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Overview

• Construct a growth model consistent with these facts:

◦ Exponential growth in research (scientists)

◦ No growth in the number of patents granted to U.S.
inventors

⇒ large decline in Patents per Researcher

◦ Exponential growth in output per worker
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Patents in the U.S.
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How does Kortum do this?

• Quality ladder model, a la Aghion and Howitt (1992)

◦ Each idea is a proportional improvement in productivity
(ten percent rather than ten units). E.g. q ≡ 1.10

Yt = qNtKα
t L

1−α
t , At ≡ qNt

logAt = Nt log q

⇒
Ȧt

At
= Ṅt log q

• Also, make ideas harder to obtain over time ⇒ it takes more
and more researchers to discover the next idea

◦ So TFP growth tied to growth in number of researchers.
(Also, Segerstrom 1998 AER)
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Quality Ladders (Aghion-Howitt / Grossman-Helpman)
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Other Insights

• Search model

◦ Ideas = draws from a probability distribution

◦ All you care about is the best idea (Evenson and Kislev,
1976)

• Technical: Extreme Value Theory and Pareto Distributions

◦ Key to exponential growth is that the stationary part of
the search distribution have a Pareto upper tail

◦ The probability of drawing a new idea that is 2% better
than the frontier is invariant to the level of the frontier

◦ Incomes versus heights
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Drawing Ideas from a Distribution
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Extreme Value Theory

• Let N be the number of draws from a distribution, and
consider the distribution of the largest draw as N → ∞.

• For a distribution with unbounded support, the max will go
to infinity, so we have to “normalize” it somehow.

• Extreme Value Theorem (e.g. Galambos 1987) If a limiting
distribution exists, then it takes one of three forms: Fréchet,
Weibull, Gumbel.

• Kind of like the Central Limit Theorem (normalized mean is
asymptotically normal).
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Fundamental Example

• Suppose x∗ is your income, equal to the maximum of N iid
draws from some distribution F (·).

• What is the distribution of x∗?

G(z) ≡ Pr [x∗ < z]

= Pr [x1 < z] · Pr [x2 < z] · . . . · Pr [xN < z]

= (F (z))N .

• Suppose F (·) is Pareto: F (z) = 1− (z/γ)−α.

G(z) =
(
1− (z/γ)−α

)N

But this goes to zero as N → ∞. So we need to normalize
somehow.
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• Guess:

Pr [x∗ < zNβ ] = G(zNβ) =
(

1− (zNβ/γ)−α
)N

• Recall ey ≡ limN→∞(1 + y/N)N ⇒ choose β = 1/α:

• Therefore

G(zN1/α) = Pr [x∗ < zN1/α] = (1− y/N)N

→ e−y.

where y ≡ (z/γ)−α.
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• So as N gets large

Pr [x∗ < N1/αz] = e−(z/γ)−α

= e−(1−F (z))

⇒ Pr [N−1/αx∗ < z] = e−(z/γ)−α

• And this is the Fréchet distribution!

• Therefore, as N gets large

E[N−1/αx∗] = γΓ(1− 1/α)

⇒ E[x∗] ≈ N1/αγΓ(1− 1/α)

• So the maximum value scales as N1/α

• Note: If F (x) does not have a Pareto upper tail, then the

scaling is less than a power function of N .
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Model
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The Economic Environment

Preferences U0 =
∫
∞

0 e−ρt exp(
∫ 1
0 logCjt dj) dt

Production Cjt = qjtℓjt

Resource constraint
∫ 1
0 ℓjtdj +Rt = Lt = L0e

nt

Research Poisson process, next slide
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Research and New Ideas

• An idea is a quality q ∼ F (q;K) and a sector j ∼
Uniform[0,1]

• Discovery is a Poisson process

Rt Researchers

Rtdt Flow of new ideas per unit time

Rt(1− F (q;K))dt Flow of ideas that exceed quality level q

◦ The length of time until an innovation occurs is
exponentially distributed with parameter Rt

• K is cumulative stock of research (“knowledge”)

K̇t = Rt
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Key Assumption 2.1

Pr(Q ≤ q;K) ≡ F (q;K) = 1− S(K)(1− F (q))

H(q) ≡ 1− F (q) = Pr(Q > q)

H̃(q;K) ≡ 1− F (q;K) = Pr(Q > q;K) = S(K)H(q)

• S(K): Spillover function. Ex: S(K) = Kγ

• F (q): Stationary search distribution

• If γ = 0, then F (q;K) = F (q)

• As K grows, more of the mass is concentrated at higher
values of q.
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Proposition 2.1

• The distribution G1 of the state of the art productivity for
producing in sector j is, for a fixed K,

G1(z;K) = exp{−(1− F (z))Σ(K)}

where Σ(K) ≡
∫ K
0 S(x)dx (cumulative spillovers).

• Remarks

◦ G1(z;K) is an Extreme Value Distribution

◦ Also the distribution of max productivity across sectors.

◦ Research enters through K.

◦ With Poisson process, things aggregate nicely.

Kortum (1997) – p. 16



Proof

• G1(z) is probability frontier is less than z

• What is probability that no discovery occurs?

Pr(No discovery) = e−R(s)ds

Pr(No discovery ≥ z) = e−R(s)(1−F (z;K(s)))ds

⇒

G1(z;K(s+ ds))
Prob < z tomorrow

= G1(z;K(s))
Prob < z today

· e−R(s)(1−F (z;K(s)))ds

Prob no discovery > z

• Integrate this differential equation to get the result.
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Allocation of Resources

• An allocation in this economy is {Rt, {ℓjt}}.

• To see many of the useful results, we can focus on a Rule of
Thumb allocation:

Rt = s̄Lt

ℓjt = ℓ̄ = (1− s̄)Lt

• Optimal to allocate labor equally across sectors given
symmetry.
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Analyzing the Economy
Constant patents with growing research?
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Constant Patents??

• What fraction of new ideas are improvements (patentable)?

p(K) =

∫
∞

q0

(1− F (z;K))
︸ ︷︷ ︸

prob idea exceeds z

dG1(z;K)

• Substituting for G1(·) and making a change of variables

x ≡ S(K)(1− F (z)) when integrating gives

p(K) =
S(K)

Σ(K)
· (1− e−Σ(K)/S(K))

• The fraction of new ideas that will be improvements
depends on the spillover function

◦ Independent of the stationary search distn F (q)!
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Remarks on p(K) = S(K)
Σ(K) · (1− e−Σ(K)/S(K))

• Independence of F (q) is wellknown in theory of

recordbreaking (example: track and field)

◦ Depends on the rate at which the stationary distribution
shifts out (better shoes, track, nutrition)

◦ Partial intuition: the distn of records itself depends on
F (·), but what fraction get broken depends on how
quickly we march down the tail

• Example: S(K) = Kγ ⇒Σ(K) = K1+γ/(1 + γ)
⇒S/Σ = (1 + γ)/K

p(K) =
1 + γ

K
· (1− e−K/(1+γ))

⇒Looks like 1/K for K large and γ = 0...

Kortum (1997) – p. 21



Glick (1978): Math of Record-Breaking

• Begins with a very simple example...

• Consider a sequence of daily weather observations —
temperatures

• The first is obviously a record high

• The 2nd has a 50% chance of being a record (viewed
before any data are recorded)

• Exchangeability: The probability that day n is a record is 1/n

• Independent of the distribution of temperatures.
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Patenting

• R(t) ideas, p(K) improve, so total patenting is

It = Rt · p(Kt) = Rt
S(Kt)

Σ(Kt)

(

1− e−Σ(Kt)/S(Kt)
)

So the rise in Rt can be offset by a decline in p(Kt).

• Proposition 3.1 says that for It to be constant while R grows
at rate n, S(K) must be a power function.

It = Rt
1 + γ

Kt
(1− e−Kt/(1+γ))

K̇t = Rt ⇒
K̇t

Kt
=

Rt

Kt
→ n

I∗ = n(1 + γ)
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Analyzing the Economy
Exponential income growth with constant patents?
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Productivity

• Given symmetry, a productivity index is

A(Kt) ≡

∫
∞

q0

zdG1(z;Kt)

Proportional to output per worker.

• This does depend on the shape of F (q). Examples:

1. Pareto (incomes): H(q) = q−1/λ

⇒A(K) = c1K
λ(1+γ)

2. Exponential (heights): H(q) = e−q/λ

⇒A(K) = c0 + c1 logK

3. Uniform (bounded): H(q) = 1− q/λ
⇒A(K) = c0 −

c1
K1+γ
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Growth Implications

• Pareto:

Ȧt

At
= λ(1 + γ)

K̇t

Kt
→ λ(1 + γ)n

Sustained exponential growth! (G1(·) is Fréchet).

• Exponential:

Ȧt = c1
K̇t

Kt
→ c1n ⇒

Ȧt

At
→ 0

Arithmetic growth, but not exponential growth.

• Uniform:

K → ∞ ⇒ A → c0

Stagnation — no long run growth.
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Growth (continued)

• Whether or not model can sustain growth depends on the
shape of the upper tail of f(q).

If and only if the upper tail of f(q) is a power function,
then exponential growth can be sustained.

(A(kK)/A(K) = kb).

Kortum (1997) – p. 27



Remarks

• In a very different setup, Kortum gets the same result we
got from the Romer model with φ < 1: per capita income
growth is tied to the rate of population growth.

◦ It = Rt · p(Kt): growth in number of researchers is

exactly offset by increased difficulty of finding a useful
new idea.

◦ If F (q) is Pareto, then H(q) = q−α. So Pr(Idea is a 5%

improvement | Idea is an improvement) is constant.
⇒ Ideas are proportional improvements (a la quality

ladder models)
⇒a constant flow of patents is consistent with

exponential growth.

• What about φ = 1 case? Kortum emphasizes that there is

no F (·) such that the limiting distribution yields A = eλK .
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Remarks (continued)

• Potential problem: total patents in U.S. is growing in recent
decades?

• Kortum analyzes equilibrium and optimal allocations

◦ Knowledge spillovers mean the equilibrium may feature
too little investment in research.

◦ Counterbalancing that is a business stealing effect:
some of the new innovator’s profits come at the expense
of existing entrepreneurs.
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Applications

• Pareto and Fréchet distributions show up in many places
now in economics

◦ Zipf’s Law: Size = 1/Rank for cities, etc. (Gabaix 1999).
Pr [Size > s] ∼ 1/s, which is Pareto with parameter = 1.

(Pareto ⇒exp growth and exp growth ⇒Pareto!)

◦ Eaton and Kortum (2002 Ema) on trade

◦ Erzo Luttmer (2010) on the size distribution of firms

◦ Several recent Lucas papers (with Alvarez, Buera, and
Moll); Perla and Tonetti (2014)

◦ Hsieh, Hurst, Jones, and Klenow, “The Allocation of
Talent and U.S. Economic Growth”

◦ Jones and Kim (2018 JPE) on top income inequality
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Pareto Dist for U.S. Patent Values (Harhoff et al 2003)

Harhoff, Scherer, Vopel “Exploring the tail...”
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Zipf’s Law for U.S. Cities (Gabaix 1999)
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Zipf’s Law for U.S. Firms (Luttmer 2010)

For 1992, 2000, and 2006
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Pareto Distribution for Top Incomes
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