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Overview

Quick history

• Lewis (1969) is the earliest decision-theoretic approach to pragmatics. Lewis was interested primarily
in how linguistic conventions arise in a speech community. To pursue this question, he developed
signaling games. See also Lewis 1975.

• Lewis’s work was largely ignored in linguistics for decades. The sole exception is Clark (1996) and
related work, which anticipates many of the developments to come.

• In the 1990s, Prashant Parikh proposed a game-theoretic model for linguistic interactions (semantics
and pragmatics). See especially Parikh 2000, 2001.

• Blutner (1998, 2000) developed Bidirectional Optimality Theory, which formalized and extended in-
sights by Horn (1984) about how balancing speaker effort and hearer effort can give to stable kinds
of pragmatic enrichment. Jäger (2002) is an elegant formal restatement of the theory with a number
of extensions building on insights by Frank and Satta (1998) and Karttunen (1998).

• van Rooy (2003, 2004) sought to reformulate and extend Blutner ideas using Lewisian signaling
system. Those papers point out some fundamental limitations of Bi-OT and argue that signaling
games offer a more general solution to problems related to pragmatic enrichment.

• Signaling systems have too many equilibria, not all of them intuitively alike. The Iterated Best Re-
sponse models of Franke (2008, 2009) and Jäger (2007, To appear) seek to address this.

This handout

• This handout builds on the presentation of signaling games in Jäger (To appear), though I made
various simplifications in order to keep the presentation manageable. (Basically, my games leave out
the cost functions on forms and do not introduce epistemic indeterminacy.)

• My primary goal is to see how these games work for various referential tasks.

• In addition to all the models listed above, we also have Golland et al. (2010) and Frank and Goodman
(2012). Very little is known right now about how all these models relate to each other. I think the
best we can is to try to find places where they agree or disagree.
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1 The model

1.1 Signaling games

Definition 1 (Pure communication cheap-talk signaling systems). A pure communication cheap talk signal-
ing system is a tuple 〈s, h,Ω, M , J·K, P,σ,ρ, u〉, where

i. s is the speaker, and h is the hearer

ii. Ω is a set of states

iii. M is a set of messages

iv. J·K : S 7→ ℘(Ω) is the semantic interpretation function

v. P is prior probability distribution over Ω

vi. σ is a function from worlds into probability distributions over signals: h’s expectations about s

vii. ρ is a function from signals into probability distributions over worlds: s’s expectations about h

viii. u : (Ω×Ω) 7→ R is a utility function defined so that u(wi , w j) = 1 if wi = w j , else 0.

For the following definitions, assume a single signaling system G = 〈s, h,Ω, M , J·K, P,σ,ρ, u〉.

Definition 2 (Speaker expected utility). s’s expected utility for m ∈ M given w ∈ Ω is defined in terms of
the utilities and how the receiver acts given m:

EUs(m | w)
def
=
∑

w′∈Ω

ρ(w′|m) ∗ u(w, w′)

Definition 3 (Speaker best response to a world). s’s best response when presented with a world w is the set
of all signals that maximize expected utility given w:

brs(w)
def
=
�

m | EUs(m | w) = max
m′∈M

EUs(m
′ | w)

	

Definition 4 (Speaker posterior). The posterior for σ is defined via Bayes’ rule:

σ(w | m)
def
=

σ(m|w) ∗ P(w)
∑

w′∈Ωσ(m|w
′) ∗ P(w′)

undefined where the denominator is 0

Definition 5 (Hearer expected utility). h’s expected utility for w ∈ Ω given m ∈ M is defined in terms of the
utilities and how the speaker acts given w:

EUh(w | m)
def
=

¨
∑

w′∈Ωσ(w
′ | m) ∗ u(w, w′) if defined

undefined otherwise

Definition 6 (Hearer best responses). h’s best response when presented with a signal m is the set of all
worlds that maximize expected utility given m, resorting to the literal interpretation of m where the signal
conflicts with σ:

brh(m)
def
=

¨

�

w | EUh(w | m) =maxw′∈Ω EUh(w
′ | m)

	

if EUh(· | m) is defined
JmK otherwise
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1.2 Iterated best responses

Definition 7 (Speaker response strategy). s’s best response strategy to h’s strategy ρ is the one that assigns
equal probability to all best responses:

BRs(ρ) = σ iff σ(m | w) =
|{m} ∩ brs(w)|
|brs(w)|

for all w ∈ Ω and m ∈ M

Definition 8 (Hearer response strategy). h’s best response to s’s strategy σ is the one that conditions on the
best responses:

BRh(σ) = ρ iff ρ(w | m) =
P({w} ∩ brh(m))

P(brh(m))
for all w ∈ Ω and m ∈ M

2 Examples

2.1 Simple scalar implicature (adapted from Jäger To appear)

(1) a. Ω = {w¬∃, w∃¬∀, w∀}

b. M = {“none”, “some”, “all”}

c. J“none”K= {w¬∃}; J“some”K= {w∃¬∀, w∀}; J“all”K= {w∀}

d. P = even distribution over worlds

e. Suppose the initial speaker strategy is to be honest and literal:

σ =

“none” “some” “all”

w¬∃ 1 0 0
w∃¬∀ 0 1 0

w∀ 0 ½ ½

f. Then BRh(σ) uses the largest value from each column:

BRh(σ) =

w¬∃ w∃¬∀ w∀

“none” 1 0 0
“some” 0 1 0

“all” 0 0 1

g. The speaker’s best response follows the same principle:

BRs(BRh(σ)) =

“none” “some” “all”

w¬∃ 1 0 0
w∃¬∀ 0 1 0

w∀ 0 0 1

h. The strategies have now stabilized.

3



Ling 236, Stanford (Potts)

2.2 Golland et al. (2010)

The core model of Golland et al. is a signaling system. Their p is the prior P. Their pS is the sender strategy.
Their pL is the hearer strategy. Their U is the utility function (defined as in our pure communication games).
Their embedded model is just a round of iterated best responses. The only difference, as far as I can tell,
is that they define a single expected utility function incorporating both speaker and hearer strategies. I am
not sure what consequences this has.

(2) a. Ω = {rvase, rtable}

b. M = {‘right of lamp’, ‘on table’}

c. J‘right of lamp’K= {rvase, rtable}; J‘on table’K= {rvase}

d. P is an even distribution over the referents in Ω

e. σ =
‘on table’ ‘right of lamp’

rtable 0 1
rvase ½ ½

f. BRh(σ) =
rtable rvase

‘on table’ 0 1
‘right of lamp’ 1 0

g. BRs(BRh(σ)) =
‘on table’ ‘right of lamp’

rtable 0 1
rvase 1 0

h. The strategies have now stabilized.
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Abstract

Language is sensitive to both semantic and
pragmatic effects. To capture both effects,
we model language use as a cooperative game
between two players: a speaker, who gener-
ates an utterance, and a listener, who responds
with an action. Specifically, we consider the
task of generating spatial references to ob-
jects, wherein the listener must accurately
identify an object described by the speaker.
We show that a speaker model that acts op-
timally with respect to an explicit, embedded
listener model substantially outperforms one
that is trained to directly generate spatial de-
scriptions.

1 Introduction

Language is about successful communication be-
tween a speaker and a listener. For example, if the
goal is to reference the target object O1 in Figure 1,
a speaker might choose one of the following two ut-
terances:

(a) right of O2 (b) on O3

Although both utterances are semantically correct,
(a) is ambiguous between O1 and O3, whereas (b)
unambiguously identifies O1 as the target object,
and should therefore be preferred over (a). In this
paper, we present a game-theoretic model that cap-
tures this communication-oriented aspect of lan-
guage interpretation and generation.

Successful communication can be broken down
into semantics and pragmatics. Most computational

Figure 1: An example of a 3D model of a room. The
speaker’s goal is to reference the target object O1 by de-
scribing its spatial relationship to other object(s). The
listener’s goal is to guess the object given the speaker’s
description.

work on interpreting language focuses on compo-
sitional semantics (Zettlemoyer and Collins, 2005;
Wong and Mooney, 2007; Piantadosi et al., 2008),
which is concerned with verifying the truth of a sen-
tence. However, what is missing from this truth-
oriented view is the pragmatic aspect of language—
that language is used to accomplish an end goal, as
exemplified by speech acts (Austin, 1962). Indeed,
although both utterances (a) and (b) are semantically
valid, only (b) is pragmatically felicitous: (a) is am-
biguous and therefore violates the Gricean maxim
of manner (Grice, 1975). To capture this maxim, we
develop a model of pragmatics based on game the-
ory, in the spirit of Jäger (2008) but extended to the
stochastic setting. We show that Gricean maxims

4
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2.3 Frank and Goodman (2012)

(3) a. Ω = {rblue square, rblue circle, rgreen square}

b. M = {“blue”, “square”, “circle”, “green”}

c. J“blue”K= {rblue square, rblue circle} J“square”K= {rblue square, rgreen square}
J“circle”K= {rblue circle} J“green”K= {rgreen square}

d. P is an even distribution over the referents in Ω (changing P seems to have no effect).

e. σ =

“blue” “square” “circle” “green”

rblue square ½ ½ 0 0
rblue circle ½ 0 ½ 0

rgreen square 0 ½ 0 ½

f. BRh(σ) =

rblue square rblue circle rgreen square

“blue” ½ ½ 0
“square” ½ 0 ½
“circle” 0 1 0
“green” 0 0 1

g. BRs(BRh(σ)) =

“blue” “square” “circle” “green”

rblue square ½ ½ 0 0
rblue circle 0 0 1 0

rgreen square 0 0 0 1

h. BRh(BRs(BRh(σ))) =

rblue square rblue circle rgreen square

“blue” 1 0 0
“square” 1 0 0
“circle” 0 1 0
“green” 0 0 1

i. The strategies have now stabilized.
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Conclusion The experimental results are consistent with the claim that people differ with regard to
whether they bother to reason to the stable strategy. The priors don’t play a role. (For discussion of why this
might be, see Franke 2009:§3.1.)
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2.4 Stiller et al. (2011)

The scalar condition of Stiller et al. (2011) is isomorphic to that of Frank and Goodman (2012). It’s worth
looking at their ‘no scales’ condition, though. Stiller et al. report that children and adults are not able to
lean the relevant associations without strong priors. The IBR model captures the relevant assocations.
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Abstract

Linguistic communication relies on pragmatic implicatures
such as the inference that if “some students passed the test,”
not all did. Yet young children perform poorly on tests of
implicature, especially scalar implicatures using “some” and
“all,” until quite late in development. We investigate the ori-
gins of scalar implicature using tasks in which the scale arises
from real-world context rather than conventional contrasts be-
tween lexical items. Experiment 1 shows that these ad-hoc
implicatures are easy for preschool children, suggesting that
children have an early competence at pragmatic inference, and
that failures in standard scalar implicature tasks are due in-
stead to problems contrasting lexical items. Experiments 2
and 3 compare a Gricean, counterfactual account of implica-
ture with a linguistic alternatives account and find that neither
predicts effects of contextual informativeness. We conclude
that an account of pragmatic implicature must integrate world
knowledge, linguistic structure, and social reasoning.
Keywords: Scalar implicature; pragmatics; language acquisi-
tion.

Introduction
Sometimes the absence of a description says just as much as
its presence. A professor who says “some students passed the
test” implies that some students failed—if all had passed, a
cooperative speaker would have made the stronger statement
“all students passed.” Scalar implicature refers to the conver-
sational shorthand of using weak terms to imply the negation
of stronger ones that lie along the same “scale.” In this pa-
per we investigate the origins of scalar implicature, and the
nature of scales, by investigating a spectrum of tasks that are
logically equivalent to conventional scalar implicature but in
which the scale arises (or fails to arise) from the real-world
context rather than the lexical items—ad-hoc implicatures.

Implicatures surface in a variety of contexts beyond
the case of quantifiers, including modal operators such as
“might” and “must” (Noveck, 2001), inclusive and exclusive
disjunction (Braine & Rumain, 1981), and numerals (Barner
& Bachrach, 2010). A wide variety of theoretical frameworks
have been proposed to explain implicature, with the two most
influential being (1) Gricean approaches that we will collec-
tively call the counterfactual theories (Grice, 1975; Levinson,
2000) and (2) views based on grammatically computed lin-
guistic alternatives (Fox, 2007; Chierchia, Fox, & Spector,
2008).

Grice (1975) offers two maxims from which scalar im-
plicatures are meant to follow: make your contribution as
informative as is required, and do not make your contribu-
tion more informative than is required. From these it fol-
lows that any alternative statement which is more informative
than the spoken statement must be false—because the speaker
could have said that statement had it been true. Under this
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!Figure 1: Example stimuli from our ad-hoc scalar implicature
task. The utterance “My friend has glasses” receives different
interpretations when the context given to the listener is Row
1 versus Row 2. Each has a similar logical structure to the
conventional some-not-all implicature (top).

analysis, the relevant scale arises from the logical structure
of the possible statements that could have, counterfactually,
been uttered. Although neo-Gricean accounts have modified
some parts of this basic inferential mechanism, the general
predictions remain (Levinson, 2000). In response to appar-
ent over-prediction of implicatures by the counterfactual the-
ory, the linguistic-alternatives theory claims that implicatures
arise by a process in which a statement is strengthened by
negating the alternative statements—where the alternatives,
and hence scales, derive from the lexical and grammatical
structure of language; importantly, more complex statements
are not taken to be alternatives (Fox, 2007; Chierchia et al.,
2008).

Consider the three situations shown schematically in Fig-
ure 1. At the top, the word “all” is logically stronger than
the word “some”, though some applies whenever all does.
There is thus a natural scale of informativeness set up by the
conventional semantic content of the words. In contrast, the
feature words “glasses” and “top hat” have no conventional
ordering, but in the context of the three faces in the middle
row (“scales” condition), top hat is similarly stronger than
glasses, though glasses applies to any object that top hat does.
If a speaker says “the one with glasses” we may draw the im-
plicature that she means the middle face (an intuition which
we test in Experiment 1)—the situation itself seems to set up

(4) a. Ω = {rcap+mustache, rcap+glasses, rtophat+glasses}

b. M = {“cap”, “glasses”, “mustache”, “tophat”}

c. J“cap”K= {rcap+mustache, rcap+glasses} J“glasses”K= {rcap+glasses, rtophat+glasses}
J“mustache”K= {rcap+mustache} J“tophat”K= {rtophat+glasses}

d. P is an even distribution over the referents in Ω (changing P seems to have no effect).

e. σ =

“cap” “glasses” “mustache” “tophat”

rcap+mustache ½ 0 ½ 0
rcap+glasses ½ ½ 0 0

rtophat+glasses 0 ½ 0 ½

f. BRh(σ) =

rcap+mustache rcap+glasses rtophat+glasses

“cap” ½ ½ 0
“glasses” 0 ½ ½

“mustache” 1 0 0
“tophat” 0 0 1

g. BRs(BRh(σ)) =

“cap” “glasses” “mustache” “tophat”

rcap+mustache 0 0 1 0
rcap+glasses ½ ½ 0 0

rtophat+glasses 0 0 0 1

h. BRh(BRs(BRh(σ))) =

rcap+mustache rcap+glasses rtophat+glasses

“cap” 0 1 0
“glasses” 0 1 0

“mustache” 1 0 0
“tophat” 0 0 1

i. The strategies have now stabilized.
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2.5 Deeper?

• The implicature example stabilized after 1 hearer strategy and 2 speaker strategies.

• The Golland et al. example stabilized after 1 hearer strategy and 2 speaker strategies.

• The Frank and Goodman example stabilized after 2 hearer strategies and 2 speaker strategies.

• Strikingly, scenarios like the following stabilize at the same rate as Frank and Goodman’s:

i. BRs(BRh(σ)) =

“blue” “square” “circle” “green” “contains A”

rblue square with A 0 0 0 0 1
rblue square ½ ½ 0 0 0
rblue circle 0 0 1 0 0

rgreen square 0 0 0 1 0

ii. BRh(BRs(BRh(σ))) =

rblue square with A rblue square rblue circle rgreen square

“blue” 0 1 0 0
“square” 0 1 0 0
“circle” 0 0 1 0
“green” 0 0 0 1

“contains A” 1 0 0 0

• Can we think of referential games that require even deeper reasoning? The (im)possibility of such
examples might help decide between Frank and Goodman’s model and the IBR model.

3 Other remarks

• σ is the hearer’s model of the speaker, and ρ is the speaker’s model of the hearer. This cross-over is
reminiscent of the way interrogator and expert utilities are intermingled by Benz (2005).

• Franke (2009) and Jäger (To appear) explore models in which messages have costs. This makes it pos-
sible to account for manner-based implicatures like those deriving from the principle that (ab)normal
things are described with (ab)normal language.

• The above presentation delivers implicatures relentlessly. Franke (2009) shows how to weaken this
by introducing epistemic uncertainly about which game is being played. See also Jäger (To appear).

• Jäger (To appear) argues that the IBR model is compatible with alternative generation in the manner
of Chierchia et al. (To appear). One way to read this is that the IBR approach is independent of the
grammatical approach. They can even be seen as complementary, with the grammatical approach
providing logical forms that we can reason about game-theoretically.

7
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