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Overview

These notes attempt to make concrete the models and experiments of Socher et al. 2012 (the
MV-RNN model). I also draw on Socher et al. 2011 (the basic RNN model).

1 Relationships between models

Based on slides from Richard1 and Socher et al. 2012:§2.2:

(1) MV-RNN (Socher et al. 2012):

p = f
�

W
�

Ba
Ab

��

• f is sigmoid (R 7→ [0, 1]) or tanh (R 7→ [−1,1]), applied element-wise.
• W , A, and B all do compositional work.

(2) RNN (Socher et al. 2011):

p = f
�

W
�

In×na
In×n b

��

• f is sigmoid or tanh.
• A and B are trivialized; W does all of the compositional work.

(3) Mitchell & Lapata 2010:

p = Ba+ Ab = identity
�

[In×nIn×n]
�

Ba
Ab

��

• No transformation to the parent vector.
• No global composition matrix (the identities trivialize it).
• Each daughter contributes a lexical matrix.

(4) Baroni & Zamparelli 2010: A is an adjective matrix, b is a noun vector:

p = Ab = identity
�

[0n×nIn×n]
�

Ba
Ab

��

• No transformation to the parent vector.
• The global composition matrix cancels any contribution made by Ba and is identity on

the contribution of Ab.
• The contribution of the adjective is solely its matrix.

1http://www.stanford.edu/class/cs224u/slides/2013-01-21-224U-RichardSocher.pdf

http://www.stanford.edu/class/cs224u/slides/2013-01-21-224U-RichardSocher.pdf
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2 Propositional logic (§3.2)

Socher et al. (2012) present this in terms of the MV-RNN model, but I think the RNN suffices. (To
present this model as an MV-RNN, assume that all of the matrices are identities.) I found W by
just playing around with equations until I hit a viable solution. Socher et al. used L-BFGS.

(5) T= 1

(6) F= 0

(7) ¬= 1

(8) ∧= 1

(9) W = [1,−1]

(10) g(x) =max(min(x , 1), 0)

(11) Negation:

g
�

W
�

1
1

��

= g(0) = 0

¬= 1 T= 1

g
�

W
�

1
0

��

= g(1) = 1

¬= 1 F= 0

(12) Conjunction:

g
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W
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��

= g(1) = 1
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g
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∧= 1 T= 1
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W
�
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��

= g(1) = 1

∧= 1 F= 0

Question Could this be done without a global matrix W? If the value of any two nodes of
dimension n is a vector of dimension n, then it seems impossible to simulate the two-place nature
of binary connectives.
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3 Adverb–adjective combinations

�

1 0
0 1

�

JextremelyKT +

�

2 0
0 2

�

JgoodKT = [4,−8]

�

1 0
0 1

�

JextremelyKT +

�

2 0
0 2

�

JawfulKT = [1,−4]

JextremelyK=

�

8 1
0 2

�

JextremelyK(JgoodKT ) = [2,4]

JextremelyK(JawfulKT ) = [4,−8]

Figure 1: A toy example to illustrate the effects of matrix multiplication.

Socher et al.’s (2012) adverb–adjective experiments show off the power of the MV-RNN model.2
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Figure 2: Adverb–adjective distributions.

2Data and code: http://nasslli2012.christopherpotts.net/composition.html, http://www.socher.org/index.php/
Main/SemanticCompositionalityThroughRecursiveMatrix-VectorSpaces
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Softmax layer To predict the distribution over star-ratings, Socher et al. (2012) train a logistic
classifier on the parent vectors, which maps them to [0,1], a normalized version of the ratings
1 . . . 10. This is the technique I described on p. 18 of the handout ‘Distributional approaches to
word meanings’, and it is basically what Baroni et al. (2012) do with their VSMs.

Method Avg KL
Uniform 0.327
Mean train 0.193
p = 1

2(a + b) 0.103
p = a � b 0.103
p = [a; b] 0.101
p = Ab 0.103
RNN 0.093
Linear MVR 0.092
MV-RNN 0.091
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Figure 3: Left: Average KL-divergence for predicting sentiment distributions of unseen adverb-adjective pairs of the
test set. See text for p descriptions. Lower is better. The main difference in the KL divergence comes from the few
negation pairs in the test set. Right: Predicting sentiment distributions (over 1-10 stars on the x-axis) of adverb-
adjective pairs. Each row has the same adverb and each column the same adjective. Many predictions are similar
between the two models. The RNN and linear MVR are not able to modify the sentiment correctly: not awesome is
more positive than fairly awesome and not annoying has a similar shape as unbelievably annoying. Predictions of the
linear MVR model are almost identical to the standard RNN for these examples.

defined as KL(g||p) =
�

i gi log(gi/pi), where g is
the gold distribution and p is the predicted one.

We compare to several baselines and ablations of
the MV-RNN model. An (adverb,adjective) pair is
described by its vectors (a, b) and matrices (A, B).
1 p = 0.5(a + b), vector average
2. p = a � b, element-wise vector multiplication
3. p = [a; b], vector concatenation
4. p = Ab, similar to (Baroni and Lenci, 2010)
5. p = g(W [a; b]), RNN, similar to Socher et al.
6. p = Ab + Ba, Linear MVR, similar to (Mitchell
and Lapata, 2010; Zanzotto et al., 2010)
7. p = g(W [Ba;Ab]), MV-RNN
The final distribution is always predicted by a
softmax classifier whose inputs p vary for each of
the models. This objective function (see Sec. 2.4)
is different to all previously published work except
that of (Socher et al., 2011c).

We cross-validated all models over regulariza-
tion parameters for word vectors, the softmax clas-
sifier, the RNN parameter W and the word op-
erators (10�4, 10�3) and word vector sizes (n =
6, 8, 10, 12, 15, 20). All models performed best at
vector sizes of below 12. Hence, it is the model’s
power and not the number of parameters that deter-

mines the performance. The table in Fig. 3 shows
the average KL-divergence on the test set. It shows
that the idea of matrix-vector representations for all
words and having a nonlinearity are both impor-
tant. The MV-RNN which combines these two ideas
is best able to learn the various compositional ef-
fects. The main difference in KL divergence comes
from the few negation cases in the test set. Fig. 3
shows examples of predicted distributions. Many
of the predictions are accurate and similar between
the top models. However, only the MV-RNN has
enough expressive power to allow negation to com-
pletely shift the sentiment with respect to an adjec-
tive. A negated adjective carrying negative senti-
ment becomes slightly positive, whereas not awe-
some is correctly attenuated. All three top models
correctly capture the U-shape of unbelievably sad.
This pair peaks at both the negative and positive
spectrum because it is ambiguous. When referring
to the performance of actors, it is very negative, but,
when talking about the plot, many people enjoy sad
and thought-provoking movies. The p = Ab model
does not perform well because it cannot model the
fact that for an adjective like “sad,” the operator of
“unbelievably” behaves differently.

1206

Figure 3: From Socher et al. (2012), p. 1206.
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