
but the ‘The movie was not terrible’ says only that it
was less bad than a terrible one, not that it was good
(Horn, 1989; Israel, 2001). Hence, we evaluate ac-
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Semantics Semantic parsing Deep learning

Recursive Recursive Recursive

Symbolic Symbolic Not symbolic

Compositional Partly compositional Compositional?

Precise Precise Not precise

Purely representational Preferences learned Preferences learned

Open-class lexicon often
neglected

Learned symbolic
lexicon

Learned lexical
embedding

Rich treatment of
functional lexicon

Possible rich treatment
of functional lexicon

No functional/open-class
distinctions

Sharp sem/prag division Blurry sem/prag division No sem/prag division

Not at all scalable Semi-scalable Highly scalable

Deep analytic insights Indirect analytic insights Often opaque
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