Estimating and Simulating a SIRD Model of COVID-19 for Many Countries, States, and Cities Jesús Fernández-Villaverde and Chad Jones Extended results for Maryland Based on data through October 9, 2020 #### **Outline of Slides** - Basic data from Johns Hopkins CSSE (raw and smoothed) - Brief summary of the model - Baseline results ($\delta = 1.0\%$, $\gamma = 0.2$, $\theta = 0.1$) - Simulation of re-opening possibilities for raising R₀ - Results with alternative parameter values: - Lower mortality rate, $\delta = 0.8\%$ - Higher mortality rate, $\delta = 1.2\%$ - Infections last longer, $\gamma = 0.15$ - Cases resolve more quickly, $\theta = 0.2$ - Cases resolve more slowly, $\theta = 0.07$ - Data underlying estimates of $R_0(t)$ ## Underlying data from Johns Hopkins CSSE - Raw data - Smoothed = 7 day centered moving average - No "excess deaths" correction (change as of Aug 6 run) ## Maryland: Daily Deaths per Million People ## Maryland: Daily Deaths per Million People (Smoothed) ## **Brief Summary of Model** - See the paper for a full exposition - A 5-state SIRDC model with a time-varying R₀ | Parameter | Baseline | Description | |-----------|----------|---| | δ | 1.0% | Mortality rate from infections (IFR) | | γ | 0.2 | Rate at which people stop being infectious | | θ | 0.1 | Rate at which cases (post-infection) resolve | | α | 0.05 | Rate at which $R_0(t)$ decays with daily deaths | | R_0 | ••• | Initial base reproduction rate | | $R_0(t)$ | | Base reproduction rate at date t (β_t/γ) | 5 ## Estimates of Time-Varying R_0 - Inferred from daily deaths, and - the change in daily deaths, and - the change in (the change in daily deaths) (see end of slide deck for this data) ## Maryland: Estimates of $R_0(t)$ ## **Maryland: Percent Currently Infectious** ## Maryland: Growth Rate of Daily Deaths over Past Week (percent) ## Notes on Intepreting Results #### **Guide to Graphs** - Warning: Results are often very uncertain; this can be seen by comparing across multiple graphs. See the original paper. - 7 days of forecasts: Rainbow color order! ROY-G-BIV (old to new, low to high) - Black=current - Red = oldest, Orange = second oldest, Yellow = third oldest... - Violet (purple) = one day earlier - For robustness graphs, same idea - Black = baseline (e.g. $\delta = 1.0\%$) - Red = lowest parameter value (e.g. $\delta = 0.8\%$) - Green = highest parameter value (e.g. $\delta = 1.2\%$) 11 ### How does R_0 change over time? - Inferred from death data when we have it - For future, two approaches: - Alternatively, we fit this equation: $$\log R_0(t) = a_0 - \alpha(\text{Daily Deaths})$$ $$\Rightarrow \alpha \approx .05$$ R₀ declines by 5 percent for each new daily death, or rises by 5 percent when daily deaths decline • Robustness: Assume $R_0(t)=$ final empirical value. Constant in future, so no α adjustment $\rightarrow \alpha=0$ # Repeated "Forecasts" from the past 7 days of data - After peak, forecasts settle down. - Before that, very noisy! - If the region has not peaked, do not trust - With $\alpha = .05$ (see robustness section for $\alpha = 0$) ## Maryland (7 days): Daily Deaths per Million People ($\alpha = .05$) ## Maryland (7 days): Cumulative Deaths per Million (Future, $\alpha=.05$) ## Maryland (7 days): Cumulative Deaths per Million, Log Scale ($\alpha=.05$) ## Robustness to Mortality Rate, δ ## Maryland: Cumulative Deaths per Million ($\delta = .01/.008/.012$) #### Maryland: Daily Deaths per Million People ($\delta = .01/.008/.012$) ## Maryland: Cumulative Deaths per Million ($\delta = .01/.008/.012$) ## Reopening and Herd Immunity - Black: assumes R_0 (today) remains in place forever - Red: assumes R_0 (suppress)= 1/s(today) - Green: we move 25% of the way from R_0 (today) back to initial R_0 = "normal" - Purple: we move 50% of the way from R_0 (today) back to initial R_0 = "normal" NOTE: Lines often cover each other up ## Maryland: Re-Opening ($\alpha = .05$) (Light bars = New York City, for comparison) ## Maryland: Re-Opening ($\alpha=0$) (Light bars = New York City, for comparison) # Results for alternative parameter values ## Maryland (7 days): Daily Deaths per Million People ($\alpha=0$) ## Maryland (7 days): Cumulative Deaths per Million (Future, $\alpha=0$) ## Maryland (7 days): Cumulative Deaths per Million, Log Scale ($\alpha=0$) ## Maryland: Daily Deaths per Million People ($\delta=0.8\%$) ### Maryland: Cumulative Deaths per Million ($\delta = 0.8\%$) ## Maryland: Daily Deaths per Million People ($\delta = 1.2\%$) ### Maryland: Cumulative Deaths per Million ($\delta = 1.2\%$) ## Maryland: Daily Deaths per Million People ($\gamma = .2/.15$) ### Maryland: Cumulative Deaths per Million $\gamma = .2/.15$) ## Maryland: Daily Deaths per Million People ($\theta = .1/.07/.2$) ### Maryland: Cumulative Deaths per Million People ($\theta = .1/.07/.2$) ## Data Underlying Estimates of Time-Varying R_0 - Inferred from daily deaths, and - the change in daily deaths, and - the change in (the change in daily deaths) ## Maryland: Daily Deaths, Actual and Smoothed ## Maryland: Change in Smoothed Daily Deaths ## Maryland: Change in (Change in Smoothed Daily Deaths)