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My ACL talk engaging with ‘NLP for Social Good’

Reliable characterizations of NLP systems as a
social responsibility

1. Benchmark datasets: Delimit responsible use

2. System assessment: Connect with real-world concerns

3. Structural evaluation methods: Seek guarantees

Do exactly what you said you would do.
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Probing

Feature attribution
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Case study: Monotonicity NLI
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Systematicity

Fodor and Pylyshyn (1988:37):
“What we mean when we say that linguistic capacities are
systematic is that the ability to produce/understand some
sentences is intrinsically connected to the ability to
produce/understand certain others.”
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Systematicity

Fodor and Pylyshyn (1988:37):
“What we mean when we say that linguistic capacities are
systematic is that the ability to produce/understand some
sentences is intrinsically connected to the ability to
produce/understand certain others.”

Example Gold Prediction

The bakery sells a mean apple pie. pos pos
They sell a mean apple pie. pos pos
She sells a mean apple pie. pos neg
He sells a mean apple pie. pos neg
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Seeking generalization guarantees

• Goal: causal analysis of a model’s structure, to obtain
guarantees about how it will behave.

• Further questions of
É fairness
É bias
É reliability
É robustness

are hard to address without such guarantees.
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Improving networks

Structural analysis as the first step towards training networks
to have the properties we want.

8 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

Improving networks

Structural analysis as the first step towards training networks
to have the properties we want.

8 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

Probing

9 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

Core idea behind probing

Use a supervised model (the probe) to determine what is
latently encoded in the hidden representations of a target
models.
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Probing BERT

4595

Figure 1: Summary statistics on BERT-large. Columns
on left show F1 dev-set scores for the baseline (P (0)

⌧ )
and full-model (P (L)

⌧ ) probes. Dark (blue) are the mix-
ing weight center of gravity (Eq. 2); light (purple) are
the expected layer from the cumulative scores (Eq. 4).

idence that the corresponding layer contains more
information related to that particular task.

Center-of-Gravity. As a summary statistic, we
define the mixing weight center of gravity as:

Ēs[`] =
LX

`=0

` · s(`)
⌧ (2)

This reflects the average layer attended to for each
task; intuitively, we can interpret a higher value to
mean that the information needed for that task is
captured by higher layers.

3.2 Cumulative Scoring
We would like to estimate at which layer in the
encoder a target (s1, s2, label) can be correctly
predicted. Mixing weights cannot tell us this di-
rectly, because they are learned as parameters and
do not correspond to a distribution over data. A
naive classifier at a single layer cannot either, be-
cause information about a particular span may be
spread out across several layers, and as observed
in Peters et al. (2018b) the encoder may choose to
discard information at higher layers.

To address this, we train a series of classifiers
{P

(`)
⌧ }` which use scalar mixing (Eq. 1) to attend

to layer ` as well as all previous layers. P
(0)
⌧ corre-

sponds to a non-contextual baseline that uses only
a bag of word(piece) embeddings, while P

(L)
⌧ =

P⌧ corresponds to probing all layers of the BERT
model.

These classifiers are cumulative, in the sense
that P

(`+1)
⌧ has a similar number of parameters but

with access to strictly more information than P
(`)
⌧ ,

Figure 2: Layer-wise metrics on BERT-large. Solid
(blue) are mixing weights s

(`)
⌧ (§3.1); outlined (purple)

are differential scores �(`)
⌧ (§3.2), normalized for each

task. Horizontal axis is encoder layer.

and we see intuitively that performance (F1 score)
generally increases as more layers are added.3 We
can then compute a differential score �

(`)
⌧ , which

measures how much better we do on the probing
task if we observe one additional encoder layer `:

�(`)
⌧ = Score(P (`)

⌧ ) � Score(P (`�1)
⌧ ) (3)

Expected Layer. Again, we compute a
(pseudo)4 expectation over the differential scores
as a summary statistic. To focus on the behavior
of the contextual encoder layers, we omit the con-
tribution of both the “trivial” examples resolved at
layer 0, as well as the remaining headroom from

3Note that if a new layer provides distracting features, the
probing model can overfit and performance can drop. We see
this in particular in the last 1-2 layers (Figure 2).

4This is not a true expectation because the F1 score is not
an expectation over examples.
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Central limitations

Probing or learning a new model?

1. A probe is a supervised model with a particular
featurization choice.

2. At least some of the information that we identify is likely
to be stored in the probe model.

3. Responses:
É Unsupervised probes (Saphra and Lopez 2019; Clark

et al. 2019; Hewitt and Manning 2019)
É Control tasks (Hewitt and Liang 2019)

No causal inference
Probes cannot tell us about whether the information that we
identify has any causal relationship with the target model’s
behavior (Belinkov and Glass 2019; Geiger et al. 2020, 2021).
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Simple running example
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No causal inferences

x y z

x y z

L1 L2

1. Probe L1: it computes x+ y

2. Probe L2: it computes z

3. Aha!

x y z

wS1
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4. But neither has any impact on the output!
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captum.ai

1. Integrated gradients (Sundararajan et al. 2017)
2. Gradients
3. Saliency Maps (Simonyan et al. 2013)
4. DeepLift (Shrikumar et al. 2017)
5. Deconvolution (Zeiler and Fergus 2014)
6. LIME (Ribeiro et al. 2016)
7. Feature ablation
8. Feature permutation
9. . . .
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Integrated gradients: Intuition
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Central properties

Sensitivity
If two inputs x and x′ differ only at dimension i and lead to
different predictions, then feature fi has non-zero attribution.

M([1,0,1]) = positive
M([1,1,1]) = negative

Completeness
For input x and baseline x′, the sum of attributions for x is
equal to M(x)− M(x′).

Implementation invariance
If two models M and M′ have identical input/output behavior,
then the attributions for M and M′ are identical.
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Reliable insights about causal structure
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Recipe

1. State a hypothesis about (an aspect of) the target
model’s causal structure.

2. Search for an alignment betewen the causal model and
target model.

3. Perform interchange interventions.
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Connections to the literature

• Constructive abstraction (Beckers et al. 2020)
• Causal mediation analysis (Vig et al. 2020)
• Role Learning Networks (Soulos et al. 2020)
• CausaLM (Feder et al. 2021)
• Amnesic Probing (Elazar et al. 2021)
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Monotonicity NLI (MoNLI)
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MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza À food
New example (B) Pizza was served.

Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.

Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)

29 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza À food
New example (B) Pizza was served.

Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.

Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)

29 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.

WordNet pizza À food
New example (B) Pizza was served.

Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.

Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)

29 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza À food

New example (B) Pizza was served.

Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.

Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)

29 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza À food
New example (B) Pizza was served.

Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.

Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)

29 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza À food
New example (B) Pizza was served.

Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.

Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)

29 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza À food
New example (B) Pizza was served.

Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.
WordNet flowers À plants
New example (B) The children are not holding flowers.

Negative MoNLI (A) entailment (B)
Negative MoNLI (B) neutral (A)

29 / 54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion

MoNLI monotonicity algorithm

Infer(example)

1 lexrel← get-lexrel(example)
2 if contains-not(example)
3 return reverse(lexrel)
4 return lexrel

MoNLI Pizza was served. entailment Food was served.
lexrel Pizza entailment Food

MoNLI Pizza was not served. neutral Food was not served.
lexrel Pizza entailment Food

reverse(lexrel) neutral
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Models

BiLSTM The bidirectional LSTM baseline from Williams
et al. (2018).

ESIM The Enhanced Sequential Inference Model (Chen
et al. 2016) is a hybrid TreeLSTM-based and
biLSTM-based model that uses an inter-sentence
attention mechanism to align words across
sentences.

BERT A Transformer model trained to do masked
language modeling and next-sentence
prediction (Devlin et al. 2019).
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MoNLI as challenge dataset

No MoNLI fine-tuning
Model Input pretrain NLI train data SNLI PMoNLI NMoNLI

BiLSTM GloVe SNLI train 81.6 73.2 37.9

ESIM GloVe SNLI train 87.9 86.6 39.4

BERT BERT SNLI train 90.8 94.4 2.2
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Model failure or dataset failure?

Liu et al. (2019)
“What should we conclude when a system fails on a
challenge dataset? In some cases, a challenge might exploit
blind spots in the design of the original dataset (dataset
weakness). In others, the challenge might expose an
inherent inability of a particular model family to handle
certain natural language phenomena (model weakness).
These are, of course, not mutually exclusive.”
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Negation coverage in SNLI and MultiNLI

1. SNLI: Only 38 examples have negated premise and
hypothesis.

2. MultiNLI: 18K examples (≈4%) have negated premise
and hypothesis, but few have the properties we are after.
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A systematic generalization task

NMoNLI Train NMoNLI Test

person 198 dog 88
instrument 100 building 64
food 94 ball 28
machine 60 car 12
woman 58 mammal 4
music 52 animal 4
tree 52
boat 46
fruit 42
produce 40
fish 40
plant 38
jewelry 36
anything 34
hat 20
man 20
horse 16
gun 12
adult 10
shirt 8
shoe 6
store 6
cake 4
individual 4
clothe 2
weapon 2
creature 2

Our models know these lexical relations
(high Positive MoNLI accuracy) and will
be compelled to combine this knowledge
with what they learn about negation dur-
ing Negative MoNLI fine-tuning.
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Fine-tuning on Negative MoNLI
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Fine-tuning results

No MoNLI fine-tuning With NMoNLI fine-tuning
Model Input pretrain NLI train data SNLI PMoNLI NMoNLI SNLI NMoNLI

BiLSTM GloVe SNLI train 81.6 73.2 37.9 74.6 93.5

ESIM GloVe SNLI train 87.9 86.6 39.4 56.9 96.2

BERT BERT SNLI train 90.8 94.4 2.2 90.5 90.0
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Focusing on the BERT model

[CLS] this not tree [SEP] this not elm [SEP]

entailment
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Probe results for lexrel accuracy
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BERT NLI interventions
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What it means for BERT to implement Infer

Infer(example)

1 lexrel← get-lexrel(example)
2 if contains-not(example)
3 return reverse(lexrel)
4 return lexrel

Inferlexrel(i)→lexrel(j)(i) =
¨

Infer(i) lexrel(i) = lexrel(j)

reverse(Infer(i)) lexrel(i) , lexrel(j)

Inferlexrel(i)→lexrel(j)(i) = BERTL(i)→L(j)(i)
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Methods and findings

1. Find a useful intervention point.
2. Interchange interventions for every pair of examples at

that site.
3. Find clusters of examples in which BERT mimics the

causal dynamics of Infer.
4. The largest subsets we found 98, 63, 47, and 37.

a. For a random graph, the expected number of subsets
larger than 20 is effectively 0.

b. If the site perfectly captured Infer, we would get a
single huge cluster.
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Largest exchangeable cluster
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Which algorithm is BERT implementing then?

Infer(example)

1 lexrel← get-lexrel(example)
2 if contains-not(example)
3 return reverse(lexrel)
4 return lexrel

Infer(example)

1 if inCluster(C1,example)
2 lexrel1 ← get-lexrel(example)
3 if contains-not(example)
4 return reverse(lexrel1)
5 return lexrel1
6 if inCluster(C2,example)
7 lexrel2 ← get-lexrel(example)
8 if contains-not(example)
9 return reverse(lexrel2)

10 return lexrel2
11 if inCluster(C3,example)
12 lexrel3 ← get-lexrel(example)
13 if contains-not(example)
14 return reverse(lexrel3)
15 return lexrel3
16 . . .
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Compositional complexity
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Figure 2: The causal structure of the high-level natural logic causal model CNatLog that performs
inference on MQNLI. The superscripts P and H stand for ‘premise’ and ‘hypothesis’ and the
subscripts ‘Obj’ and ‘Subj’ stand for ‘subject’ and ‘object’. The node labels are used to explain the
experimental results in Section 5 and Section 5.2.

" every " baker " " " eats " no " bread
contradiction

" no angry baker " " " eats " no " bread

" every silly professor " " " sells not every " book
neutral

" every silly professor " " " sells not every " chair

not every sad baker " " fairly admits not every odd idea
entailment

" some " baker does not " admits " no " idea

(a) MQNLI examples. The " token serves as padding
(but still attended to by the model) and ensures a per-
fect alignment between both premises and hypotheses
and across all examples. It is semantically an identity
element.

Model Train Dev Test

CBoW 88.04 54.18 53.99
TreeNN 67.01 54.01 53.73
CompTreeNN 99.65 80.17 80.21
BiLSTM 99.42 46.41 46.32
BERT 99.99 88.25 88.50

(b) MQNLI results. The first three models are from
Geiger et al. 2019, where the CompTreeNN is a
task-specific model not suitable for general NLI
and functions as an idealized upperbound. Our
results show that BERT-based models can surpass
this without such alignments.

Table 1: MQNLI examples (left) and MQNLI results (right).

Compare this characterization of the causal roles of neural representations with that provided by
attribution methods, which would assign L1 and L2 a single scalar value based on their contribution
to the final output. This gives us no information about what representations are being composed
together at L1 and L2, nor what representations are composed from representations at L1 and L2.

Our method assigns causally impactful information content, but also identifies the abstract causal
structure along which representations are composed. It encompasses and improves on correlational
and attribution methods.

4 The Natural Language Inference Task and Models

Multiply Quantified NLI Dataset The Multiply Quantified NLI (MQNLI) dataset of Geiger et al.
[2019] contains templatically generated English-language NLI examples that involve very complex
interactions between quantifiers, negation, and modifiers. We provide a few examples in Table 1a;
the emptystring symbol " ensures perfect alignments at the token level both between premises and
hypotheses and across all examples.

The MQNLI examples are labeled using an algorithmic implementation of the natural logic of
MacCartney and Manning [2009] over tree structures, and the dataset distribution includes a method
for creating train/dev/test splits that vary in their difficulty. In the hardest setting, the train set is
provably the minimal set of examples required to ensure that the dev and test sets can be perfectly
solved by a simple symbolic model; in the easier settings, the train set redundantly encodes necessary
information, which might allow a model to perform perfectly in assessment by memorization despite
not having found a truly general solution. For a fuller review of the dataset, see Appendix B.

5
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Training models to conform to a hypothesis
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Open questions

1. Can we more effectively leverage probes to find useful
intervention points?

2. What is the relationship between interchange
interventions and integrated gradients?

3. Can we characterize interchange interventions more
generally so that they can be applied to more diverse
models?

4. Can interchanges be used to induce modularity during
training?

Thanks!
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Integrated Gradients computation
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1. Generate α = [1, . . . ,m]

2. Interpolate inputs between baseline x′ and actual input x

3. Compute gradients for each interpolated input
4. Integral approximation through averaging
5. Scaling to remain in the space region as the original

53 / 54

Adapted from the TensorFlow integrated gradients tutorial

https://www.tensorflow.org/tutorials/interpretability/integrated_gradients
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Probe results for lexrel accuracy
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