

# Trading Off Consumption and COVID-19 Deaths

# Bob Hall, Chad Jones, and Pete Klenow

April 24, 2020

## **Basic Idea with a Representative Agent**

- · Pandemic lasts for one year
- Notation:
  - $\circ~\delta$  = elevated mortality this year due to COVID-19 if no social distancing
  - $\circ v =$  value of a year of life relative to annual consumption
  - *LE* = remaining life expectancy in years
  - $\circ \alpha$  = % of consumption willing to sacrifice this year to avoid elevated mortality
- Key result:

$$\alpha \approx v \cdot \delta \cdot LE$$

## **Simple Calibration**

- v = value of a year of life relative to annual consumption
  - E.g.  $v = 5 \approx$  \$237k/\$45k from the U.S. E.P.A.'s recommended value of life  $\Rightarrow$  each life-year lost is worth 5 years of consumption
- $\delta \cdot LE$  = quantity of life years lost from COVID-19 (per person)
  - $\circ \ \delta = 0.81\%$  from the Imperial College London study
  - $\,\circ\,$  LE of victims  $\approx$  14.5 years from the same study
- · Implied value of avoiding elevated mortality

 $lpha \approx v \cdot \delta \cdot LE = 5 \cdot 0.8\% \cdot 14.5 \approx$  59% of consumption

(Too high because of linearization and mortality rate)

## Welfare of a Person Age a

Suppose lifetime utility for a person of age *a* is

$$V_a = \sum_{t=0}^{\infty} \overline{S}_{a,t} \, u(c)$$

- No pure time discounting or growth in consumption for simplicity
- u(c) = flow utility (including the value of leisure)
- $\overline{S}_{a,t} = S_{a+1} \cdot S_{a+2} \cdot \ldots \cdot S_{a+t}$  = the probability a person age *a* survives for the next *t* years
- $S_{a+1}$  = the probability a person age *a* survives to a + 1

## Welfare across the Population in the Face of COVID-19

- $W(\lambda, \delta)$  is utilitarian social welfare (with variations  $\lambda$  and  $\delta$ )
- In initial year: scale consumption by  $\lambda$  and raise mortality by  $\delta_a$  at each age:

$$W(\lambda, \delta) = \sum_{a} N_a V_a(\lambda, \delta_a)$$
$$= Nu(\lambda c) + \sum_{a} (S_{a+1} - \delta_{a+1}) N_a V_{a+1}(1, 0)$$

where

 $\circ$  N = the initial population (summed across all ages)

•  $N_a$  = the initial population of age *a* 

## How much are we willing to sacrifice to prevent COVID-19 deaths?

$$W(\lambda, 0) = W(1, \delta)$$

$$lpha \equiv 1 - \lambda pprox \sum_a \omega_a \cdot \delta_{a+1} \cdot \widetilde{V}_a$$

• 
$$\omega_a \equiv N_a/N$$
 = population share of age group  $a$ 

 $\Rightarrow$ 

•  $\widetilde{V}_a \equiv V_a(1,0)/[u'(c)c]$  = VSL of age group *a* relative to annual consumption

## More intuitive formulas

$$\alpha = \sum_{a} \omega_a \cdot \delta_{a+1} \cdot v \cdot LE_a$$

- $V_a(1,0)/[u'(c)c] = v \cdot LE_a$  = the value of a year of life times remaining life years
- $v \equiv u(c)/[u'(c)c]$  = the value of a year of life (relative to consumption)

In the representative agent case this simplifies to

$$\alpha = \delta \cdot v \cdot LE$$

# Life Expectancy by Age Group



# **COVID-19 Mortality by Age Group**



# Willing to Give Up What Percent of Consumption?

| Average        |      |              |        |
|----------------|------|--------------|--------|
| mortality rate | — Va | alue of Life | e, v — |
| δ              | 4    | 5            | 6      |

#### Using Taylor series linearization:

| 0.81% | 47.0 | 58.7 | 70.5 |
|-------|------|------|------|
| 0.30% | 17.5 | 21.8 | 26.2 |

| Using CRRA utility with $\gamma=$ 2: |      |      |      |  |  |
|--------------------------------------|------|------|------|--|--|
| 0.81%                                | 32.0 | 37.0 | 41.3 |  |  |
| 0.30%                                | 14.9 | 17.9 | 20.7 |  |  |

- 59% is the same as with a representative agent because of linearization
- 37% under CRRA due to diminishing marginal utility
  - Willing to sacrifice less when rising marginal pain from lower consumption
- The mortality rates are unconditional; rates conditional on infection would be higher
- With 0.3% mortality and CRRA (our preferred case), willing to give up 18%

- Undercounting may be more serious for cases than for deaths
- See studies in Italy, Iceland, and Germany, and in California counties
- Jones and Fernandez-Villaverde (2020):
  - Estimate SIRD model by country, state, and city using deaths across days
  - Find best-fitting  $\delta$  is closer to 0.3% than 0.8%
- Need to test representative sample of population as emphasized by Stock (2020)

# Contribution of Different Age Groups to $\boldsymbol{\alpha}$



## Comparison to a few other estimates

- CRRA and 0.3% mortality  $\Rightarrow$  willing to forego  $\sim$  \$2.6 trillion of consumption
- Zingales (2020) estimated \$65 trillion
  - o 7.2 million deaths vs. 1 million in our calculation
  - o 50 life years remaining per victim vs. 14.5 years for us
- Greenstone and Nigam (2020) estimated \$8 trillion
  - 1.7 million deaths vs. 1 million in our calculation
  - \$315k value per year of life vs. \$225 for us

## Some factors to incorporate

- GDP vs. consumption
- Capital bequeathed to survivors
- Lost leisure during social distancing
- Leisure varying by age
- Competing hazards
- The poor bearing the brunt of the consumption loss

# Taking into account consumption inequality

$$\alpha \approx \delta \cdot v \cdot LE - \gamma \cdot \Delta \sigma^2 / 2$$

•  $\gamma$  is the CRRA

- $\sigma$  is the SD of log consumption across people
- See Jones and Klenow (2016)

If  $\gamma = 2$ , each 1% increase in consumption inequality lowers  $\alpha$  by 1%