

Growth and Ideas

Chad Jones Stanford GSB

October 14, 2015

Growth and Ideas - p. 1

U.S. GDP per Person

- The average American is 15 times richer today than in 1870.
- How do we understand this fact?
- What does the future hold?

Growth Theory

Conclusion of any growth theory:

$$\frac{\dot{y}_t}{y_t} = g$$
 and a story about g

 Key to this result is (essentially) a linear differential equation somewhere in the model:

$$\dot{X}_t = \underline{\quad} X_t$$

• Growth models differ according to what they call the X_t variable and how they fill in the blank.

Catalog of Growth Models: What is X_t ?

Solow	$\dot{k}_t = sk_t^{\alpha}$
Solow	$\dot{A}_t = \bar{g}A_t$
AK model	$\dot{K}_t = sAK_t$
Lucas	$\dot{h}_t = uh_t$
Romer/AH	$\dot{A}_t = RA_t$
Extension of Romer	$\dot{L}_t = nL_t$

Growth and Ideas - p. 5

The Linearity Critique

$$\dot{X}_t = s X_t^{\phi}$$

- To explain the U.S. 20th century, $\phi \approx 1$ is required
 - $^\circ~\phi < 1$: Growth slows to zero
 - $\circ \phi > 1$: Growth will explode
- Solow (1994 JEP) criticizes new growth theory for this: "You would have to believe in the tooth fairy to expect that kind of luck."
 - But the same criticism applies to $\dot{A}_t = \bar{g}A_t$
 - Facts \Rightarrow we need linearity somewhere. Where??

Solow and Romer

- Robert Solow (1950s)
 - Capital versus Labor
 - Cannot sustain long-run growth
- Paul Romer (1990s)
 - Objects versus Ideas
 - Sustains long-run growth
 - Wide-ranging implications for intellectual property, antitrust policy, international trade, the limits to growth, sources of "catch-up" growth

Romer's insight: Economic growth is sustained by discovering better and better ways to use the finite resources available to us

Objects vs Ideas (Paul Romer, 1990)

- Objects: Almost all goods in the world
 - Examples: iphones, airplane seats, and accountants
 - Rivalrous: If I'm using it, you cannot at the same time
 - The fundamental scarcity at the heart of most economics
- Ideas: They are different nonrival
 - The Pythagorean Theorem or oral rehydration therapy
 - My use \Rightarrow less of the idea is available to you

The Nonrivalry of Ideas \Rightarrow Increasing Returns

• Familiar notation, but now let *A_t* denote the "stock of knowledge" or ideas:

$$Y_t = F(K_t, L_t, A_t) = A_t K_t^{\alpha} L_t^{1-\alpha}$$

 Constant returns to scale in K and L holding knowledge fixed. Why?

$$F(\lambda K, \lambda L, A) = \lambda \times F(K, L, A)$$

• But therefore increasing returns in *K*, *L*, and *A* together!

 $F(\lambda K, \lambda L, \lambda A) > F(\lambda K, \lambda L, A)$

- Economics is quite straightforward:
 - Replication argument implies CRS to objects
 - Therefore there must be IRS to objects and ideas

Nonrivarly \Rightarrow IRS \Rightarrow Growth follows easily!

Production of final good	$Y_t = A_t^{\sigma} L_t$
Production of ideas	$\dot{A}_t = \bar{\beta}_t R_t = \beta R_t A_t^{\phi}$
Resource constraint	$L_t + R_t = N_t = N_0 e^{nt}$
Allocation of people	$R_t = \bar{s}N_t, 0 < \bar{s} < 1$

- $\phi = 0$: Useful benchmark!
- $\phi > 0$: Standing on shoulders
- $\phi < 0$: "Fishing out"

 $g_y = \frac{\sigma n}{1 - \phi}$

From IRS to Growth

Objects: Add one computer ⇒ make one worker more productive.

Output per worker \sim # of computers per worker

- Ideas: Add one new idea \Rightarrow make everyone better off.
 - E.g. the first spreadsheet or email software

Income per person \sim the aggregate stock of knowledge, not on the number of ideas per person.

But it is easy to make aggregates grow: population growth! IRS \Rightarrow bigger is better.

The Ultimate Resource

• Why are we richer today than in the past?

More people \Rightarrow more new ideas \Rightarrow higher income / person

- Population growth is a historical fact.
 - If we take it as given, then growth in per capita income is not surprising
 - No other ad hoc linearity is needed
- Two applications:
 - Growth over the last 100,000 years
 - The future of U.S. economic growth

What is graphed here?

Population and Per Capita GDP: the Very Long Run

Growth over the Very Long Run

- Malthus: $c = y = AL^{\alpha}$, $\alpha < 1$
 - ° Fixed supply of land: $↑L \Rightarrow \downarrow c$ holding A fixed
- Story:
 - \circ 100,000 BC: small population \Rightarrow ideas come very slowly
 - $^{\circ}$ New ideas \Rightarrow temporary blip in consumption, but permanently higher population
 - This means ideas come more frequently
 - Eventually, ideas arrive faster than Malthus can reduce consumption!
- People produce ideas and Ideas produce people
 - If nonrivarly > Malthus, this leads to the hockey stick

Accounting for U.S. Growth, 1950–2007

$y^* \approx \left(\frac{K}{Y}\right)^{\beta} \cdot h \cdot (\text{R\&D intensity})^{\gamma} \cdot L^{\gamma}$				
	Solow	Lucas	Romer/AH/GH	J/K/S
2.0	0.0	0.4	1.2	0.4
(100%)	(0%)	(20%)	(58%)	(21%)

- Educational attainment rises \approx 1 year per decade. With $\psi = .06 \Rightarrow$ about 0.6 percentage points of growth per year.
- Transition dynamics are 80 percent of growth.
- "Steady state" growth is only 20 percent of recent growth!
 Possibly slower as population growth declines...

U.S. Educational Attainment

YEARS OF SCHOOLING 15 | By birth cohort Adult labor force YEAR

U.S. R&D Spending Share

Research Share of Total Employment

Other considerations?

- The development of China and India
 - 2.5 billion people starting to create ideas!
 - Ratio of Chinese PhDs in Sci/Eng to U.S.: 1978 < 5%, 2010 = 130%!
 - How many future "Thomas Edisons" are there?
- Can robots create new ideas?
- Is the "idea production function" stable?

Why growth?

- Proportional ideas are getting harder and harder to find
- The idea production function essentially looks like:

$$\frac{\dot{A}_t}{A_t} = \frac{\mathsf{TFP}_t \cdot S_t}{\underset{\text{falling}}{\mathsf{falling}}} \cdot S_t$$

 Falling TFP ⇒ constant growth requires exponential growth in scientists/entreprenuers

Growing human resources devoted to R&D offsets rising difficulty of discovering new ideas

Alternative Futures?

The shape of the idea production function, f(A)

The stock of ideas, A