Trading Off Consumption and COVID-19 Deaths

Bob Hall, Chad Jones, and Pete Klenow

April 24, 2020

Basic Idea with a Representative Agent

- Pandemic lasts for one year
- Notation:
- $\delta=$ elevated mortality this year due to COVID-19 if no social distancing
- $v=$ value of a year of life relative to annual consumption
- $L E=$ remaining life expectancy in years
- $\alpha=\%$ of consumption willing to sacrifice this year to avoid elevated mortality
- Key result:

$$
\alpha \approx v \cdot \delta \cdot L E
$$

Simple Calibration

- $v=$ value of a year of life relative to annual consumption
- E.g. $v=5 \approx \$ 237 \mathrm{k} / \$ 45 \mathrm{k}$ from the U.S. E.P.A.'s recommended value of life \Rightarrow each life-year lost is worth 5 years of consumption
- $\delta \cdot L E=$ quantity of life years lost from COVID-19 (per person)
- $\delta=0.81 \%$ from the Imperial College London study
- LE of victims ≈ 14.5 years from the same study
- Implied value of avoiding elevated mortality

$$
\begin{aligned}
& \alpha \approx v \cdot \delta \cdot L E=5 \cdot 0.8 \% \cdot 14.5 \approx 59 \% \text { of consumption } \\
& \text { (Too high because of linearization and mortality rate) }
\end{aligned}
$$

Welfare of a Person Age a

Suppose lifetime utility for a person of age a is

$$
V_{a}=\sum_{t=0}^{\infty} \bar{S}_{a, t} u(c)
$$

- No pure time discounting or growth in consumption for simplicity
- $u(c)=$ flow utility (including the value of leisure)
- $\bar{S}_{a, t}=S_{a+1} \cdot S_{a+2} \cdot \ldots \cdot S_{a+t}=$ the probability a person age a survives for the next t years
- $S_{a+1}=$ the probability a person age a survives to $a+1$
- $W(\lambda, \delta)$ is utilitarian social welfare (with variations λ and δ)
- In initial year: scale consumption by λ and raise mortality by δ_{a} at each age:

$$
\begin{aligned}
W(\lambda, \delta) & =\sum_{a} N_{a} V_{a}\left(\lambda, \delta_{a}\right) \\
& =N u(\lambda c)+\sum_{a}\left(S_{a+1}-\delta_{a+1}\right) N_{a} V_{a+1}(1,0)
\end{aligned}
$$

where

- $N=$ the initial population (summed across all ages)
- $N_{a}=$ the initial population of age a

How much are we willing to sacrifice to prevent COVID-19 deaths?

$$
\Rightarrow
$$

$$
\begin{gathered}
W(\lambda, 0)=W(1, \delta) \\
\alpha \equiv 1-\lambda \approx \sum_{a} \omega_{a} \cdot \delta_{a+1} \cdot \widetilde{V}_{a}
\end{gathered}
$$

- $\omega_{a} \equiv N_{a} / N=$ population share of age group a
- $\widetilde{V}_{a} \equiv V_{a}(1,0) /\left[u^{\prime}(c) c\right]=$ VSL of age group a relative to annual consumption

More intuitive formulas

$$
\alpha=\sum_{a} \omega_{a} \cdot \delta_{a+1} \cdot v \cdot L E_{a}
$$

- $V_{a}(1,0) /\left[u^{\prime}(c) c\right]=v \cdot L E_{a}=$ the value of a year of life times remaining life years
- $v \equiv u(c) /\left[u^{\prime}(c) c\right]=$ the value of a year of life (relative to consumption)

In the representative agent case this simplifies to

$$
\alpha=\delta \cdot v \cdot L E
$$

Life Expectancy by Age Group

COVID-19 Mortality by Age Group

Willing to Give Up What Percent of Consumption?

Using Taylor series linearization:

0.81%	47.0	58.7	70.5
0.30%	17.5	21.8	26.2

Using CRRA utility with $\gamma=2$:

0.81%	32.0	37.0	41.3
0.30%	14.9	17.9	20.7

Points worth emphasizing

- 59% is the same as with a representative agent because of linearization
- 37% under CRRA due to diminishing marginal utility
- Willing to sacrifice less when rising marginal pain from lower consumption
- The mortality rates are unconditional; rates conditional on infection would be higher
- With 0.3% mortality and CRRA (our preferred case), willing to give up 18%
- Undercounting may be more serious for cases than for deaths
- See studies in Italy, Iceland, and Germany, and in California counties
- Jones and Fernandez-Villaverde (2020):
- Estimate SIRD model by country, state, and city using deaths across days
- Find best-fitting δ is closer to 0.3% than 0.8%
- Need to test representative sample of population as emphasized by Stock (2020)

Contribution of Different Age Groups to α
PERCENT CONTRIBUTION TO ALPHA (SUMS TO 100)

Comparison to a few other estimates

- CRRA and 0.3% mortality \Rightarrow willing to forego $\sim \$ 2.6$ trillion of consumption
- Zingales (2020) estimated $\$ 65$ trillion
- 7.2 million deaths vs. 1 million in our calculation
- 50 life years remaining per victim vs. 14.5 years for us
- Greenstone and Nigam (2020) estimated $\$ 8$ trillion
- 1.7 million deaths vs. 1 million in our calculation
- \$315k value per year of life vs. $\$ 225$ for us

Some factors to incorporate

- GDP vs. consumption
- Capital bequeathed to survivors
- Lost leisure during social distancing
- Leisure varying by age
- Competing hazards
- The poor bearing the brunt of the consumption loss

Taking into account consumption inequality

$$
\alpha \approx \delta \cdot v \cdot L E-\gamma \cdot \Delta \sigma^{2} / 2
$$

- γ is the CRRA
- σ is the SD of log consumption across people
- See Jones and Klenow (2016)

If $\gamma=2$, each 1% increase in consumption inequality lowers α by 1%

