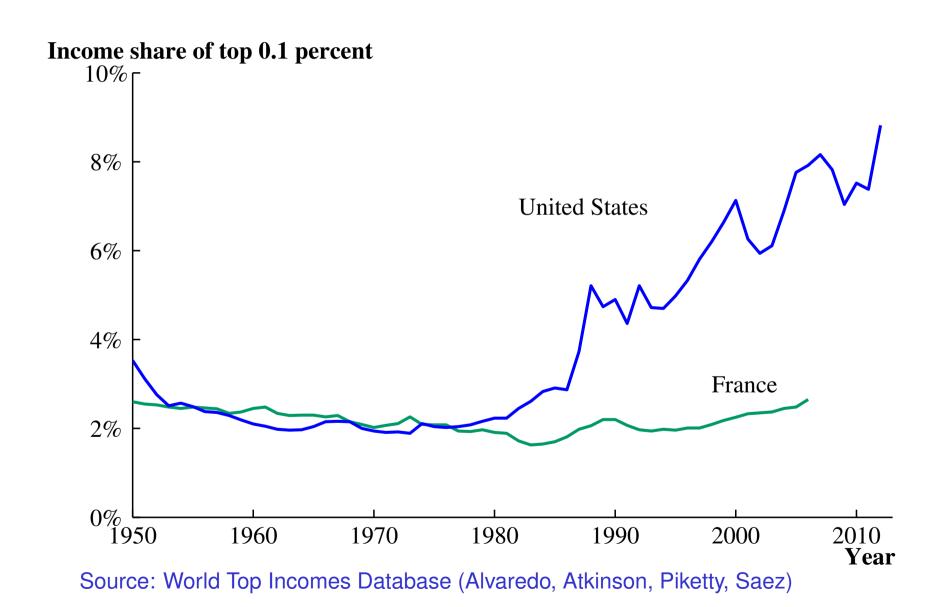


A Schumpeterian Model of Top Income Inequality

Chad Jones and Jihee Kim

SED - Warsaw 2015

Top Income Inequality in the United States and France



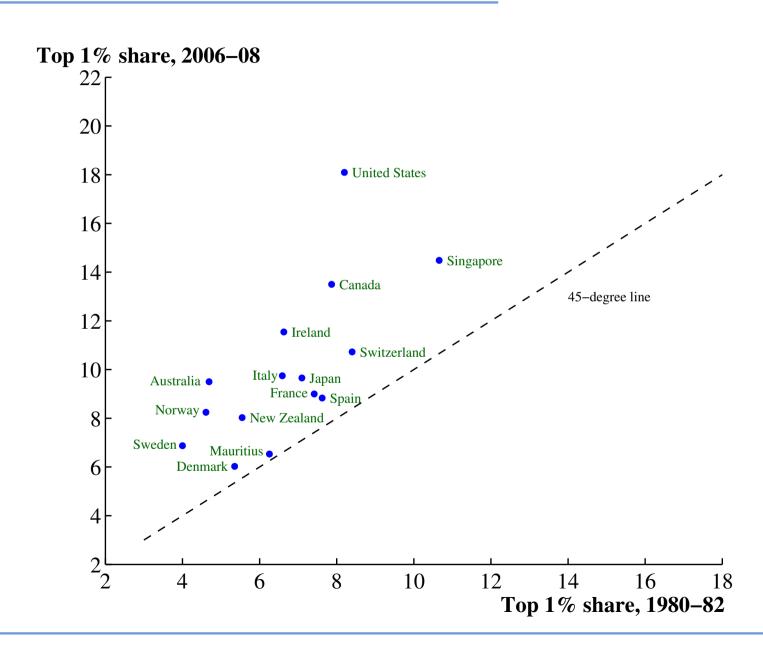
Related literature

- Empirics: Piketty and Saez (2003), Aghion et al (2015),
 Guvenen-Kaplan-Song (2015) and many more
- Rent Seeking: Piketty, Saez, and Stantcheva (2011) and Rothschild and Scheuer (2011)
- Finance: Philippon-Reshef (2009), Bell-Van Reenen (2010)
- Not just finance: Bakija-Cole-Heim (2010), Kaplan-Rauh
- Pareto-generating mechanisms: Gabaix (1999, 2009),
 Luttmer (2007, 2010), Reed (2001). GLLM (2015).
- Use Pareto to get growth: Kortum (1997), Lucas and Moll (2013), Perla and Tonetti (2013).
- Pareto wealth distribution: Benhabib-Bisin-Zhu (2011), Nirei (2009), Moll (2012), Piketty-Saez (2012), Piketty-Zucman (2014), Aoki-Nirei (2015)

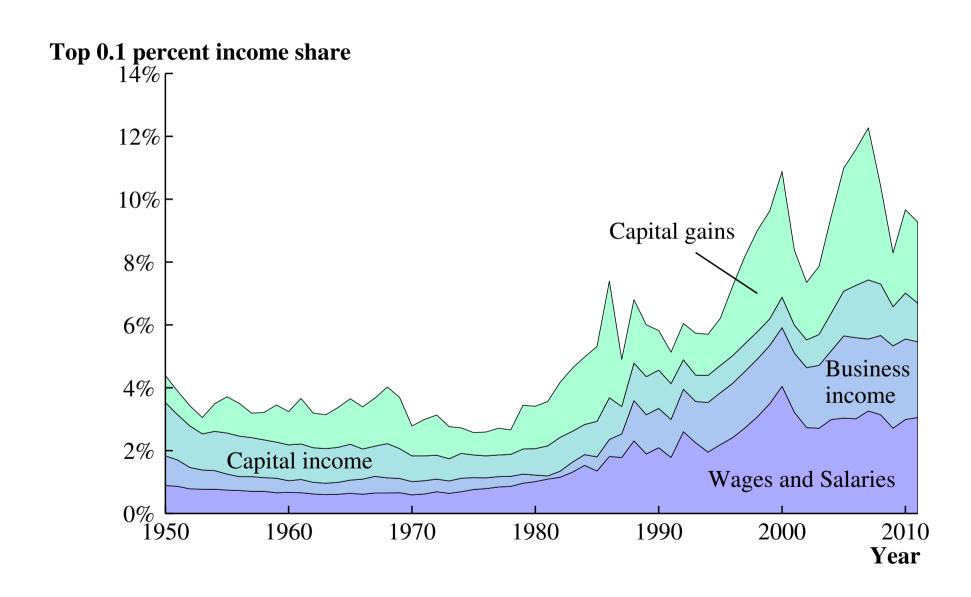
Outline

- Facts from World Top Incomes Database
- Simple model
- Full model
- Empirical work using IRS public use panel tax returns
- Numerical examples

Top Income Inequality around the World



The Composition of the Top 0.1 Percent Income Share



Pareto Distributions

$$\Pr\left[Y > y\right] = \left(\frac{y}{y_0}\right)^{-\xi}$$

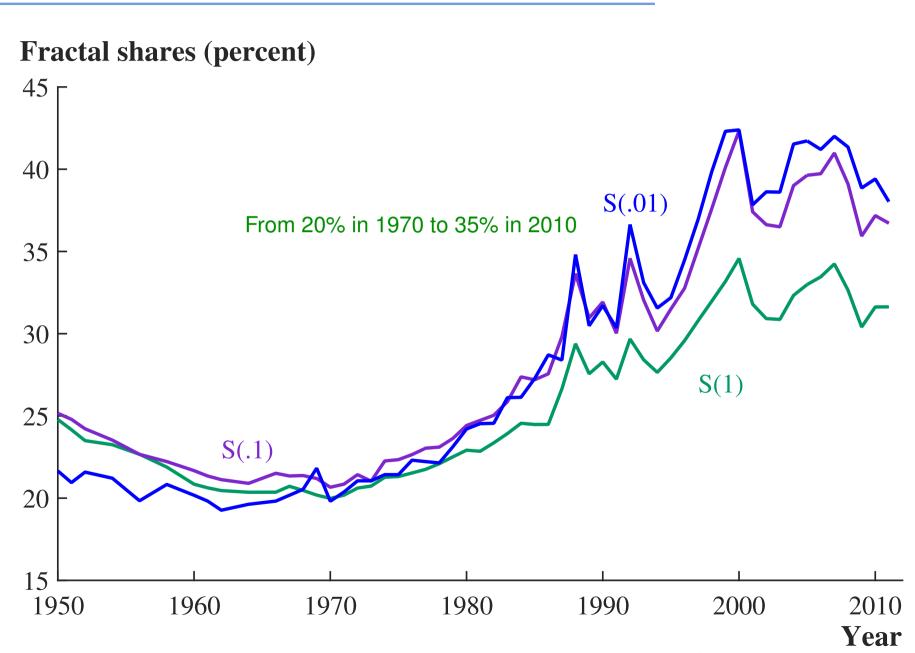
• Let $\tilde{S}(p)$ = share of income going to the top p percentiles, and $\eta \equiv 1/\xi$ be a measure of Pareto inequality:

$$\tilde{S}(p) = \left(\frac{100}{p}\right)^{\eta - 1}$$

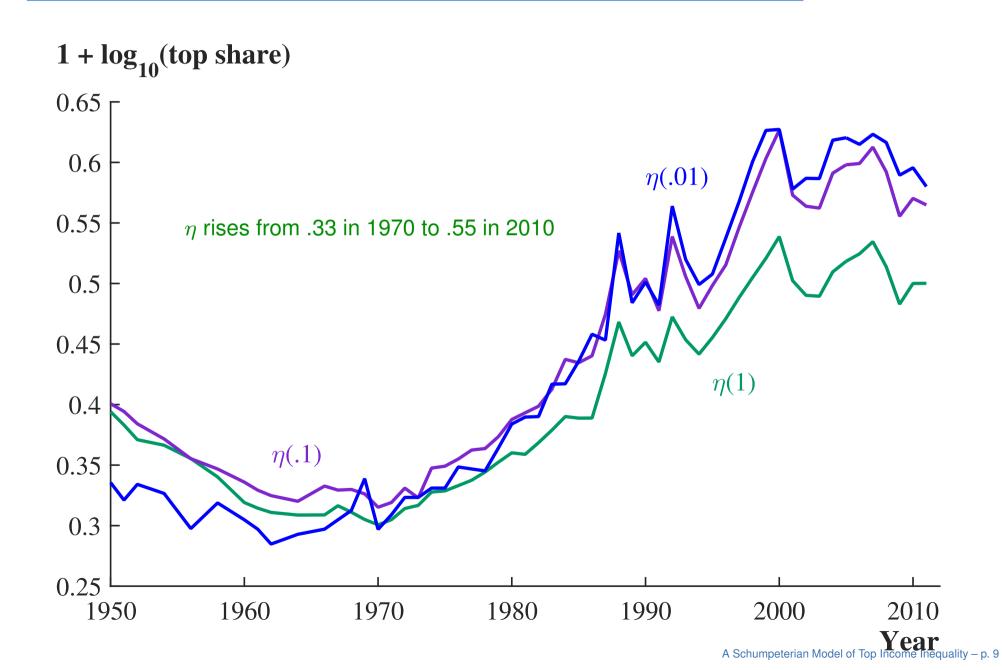
- \circ If $\eta=1/2$, then share to Top 1% is $100^{-1/2}\approx .10$
- \circ If $\eta = 3/4$, then share to Top 1% is $100^{-1/4} \approx .32$
- Fractal: Let S(a) = share of 10a's income going to top a:

$$S(a) = 10^{\eta - 1}$$

Fractal Inequality Shares in the United States

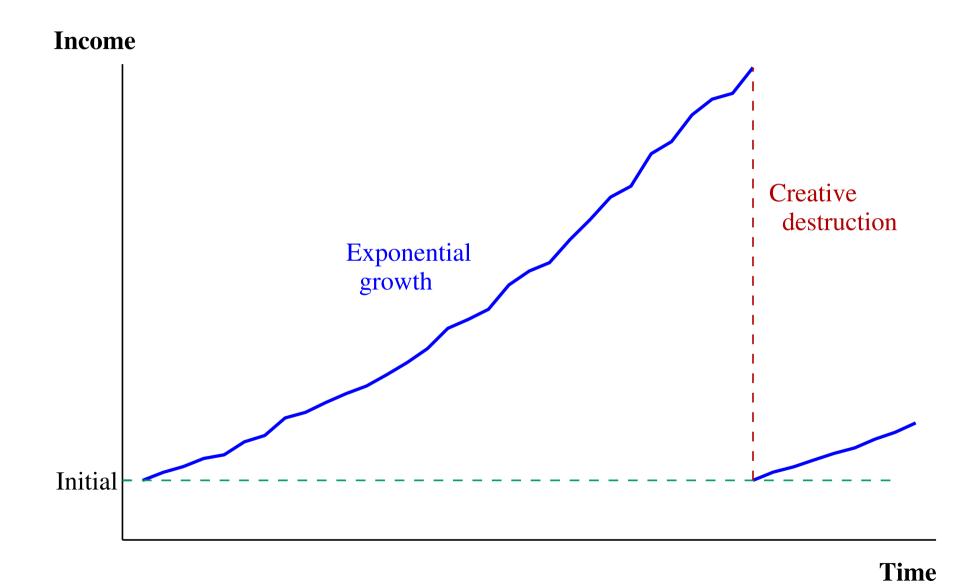


The Power-Law Inequality Exponent η , United States



A Simple Model

Key Idea: Exponential growth w/ death ⇒ Pareto



Simple Model for Intuition

- Exponential growth often leads to a Pareto distribution.
- Entrepreneurs
 - New entrepreneur ("top earner") earns y_0
 - Income after x years of experience:

$$y(x) = y_0 e^{\mu x}$$

- Poisson "replacement" process at rate δ
 - Stationary distribution of experience is exponential

$$Pr[Experience > x] = e^{-\delta x}$$

What fraction of people have income greater than y?

• Equals fraction with at least x(y) years of experience

$$x(y) = \frac{1}{\mu} \log \left(\frac{y}{y_0} \right)$$

Therefore

$$\begin{aligned} \Pr\left[\mathsf{Income} > y\right] &= \Pr\left[\mathsf{Experience} > x(y)\right] \\ &= e^{-\delta x(y)} \\ &= \left(\frac{y}{y_0}\right)^{-\frac{\delta}{\mu}} \end{aligned}$$

So power law inequality is given by

$$\eta_y = \frac{\mu}{\delta}$$

Intuition

- Why does the Pareto result emerge?
 - $^{\circ}$ Log of income \propto experience (Exponential growth)
 - \circ Experience \sim exponential (Poisson process)
 - Therefore log income is exponential
 - \Rightarrow Income \sim Pareto!
- A Pareto distribution emerges from exponential growth experienced for an exponentially distributed amount of time.

Full model: endogenize μ and δ and how they change

The Model

- Pareto distribution in partial eqm
- GE with exogenous research
- Full general equilibrium

Entrepreneur's Problem

Choose $\{e_t\}$ to maximize expected discounted utility:

$$U(c, \ell) = \log c + \beta \log \ell$$

$$c_t = \psi_t x_t$$

$$e_t + \ell_t + \tau = 1$$

$$dx_t = \mu(e_t) x_t dt + \sigma x_t dB_t$$

$$\mu(e) = \phi e$$

x = idiosyncratic productivity of a variety

 ψ_t = determined in GE (grows)

 δ = endogenous creative destruction

 $\bar{\delta}$ = exogenous destruction

Entrepreneur's Problem – HJB Form

• The Bellman equation for the entreprenueur:

$$\rho V(x_t, t) = \max_{e_t} \log \psi_t + \log x_t + \beta \log(\Omega - e_t) + \frac{\mathbb{E}[dV(x_t, t)]}{dt} + (\delta + \overline{\delta})(V^w(t) - V(x_t, t))$$

where $\Omega \equiv 1 - \tau$

Note: the "capital gain" term is

$$\frac{\mathbb{E}[dV(x_t, t)]}{dt} = \mu(e_t)x_t V_x(x_t, t) + \frac{1}{2}\sigma^2 x_t^2 V_{xx}(x_t, t) + V_t(x_t, t)$$

Solution for Entrepreneur's Problem

• Equilibrium effort is constant:

$$e^* = 1 - \tau - \frac{1}{\phi} \cdot \beta(\rho + \delta + \overline{\delta})$$

Comparative statics:

- $\uparrow \tau \Rightarrow \downarrow e^*$: higher "taxes"
- $\uparrow \phi \Rightarrow \uparrow e^*$: better technology for converting effort into x
- $\circ \uparrow \delta$ or $\bar{\delta} \Rightarrow \downarrow e^*$: more destruction

Stationary Distribution of Entrepreneur's Income

- Unit measure of entrepreneurs / varieties
- Displaced in two ways
 - Exogenous misallocation ($\bar{\delta}$): new entrepreneur $\to x_0$.
 - Endogenous creative destruction (δ): inherit existing productivity x.
- Distribution f(x,t) satisfies Kolmogorov forward equation:

$$\frac{\partial f(x,t)}{\partial t} = -\bar{\delta}f(x,t) - \frac{\partial}{\partial x} \left[\mu(e^*)xf(x,t) \right] + \frac{1}{2} \cdot \frac{\partial^2}{\partial x^2} \left[\sigma^2 x^2 f(x,t) \right]$$

• Stationary distribution $\lim_{t\to\infty} f(x,t) = f(x)$ solves $\frac{\partial f(x,t)}{\partial t} = 0$

• Guess that $f(\cdot)$ takes the Pareto form $f(x) = Cx^{-\xi-1} \Rightarrow$

$$\xi^* = -\frac{\tilde{\mu}^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}^*}{\sigma^2}\right)^2 + \frac{2\bar{\delta}}{\sigma^2}}$$

$$\tilde{\mu}^* \equiv \mu(e^*) - \frac{1}{2}\sigma^2 = \phi(1-\tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2}\sigma^2$$

Power-law inequality is therefore given by

$$\eta^* = 1/\xi^*$$

Comparative Statics (given δ^*)

$$\eta^* = 1/\xi^*, \quad \xi^* = -\frac{\tilde{\mu}^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}^*}{\sigma^2}\right)^2 + \frac{2\bar{\delta}}{\sigma^2}}$$
$$\tilde{\mu}^* = \phi(1-\tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2}\sigma^2$$

- Power-law inequality η^* increases if
 - $\circ \uparrow \phi$: better technology for converting effort into x
 - $\circ \downarrow \delta$ or $\bar{\delta}$: less destruction
 - \circ $\downarrow \tau$: Lower "taxes"
 - $\circ \downarrow \beta$: Lower utility weight on leisure

Luttmer and GLLM

- Problems with basic random growth model:
 - Luttmer (2010): Cannot produce "rockets" like Google or Uber
 - Gabaix, Lasry, Lions, and Moll (2015): Slow transition dynamics
- Solution from Luttmer/GLLM:
 - Introduce heterogeneous mean growth rates: e.g. "high" versus "low"
 - Here: $\phi_H > \phi_L$ with Poisson rate \bar{p} of transition $(H \to L)$

Pareto Inequality with Heterogeneous Growth Rates

$$\eta^* = 1/\xi_H, \quad \xi_H = -\frac{\tilde{\mu}_H^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}_H^*}{\sigma^2}\right)^2 + \frac{2(\bar{\delta} + \bar{p})}{\sigma^2}}$$
$$\tilde{\mu}_H^* = \phi_H(1 - \tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2}\sigma^2$$

- This adopts Gabaix, Lasry, Lions, and Moll (2015)
- Why it helps quantitatively:
 - \circ ϕ_H : Fast growth allows for Google / Uber
 - \bar{p} : Rate at which high growth types transit to low growth types raises the speed of convergence $= \bar{\delta} + \bar{p}$.

Growth and Creative Destruction

Final output

$$Y = \left(\int_0^1 Y_i^{\theta} di\right)^{1/\theta}$$

Production of variety i

$$Y_i = \gamma^{n_t} x_i^{\alpha} L_i$$

Resource constraint

$$L_t + R_t + 1 = \bar{N}, \ L_t \equiv \int_0^1 L_{it} di$$

Flow rate of innovation

$$\dot{n}_t = \lambda (1 - \bar{z}) R_t$$

Creative destruction

$$\delta_t = \dot{n}_t$$

Equilibrium with Monopolistic Competition

- Suppose $R/\bar{L}=\bar{s}$ where $\bar{L}\equiv \bar{N}-1$.
- Define $X \equiv \int_0^1 x_i di = \frac{x_0}{1-\eta}$. Markup is $1/\theta$.

Aggregate PF

$$Y_t = \gamma^{n_t} X^{\alpha} L$$

Wage for L

$$w_t = \theta \gamma^{n_t} X^{\alpha}$$

Profits for variety i $\pi_{it} = (1-\theta)\gamma^{n_t}X^{\alpha}L\left(\frac{x_i}{X}\right) \propto w_t\left(\frac{x_i}{X}\right)$

Definition of ψ_t

$$\psi_t = (1 - \theta)\gamma^{n_t} X^{\alpha - 1} L$$

Note that $\uparrow \eta$ has a level effect on output and wages.

Growth and Inequality in the \bar{s} case

Creative destruction and growth

$$\delta^* = \lambda R = \lambda (1 - \bar{z}) \bar{s} \bar{L}$$
$$g_y^* = \dot{n} \log \gamma = \lambda (1 - \bar{z}) \bar{s} \bar{L} \log \gamma$$

- Does rising top inequality always reflect positive changes?
 - No! $\uparrow \bar{s}$ (more research) or $\downarrow \bar{z}$ (less innovation blocking)
 - Raise growth and reduce inequality via \(\gamma\) creative destruction.

Endogenizing Research and Growth

Endogenizing $s=R/\bar{L}$

Worker:

$$\rho V^w(t) = \log w_t + \frac{dV^W(t)}{dt}$$

Researcher:

$$\rho V^{R}(t) = \log(\bar{m}w_{t}) + \frac{dV^{R}(t)}{dt} + \lambda \left(\mathbb{E}[V(x,t)] - V^{R}(t)\right) + \bar{\delta}_{R}\left(V(x_{0},t) - V^{R}(t)\right)$$

• Equilibrium:
$$V^w(t) = V^R(t)$$

Stationary equilibrium solution

Drift of log x

$$\tilde{\mu}_H^* = \phi_H(1-\tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2}\sigma_H^2$$

Pareto inequality

$$\eta^* = 1/\xi^*, \quad \xi^* = -\frac{\tilde{\mu}_H^*}{\sigma_H^2} + \sqrt{\left(\frac{\tilde{\mu}_H^*}{\sigma_H^2}\right)^2 + \frac{2(\bar{\delta} + \bar{p})}{\sigma_H^2}}$$

Creative destruction

$$\delta^* = \lambda (1 - \bar{z}) s^* \bar{L}$$

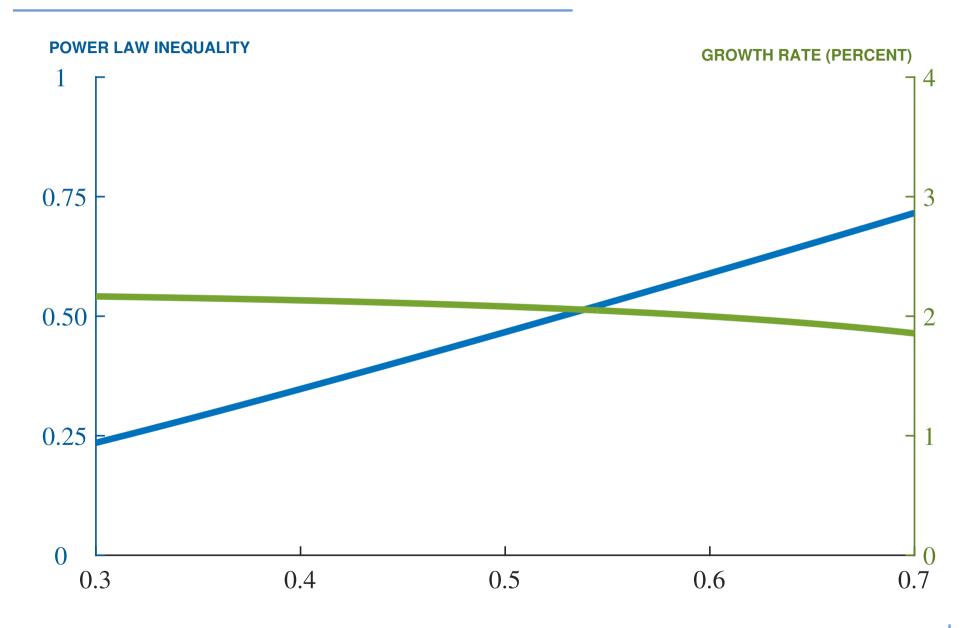
Growth

$$g^* = \delta^* \log \gamma$$

Research allocation

$$V^w(s^*) = V^R(s^*)$$

Varying the x-technology parameter ϕ



Why does $\uparrow \phi$ reduce growth?

- $\uparrow \phi \Rightarrow \uparrow e^* \Rightarrow \uparrow \mu^*$
- Two effects
 - GE effect: technological improvement ⇒ economy more productive so higher profits, but also higher wages
 - Allocative effect: raises Pareto inequality (η) , so $\frac{x_i}{X}$ is more dispersed $\Rightarrow E \log \pi_i / w$ is lower. Risk averse agents undertake less research.
- Positive level effect raises both profits and wages. Riskier research ⇒ lower research and lower long-run growth.

Growth and Inequality

- Growth and inequality tend to move in opposite directions!
- Two reasons
 - 1. Faster growth ⇒ more creative destruction
 - Less time for inequality to grow
 - Entrepreneurs may work less hard to grow market
 - 2. With greater inequality, research is riskier!
 - Riskier research ⇒ less research ⇒ lower growth
- Transition dynamics ⇒ ambiguous effects on growth in medium run

Possible explanations: Rising U.S. Inequality

- Technology (e.g. WWW)
 - Entrepreneur's effort is more productive $\Rightarrow \uparrow \eta$
 - Worldwide phenomenon, not just U.S.
 - Ambiguous effects on U.S. growth (research is riskier!)
- Lower taxes on top incomes
 - Increase effort by entrepreneur's $\Rightarrow \uparrow \eta$

Possible explanations: Inequality in France

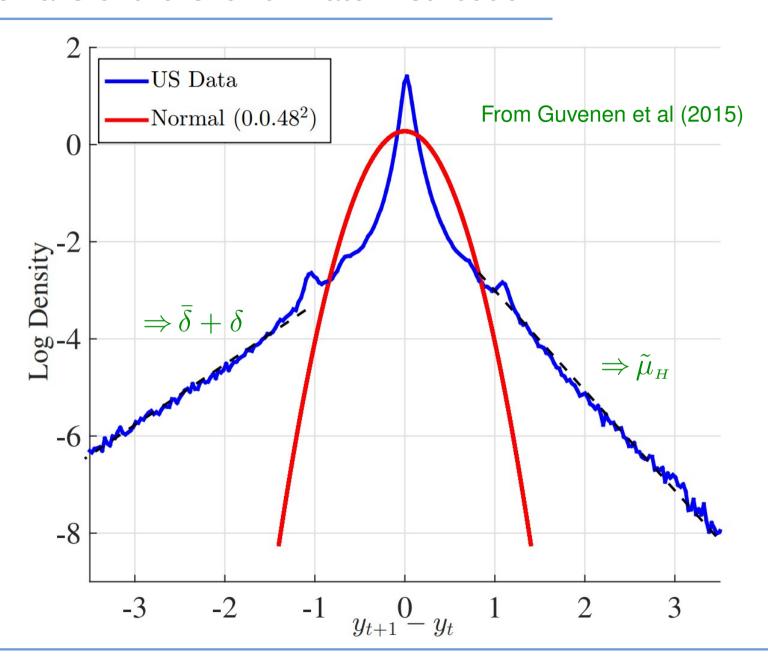
- Efficiency-reducing explanations
 - Delayed adoption of good technologies (WWW)
 - Increased misallocation (killing off entrepreneurs more quickly)
- Efficiency-enhancing explanations
 - Increased subsidies to research (more creative destruction)
 - Reduction in blocking of innovations (more creative destruction)

Micro Evidence

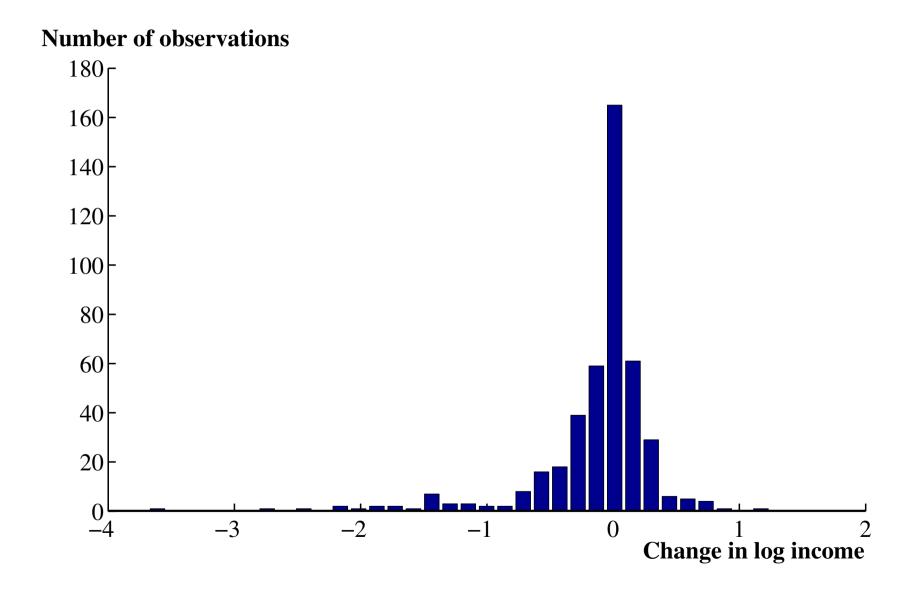
Overview

- Geometric random walk with drift = canonical DGP in the empirical literature on income dynamics.
 - Survey by Meghir and Pistaferri (2011)
- The distribution of growth rates for the Top 10% earners
 - Guvenen, Karahan, Ozkan, Song (2015) for 1995-96
 - IRS public use panel for 1979–1990 (small sample)

Pareto Tails of the Growth Rate Distribution



Growth Rates of Top 5% Incomes, 1988–1989



Results

Parameter	IRS 1979–81	IRS 1988–90	Guvenen et al. 1995–96
$ar{\delta} + \delta$	0.	.07	
$\sigma_{\scriptscriptstyle H}$	0.122		•••
$ar{p}$	0.767		•••
$ ilde{\mu}_{\scriptscriptstyle H}$	0.244	0.303	0.435
Model: η^*	0.330	0.398	0.556
Data: η	0.33	0.48	0.55

Three numerical examples

Three numerical examples

- The examples
 - 1. Match U.S. inequality 1980–2007 (ϕ)
 - 2. Match inequality in France (\bar{z}, \bar{p})
 - 3. Match U.S. and French data using taxes (τ)
- Why these are just examples
 - \circ Identification problem: observe μ but not structural parameters, e.g. ϕ and τ
 - Sequence of steady states, not transition dynamics

Parameters

Parameters consistent with IRS panel:

$$\phi \approx 0.5 \Rightarrow \tilde{\mu}_{H} \approx .3$$

$$\circ$$
 $\sigma_{\scriptscriptstyle H} = \sigma_{\scriptscriptstyle L} = .122$

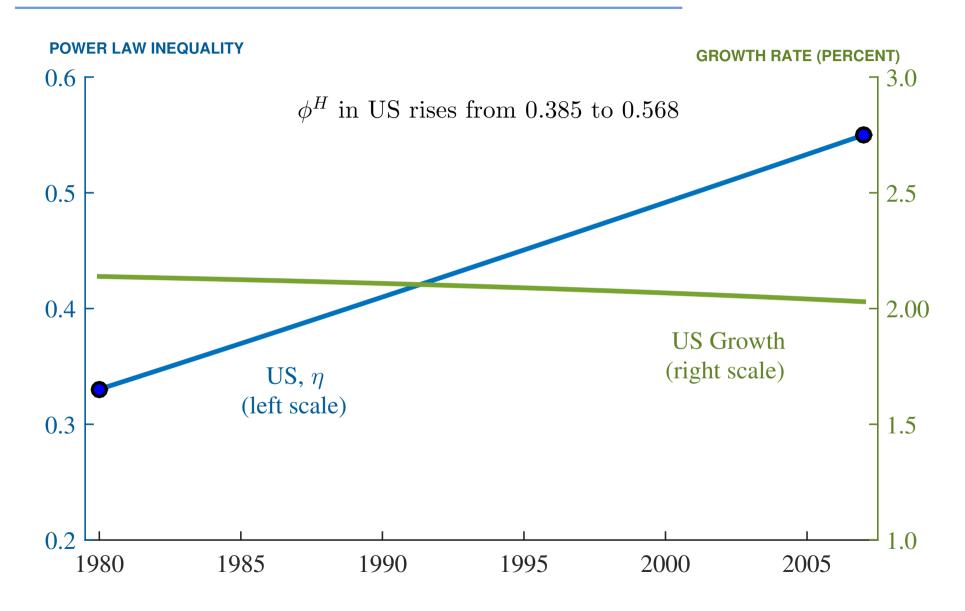
$$\bar{p} = 0.767$$

- $\bar{q} = .504 2.5\%$ of top earners are high growth
- Other parameter values
 - Match U.S. growth of 2% per year and Pareto inequality in 1980

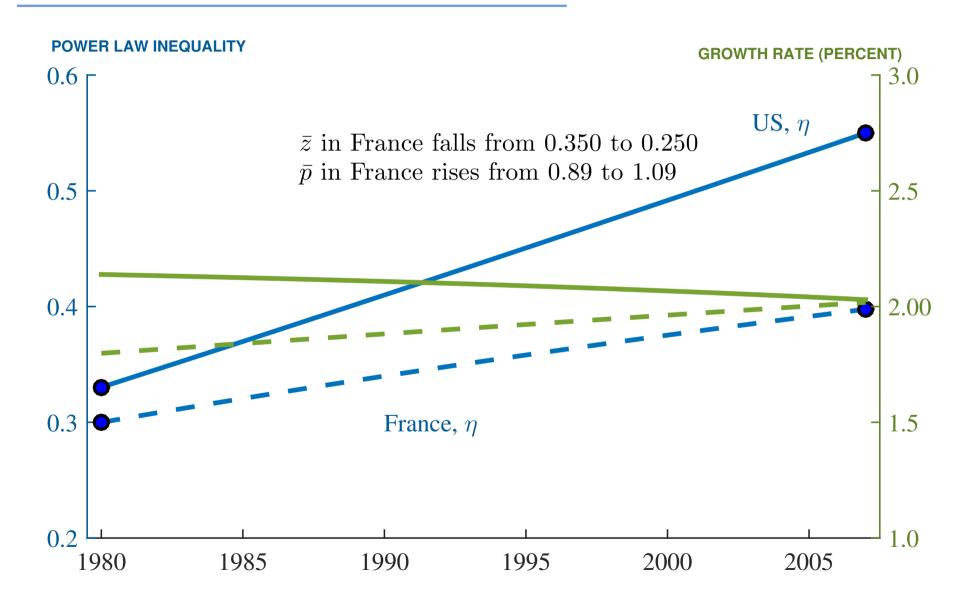
$$^{\circ}~\bar{\delta} = 0.04$$
 and $\gamma = 1.4 \Rightarrow \delta + \bar{\delta} \approx 0.10$

$$ho=0.03, ar{L}=15, au=0, heta=2/3, eta=1, \lambda=0.027, ar{m}=0.5, ar{z}=0.20$$

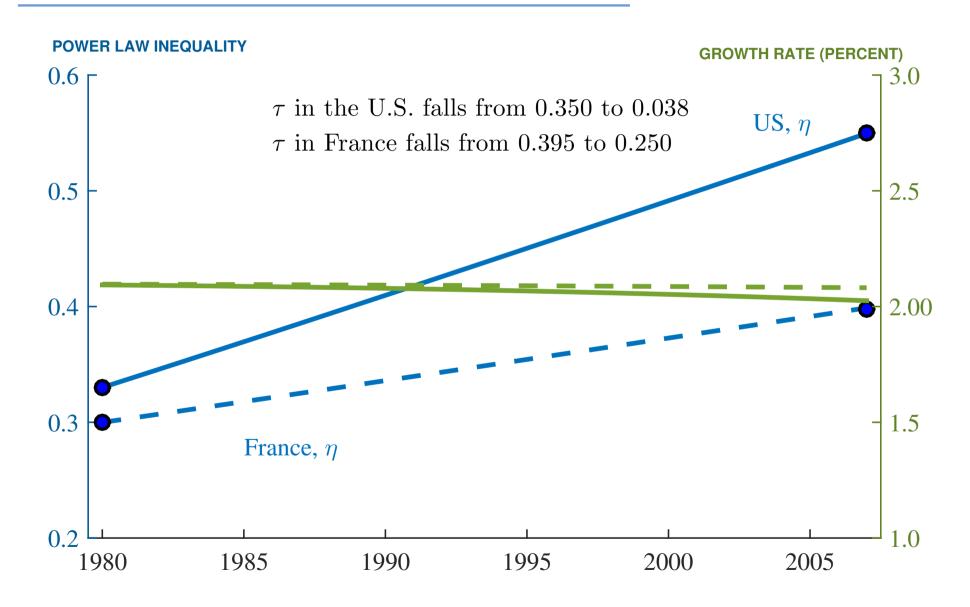
Numerical Example: Matching U.S. Inequality



Numerical Example: U.S. and France



Numerical Example: Taxes and Inequality



Conclusions: Understanding top income inequality

- Information technology / WWW:
 - Entrepreneurial effort is more productive: $\uparrow \phi \Rightarrow \uparrow \eta$
 - Worldwide phenomenon (?)
- Why else might inequality rise by less in France?
 - Less innovation blocking / more research: raises creative destruction
 - Regulations limiting rapid growth: $\uparrow \bar{p}$ and $\downarrow \phi$

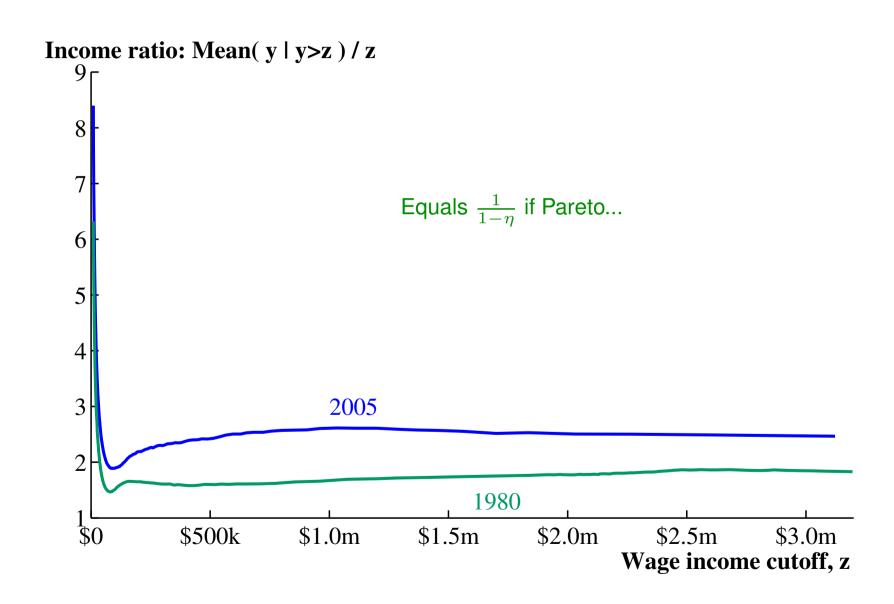
Theory suggests rich connections between: models of top inequality ↔ micro data on income dynamics

Extra Slides

Overview

- Atkinson / Piketty / Saez stylized facts on top income inequality
 - Rising sharply in US since 1980
 - More stable in France and Japan
 - Why?

The Pareto Nature of Labor Income



Skill-Biased Technical Change?

• Let $x_i = \text{skill}$ and $\bar{w} = \text{wage per unit skill}$

$$y_i = \bar{w}x_i^{\alpha}$$

• If $\Pr[x_i > x] = x^{-1/\eta_x}$, then

$$\Pr\left[y_i>y\right]=\left(rac{y}{ar{w}}
ight)^{-1/\eta_y}$$
 where $\eta_y=\alpha\eta_x$

- That is y_i is Pareto with inequality parameter η_y
 - SBTC ($\uparrow \bar{w}$) shifts distribution right but η_y unchanged.
 - \circ $\uparrow \alpha$ would raise Pareto inequality...
 - This paper: why is $x \sim \text{Pareto}$, and why $\uparrow \alpha$

Why is experience exponentially distributed?

- Let F(x,t) denote the distribution of experience at time t
- How does it evolve over discrete interval Δt ?

$$F(x,t+\Delta t) - F(x,t) = \underbrace{\delta \Delta t (1-F(x,t))}_{\text{inflow from above x}} - \underbrace{[F(x,t)-F(x-\Delta x,t)]}_{\text{outflow as top folks age}}$$

• Dividing both sides by $\Delta t = \Delta x$ and taking the limit

$$\frac{\partial F(x,t)}{\partial t} = \delta(1 - F(x,t)) - \frac{\partial F(x,t)}{\partial x}$$

• Stationary: F(x) such that $\frac{\partial F(x,t)}{\partial t} = 0$. Integrating gives the exponential solution.

How the model works

- $\uparrow \phi$ raises top inequality, but leaves the growth rate of the economy unchanged.
 - Surprising: a "linear differential equation" for x.
- Key: the distribution of x is stationary!
- Higher ϕ has a positive level effect through higher inequality, raising everyone's wage.
 - \circ But growth comes via research, not through x...

Lucas at "micro" level, Romer/AH at "macro" level