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Systematicity

Fodor and Pylyshyn (1988:37):

“What we mean when we say that linguistic capacities are
systematic is that the ability to produce/understand some
sentences is intrinsically connected to the ability to
produce/understand certain others.”

5/54



Feature attribution Causal abstraction Monotonicity NLI Conclusion

Overview Motivations Probing
0O0000000000000000 [e]e]e}

(oo} @000 0000000 00000 0000

Systematicity

Fodor and Pylyshyn (1988:37):

“What we mean when we say that linguistic capacities are
systematic is that the ability to produce/understand some
sentences is intrinsically connected to the ability to
produce/understand certain others.”

1. Sandy loves the puppy.
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produce/understand certain others.”
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4. The turtle loves the puppy.
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Systematicity

Fodor and Pylyshyn (1988:37):

“What we mean when we say that linguistic capacities are
systematic is that the ability to produce/understand some
sentences is intrinsically connected to the ability to
produce/understand certain others.”

Example Gold Prediction
The bakery sells a mean apple pie.
They sell a mean apple pie.
She sells a mean apple pie. neg

He sells a mean apple pie. neg
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Seeking generalization guarantees

e Goal: causal analysis of a model’s structure, to obtain
guarantees about how it will behave.
e Further questions of

» fairness
> bias
> reliability
» robustness
are hard to address without such guarantees.
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Improving networks

Structural analysis as the first step towards training networks
to have the properties we want.
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Core idea behind probing

Use a supervised model (the probe) to determine what is
latently encoded in the hidden representations of a target
models.

Conneau et al. 2018; Tenney et al. 2019
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featurization choice.
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featurization choice.

2. At least some of the information that we identify is likely
to be stored in the probe model.
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Central limitations

Probing or learning a new model?
1. A probe is a supervised model with a particular
featurization choice.

2. At least some of the information that we identify is likely
to be stored in the probe model.

3. Responses:

» Unsupervised probes (Saphra and Lopez 2019; Clark
et al. 2019; Hewitt and Manning 2019)
» Control tasks (Hewitt and Liang 2019)
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Central limitations

Probing or learning a new model?

1. A probe is a supervised model with a particular
featurization choice.

2. At least some of the information that we identify is likely
to be stored in the probe model.
3. Responses:

» Unsupervised probes (Saphra and Lopez 2019; Clark
et al. 2019; Hewitt and Manning 2019)
» Control tasks (Hewitt and Liang 2019)

No causal inference

Probes cannot tell us about whether the information that we
identify has any causal relationship with the target model’s
behavior (Belinkov and Glass 2019; Geiger et al. 2020, 2021).
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No causal inferences

Probe Lq: it computes x +y
Probe Ly: it computes z

3. Aha!
(=)
(=) ()
ONONO

4. But neither has any impact on the output!

1 1 0
VVI - ( 0 ) VVZ - ( 1 ) VV3 ::( : )
X y z 0 1 1

0
w:( 1 ) (xW1; xWo; xWs)w
0
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captum.ai
1. Integrated gradients (Sundararajan et al. 2017)
2. Gradients
3. Saliency Maps (Simonyan et al. 2013)
4. Deeplift (Shrikumar et al. 2017)
5. Deconvolution (Zeiler and Fergus 2014)
6. LIME (Ribeiro et al. 2016)
7. Feature ablation
8. Feature permutation
9. .

https://captum.ai
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Integrated gradients: Intuition
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Integrated gradients: Intuition
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Central properties

Sensitivity
If two inputs x and x’ differ only at dimension i and lead to
different predictions, then feature f; has non-zero attribution.

M([1, 0, 1]) = positive
M([1, 1, 1]) = negative
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Central properties

Sensitivity
If two inputs x and x’ differ only at dimension i and lead to
different predictions, then feature f; has non-zero attribution.

M([1, 0, 1]) = positive
M([1, 1, 1]) = negative

Completeness

For input x and baseline x’, the sum of attributions for x is
equal to M(x)— M(x’).
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Central properties

Sensitivity
If two inputs x and x’ differ only at dimension i and lead to
different predictions, then feature f; has non-zero attribution.

M([1, 0, 1]) = positive
M([1, 1, 1]) = negative

Completeness

For input x and baseline x’, the sum of attributions for x is
equal to M(x)— M(x’).

Implementation invariance

If two models M and M’ have identical input/output behavior,
then the attributions for M and M’ are identical.
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Reliable insights about causal structure

Sundararajan et al. 2017
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Reliable insights about causal structure

Ws =

HHOO
oooo

1 ) (XW1;xWao; xW3)w
0

Sundararajan et al. 2017
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Reliable insights about causal structure

(i)

1 ) (XW1;xWao; xW3)w
0

0
0
0
0

Conclusion
000

Sundararajan et al. 2017
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Summary
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Recipe

Geiger et al. 2020, 2021
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Recipe

1. State a hypothesis about (an aspect of) the target
model’s causal structure.

Geiger et al. 2020, 2021
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Recipe

1. State a hypothesis about (an aspect of) the target
model’s causal structure.

2. Search for an alignment betewen the causal model and
target model.

Geiger et al. 2020, 2021
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Recipe

1. State a hypothesis about (an aspect of) the target
model’s causal structure.

2. Search for an alignment betewen the causal model and
target model.

3. Perform interchange interventions.

Geiger et al. 2020, 2021
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Interchange intervention analysis
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Interchange intervention analysis
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Interchange intervention analysis
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Connections to the literature

e Constructive abstraction (Beckers et al. 2020)
o Causal mediation analysis (Vig et al. 2020)
e Role Learning Networks (Soulos et al. 2020)
e CausalM (Feder et al. 2021)
e« Amnesic Probing (Elazar et al. 2021)
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Summary

Characterize Causal Improved
representations inference training

Probing ©
Feature attribution & &
Causal abstraction © < o
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Positive MoNLI (PMoNLI; 1,476 examples)
SNLI hypothesis (A) Food was served.

Conclusion
000
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Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza C food
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MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A) Food was served.
WordNet pizza C food
New example (B) Pizza was served.
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MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)

SNLI hypothesis (A)
WordNet
New example (B)

Positive MoNLI
Positive MoNLI

Food was served.
pizza c food
Pizza was served.

(A) neutral (B)
(B) entailment (A)

Conclusion
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MoNLI dataset construction

Positive MoNLI (PMoNLI; 1,476 examples)
SNLI hypothesis (A) Food was served.

WordNet pizza C food

New example (B) Pizza was served.
Positive MoNLI (A) neutral (B)
Positive MoNLI (B) entailment (A)

Negative MoNLI (PMoNLI; 1,202 examples)
SNLI hypothesis (A) The children are not holding plants.

WordNet flowers C plants
New example (B) The children are not holding flowers.
Negative MoNLI (A) entailment (B)

Negative MoNLI (B) neutral (A)
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MoNLI monotonicity algorithm
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MoNLI monotonicity algorithm

Infer(example)

1 lexrel « get-lexrel(example)
2 if contains-not(example)

3 return reverse(lexrel)
4 return lexrel
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MoNLI monotonicity algorithm

Infer(example)

1 lexrel « get-lexrel(example)
2 if contains-not(example)

3 return reverse(lexrel)
4 return lexrel

MoNLI Pizza was served. entailment Food was served.
lexrel Pizza entailment Food
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Infer(example)

1 lexrel « get-lexrel(example)
2 if contains-not(example)

3 return reverse(lexrel)
4 return lexrel

MoNLI Pizza was served. entailment Food was served.

lexrel Pizza entailment Food

MoNLI Pizza was not served. neutral Food was not served.

lexrel Pizza entailment Food
reverse(lexrel) neutral
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BiLSTM The bidirectional LSTM baseline from Williams
et al. (2018).
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The bidirectional LSTM baseline from Williams
et al. (2018).

The Enhanced Sequential Inference Model (Chen
et al. 2016) is a hybrid TreeLSTM-based and
biLSTM-based model that uses an inter-sentence
attention mechanism to align words across
sentences.
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BERT
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The bidirectional LSTM baseline from Williams
et al. (2018).

The Enhanced Sequential Inference Model (Chen
et al. 2016) is a hybrid TreeLSTM-based and
biLSTM-based model that uses an inter-sentence
attention mechanism to align words across
sentences.

A Transformer model trained to do masked
language modeling and next-sentence
prediction (Devlin et al. 2019).
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MoNLI as challenge dataset

No MoNLlI fine-tuning
Model Input pretrain NLI train data SNLI PMoNLI NMoNLI

BiLSTM GloVe SNLI train 81.6 73.2 37.9
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MoNLI as challenge dataset

No MoNLlI fine-tuning
Model Input pretrain NLI train data SNLI PMoNLI NMoNLI

BiLSTM GloVe SNLI train 81.6 73.2 37.9
ESIM GloVe SNLI train 87.9 86.6 39.4
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No MoNLlI fine-tuning

Model Input pretrain NLI train data SNLI PMoNLI NMoNLI
BiLSTM GloVe SNLI train 81.6 73.2 37.9
ESIM GloVe SNLI train 87.9 86.6 39.4
BERT BERT SNLI train 90.8 94.4 2.2

Conclusion
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Model failure or dataset failure?

Liu et al. (2019)

“What should we conclude when a system fails on a
challenge dataset? In some cases, a challenge might exploit
blind spots in the design of the original dataset (dataset
weakness). In others, the challenge might expose an
inherent inability of a particular model family to handle
certain natural language phenomena (model weakness).
These are, of course, not mutually exclusive.”
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Negation coverage in SNLI and MultiNLI

1. SNLI: Only 38 examples have negated premise and
hypothesis.

2. MultiNLI: 18K examples (~4%) have negated premise
and hypothesis, but few have the properties we are after.
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A systematic generalization task

NMoNLI Train NMoNLI Test
person 198 dog 88
instrument 100 building 64
food 94 ball 28
machine 60 car 12
woman 58 mammal 4
music 52 animal 4
tree 52
boat 46
fruit 42
produce 40
fish 40
plant 38
jewelry 36
anything 34
hat 20
man 20
horse 16
gun 12
adult 10
shirt 8
shoe 6
store 6
cake 4
individual 4
clothe 2
weapon 2
creature 2
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A systematic generalization task

NMoNLI Train

NMoNLI Test

person 198
instrument 100

food
machine
woman
music
tree
boat
fruit
produce
fish
plant
jewelry
anything
hat

man
horse
gun
adult
shirt
shoe
store
cake
individual
clothe
weapon
creature

NNNB RO

dog
building
ball

car
mammal
animal

Our models know these lexical relations
(high Positive MoNLI accuracy) and will
be compelled to combine this knowledge
with what they learn about negation dur-
ing Negative MoNLI fine-tuning.

Conclusion
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Fine-tuning on Negative MoNLI

BERT trained on SNLI ESIM trained on SNLI
100 [ T T T T ] 100 [ T T T T ]
90+ 4 90 4
80 4 80 4
70| R 70 R

> >
§ 60 - 4 § 60 4
§ 50 - 4 g 50 4
< 40 4 < 40 4
30+ 4 301 4
20/ -8~ SNLI Test | 20l &~ SNLI Test |
—e— NMoNLI Test —e— NMoNLI Test
10 4 10+ 4
0 Il Il Il Il Il 0 Il Il Il Il Il

0 200 400 600 800 1,000 0 200 400 600 800 1,000

Number of Examples Number of Examples

36/54



Overview Motivations Probing Feature attribution

(oo} 0000 0000000 00000

Fine-tuning results

Causal abstraction Monotonicity NLI Conclusion
0000 0O0000000e@00000000 [e]e]e}

No MoNLI fine-tuning With NMoNLI fine-tuning

Model Input pretrain NLI train data SNLI PMoNLI NMoNLI SNLI NMoNLI
BiLSTM GloVe SNLI train 81.6 73.2 37.9 74.6 93.5
ESIM GloVe SNLI train 87.9 86.6 39.4 56.9 96.2
BERT BERT SNLI train 90.8 944 2.2 90.5 90.0
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Focusing on the BERT model
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Probes

[CLS]| this not tree [SEP] this not elm [SEP]

Hewitt and Liang 2019

39/54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI Conclusion
00 0000 0000000 00000 0000 0000000000e000000 000

Probes

Il/I I

\
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\

\
\
\

Y

SmallLinearModel(h) = get-lexrel(tree, eIm)

Hewitt and Liang 2019
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Probe results for lexrel accuracy
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Probe results for lexrel accuracy
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full probing results
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BERT NLI interventions

this not tree [SEP] this not elm
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BERT NLI interventions
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BERT NLI interventions
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BERT NLI interventions
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What it means for BERT to implement Infer
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Infer(example)

1 lexrel — get-lexrel(example)
2 if contains-not(example)

3 return reverse(lexrel)
4 return lexrel
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What it means for BERT to implement Infer

Infer(example)

1 lexrel — get-lexrel(example)
2 if contains-not(example)

3 return reverse(lexrel)
4 return lexrel

Inferiexrei(i)—lexrel(j) (i) =

Infer(/) lexrel(i) = lexrel(j)
reverse(Infer(i)) lexrel(i) # lexrel(j)

42/54



Overview Motivations Probing Feature attribution Causal abstraction Monotonicity NLI

Conclusion
[e]e} 0000 0000000 00000 0000

0000000000000 e000 [e]e]e}

What it means for BERT to implement Infer

Infer(example)

1 lexrel — get-lexrel(example)
2 if contains-not(example)

3 return reverse(lexrel)
4 return lexrel

Inferiexrei(i)—lexrel(j) (i) =

Infer(/) lexrel(i) = lexrel(j)
reverse(Infer(i)) lexrel(i) # lexrel(j)

Infe lexrel(i)—lexrel(j) (i)=B ERTL(i)—»L(j) ()
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Methods and findings

1. Find a useful intervention point.

2. Interchange interventions for every pair of examples at
that site.
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Methods and findings

1. Find a useful intervention point.

2. Interchange interventions for every pair of examples at
that site.

3. Find clusters of examples in which BERT mimics the
causal dynamics of Infer.
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Methods and findings

1. Find a useful intervention point.

2. Interchange interventions for every pair of examples at
that site.

3. Find clusters of examples in which BERT mimics the
causal dynamics of Infer.

4. The largest subsets we found 98, 63, 47, and 37.
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Methods and findings

1. Find a useful intervention point.

2. Interchange interventions for every pair of examples at
that site.

3. Find clusters of examples in which BERT mimics the
causal dynamics of Infer.

4. The largest subsets we found 98, 63, 47, and 37.

a. For a random graph, the expected number of subsets
larger than 20 is effectively 0.
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Methods and findings

1. Find a useful intervention point.
2. Interchange interventions for every pair of examples at
that site.
3. Find clusters of examples in which BERT mimics the
causal dynamics of Infer.
4. The largest subsets we found 98, 63, 47, and 37.
a. For a random graph, the expected number of subsets
larger than 20 is effectively 0.
b. If the site perfectly captured Infer, we would get a
single huge cluster.
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Largest exchangeable cluster

(cemetery,location) (dogs,huskies)
(house, location) (den,location) (dog,husky) (dog,chihuahua) (hood,thing)
(dog,retriever) (dog,maltese) (nut,thing) (capsule,thing)

(ghetto,location) (backyard,location) (park,location)
(jungle,location)

i ) (dog,terrier) (dog,pomeranian) (pouch,thing) (structure,thing)
(meadow,location) (residence,location) .
(beetle,insect) (nugget,thing)
(laboratory,location) . . . X (root,thing) gget.thing
(playground,location) (studio,location) (grasshopper,insect) (bee,insect) (tube,thing)
(slum,location) : : . .
(station,location) (farm,location)  (Waspinsect)  (fy.insect) (cricket,insect)

(lab,location) 8 N (box,object)
(campsite, location) (butterfly,insect)  (bumblebee,insect) !
town,location) ~ (lawn,location) j hat,object)
( (flea,insect) (roachinsect) (moth,insecty  (oblect:sweaten) (hatoblect)
(mosquito,insect) (object,jacket) ~ (toy.object)

(saxophone,instrument) (flute,instrument) ‘
. : (cane,object)
(bass,instrument) (piano,instrument) (person,vegetarian) (personlunatic)

(person,republican) (person,trooper) (water,rainwater)
(person,business)

(harmonica,instrument) (person,steward) (person,consultant)

(violin,instrument) (tuba,instrument)
(person,navigator) (water,saltwater)

(person,farmer) (person,goalkeeper) (sculptor,artist)

(liquid,whiskey) (person,sophomore) (person,housekeeper)

(liquid,margarita) (liquid,tequila) (berry blueberry)

(person,cleaner) (person,physicist) (person,cop)

(liquid,alcohol)
(person,cambodian) (person,detective) (tree,cypress)

(tree,magnolia)(trees,elms)

(woman,granny) (person,genius) (person,sergeant) (person,californian)
(tree,maple)

(woman,widow) (person,doctor) (person,runner)
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Which algorithm is BERT implementing then?

Infer(example)

1 Jexrel — get-lexrel(example)
2 if contains-not(example)

3 return reverse(lexrel)
4 return lexrel
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Which algorithm is BERT implementing then?

Infer(example) Infer(example)

1 Jexrel — get-lexrel(example) 1 if inCluster(C1, example)

2 if contains-not(example) 2 lexrel, « get-lexrel(example)
3 return reverse(lexrel) if contains-not(example)

3
4 return lexrel 4 return reverse(lexrely)
5 return lexrel,
6 if inCluster(Cz, example)
7 lexrel; « get-lexrel(example)
8 if contains-not(example)
9

return reverse(lexrely)

10 return lexrel,

11 if inCluster(Cs, example)

12 lexrelz « get-lexrel(example)
13 if contains-not(example)

14 return reverse(lexrel3)
15 return /exrels
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Compositional complexity

QPsub;
-
Qsubj NPsup; NegP
/\
Qb Qély; Adjsun; Nsubj /N‘< QPor;
Adify Adif NEy NIy NegP Neg! /VP\ Qo NPoy,
/Adv\ /V\ ngj ngj Adjow; Noj
AdvP Adv VP vH Adjé{,v\Adjg.,, Nﬁgbj

Geiger et al. 2021
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Training models to conform to a hypothesis
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Training models to conform to a hypothesis

6 15 12
L1
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1. Can we more effectively leverage probes to find useful
intervention points?

2. What is the relationship between interchange
interventions and integrated gradients?
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Integrated Gradients computation
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IGi(M, x, ") = 3 m -
=1 oXj m

1. Generate a=[1,...,m]

2. Interpolate inputs between baseline x’ and actual input x
3. Compute gradients for each interpolated input

4. Integral approximation through averaging

5

Adapted from the TensorFlow integrated gradients tutorial
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