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Overview

These notes attempt to make concrete the models and experiments of Socher et al. 2012 (the
MV-RNN model). I also draw on Socher et al. 2011 (the basic RNN model).

1 Relationships between models

Based on slides from Richard® and Socher et al. 2012:§2.2:
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e f issigmoid (R — [0,1]) or tanh (R — [—1,1]), applied element-wise.
* W, A, and B all do compositional work.

Inxna
r=r(wl i)
* f is sigmoid or tanh.

* Aand B are trivialized; W does all of the compositional work.

D MV-RNN (Socher et al. 2012):

(2) RNN (Socher et al. 2011):

3 Mitchell & Lapata 2010:

p — Ba +Ab = ldentll}’ ([Inxnlnxn] |: ig :| )

* No transformation to the parent vector.
* No global composition matrix (the identities trivialize it).
* Each daughter contributes a lexical matrix.

(€)) Baroni & Zamparelli 2010: A is an adjective matrix, b is a noun vector:

p = Ab = identity ([O“X”I”X”] [ ﬁg ] )

* No transformation to the parent vector.

* The global composition matrix cancels any contribution made by Ba and is identity on
the contribution of Ab.

* The contribution of the adjective is solely its matrix.

"http://www.stanford.edu/class/cs224u/slides/2013-01-21-224U-RichardSocher.pdf


http://www.stanford.edu/class/cs224u/slides/2013-01-21-224U-RichardSocher.pdf
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2 Propositional logic (§3.2)

Socher et al. (2012) present this in terms of the MV-RNN model, but I think the RNN suffices. (To
present this model as an MV-RNN, assume that all of the matrices are identities.) I found W by
just playing around with equations until I hit a viable solution. Socher et al. used L-BFGS.

5) T=1
(6) F=0
7) =1
(8 AN=1

(10) g(x)=max(min(x,1),0)
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(11) Negation:
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(12) Conjunction:

Question Could this be done without a global matrix W? If the value of any two nodes of
dimension n is a vector of dimension n, then it seems impossible to simulate the two-place nature
of binary connectives.
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3 Adverb-adjective combinations
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Figure 1: A toy example to illustrate the effects of matrix multiplication.

Socher et al.’s (2012) adverb-adjective experiments show off the power of the MV-RNN model.>
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Figure 2: Adverb-adjective distributions.

2Data and code: http://nass11i2012.christopherpotts.net/composition.html, http://www.socher.org/index.php/
Main/SemanticCompositionalityThroughRecursiveMatrix-VectorSpaces


http://nasslli2012.christopherpotts.net/composition.html
http://www.socher.org/index.php/Main/SemanticCompositionalityThroughRecursiveMatrix-VectorSpaces
http://www.socher.org/index.php/Main/SemanticCompositionalityThroughRecursiveMatrix-VectorSpaces
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Softmax layer To predict the distribution over star-ratings, Socher et al. (2012) train a logistic
classifier on the parent vectors, which maps them to [0,1], a normalized version of the ratings
1...10. This is the technique I described on p. 18 of the handout ‘Distributional approaches to
word meanings’, and it is basically what Baroni et al. (2012) do with their VSMs.
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Figure 3: Left: Average KL-divergence for predicting sentiment distributions of unseen adverb-adjective pairs of the
test set. See text for p descriptions. Lower is better. The main difference in the KL divergence comes from the few
negation pairs in the test set. Right: Predicting sentiment distributions (over 1-10 stars on the z-axis) of adverb-
adjective pairs. Each row has the same adverb and each column the same adjective. Many predictions are similar
between the two models. The RNN and linear MVR are not able to modify the sentiment correctly: not awesome is
more positive than fairly awesome and not annoying has a similar shape as unbelievably annoying. Predictions of the
linear MVR model are almost identical to the standard RNN for these examples.

Figure 3: From Socher et al. (2012), p. 1206.
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