A Schumpeterian Model of Top Income Inequality

Chad Jones and Jihee Kim

SED – Warsaw 2015
Top Income Inequality in the United States and France

Income share of top 0.1 percent

United States

France

Source: World Top Incomes Database (Alvaredo, Atkinson, Piketty, Saez)
Related literature

- **Empirics**: Piketty and Saez (2003), Aghion et al (2015), Guvenen-Kaplan-Song (2015) and many more
- **Rent Seeking**: Piketty, Saez, and Stantcheva (2011) and Rothschild and Scheuer (2011)
- **Finance**: Philippon-Reshef (2009), Bell-Van Reenen (2010)
- **Not just finance**: Bakija-Cole-Heim (2010), Kaplan-Rauh
Outline

• Facts from World Top Incomes Database

• Simple model

• Full model

• Empirical work using IRS public use panel tax returns

• Numerical examples
The Composition of the Top 0.1 Percent Income Share

<table>
<thead>
<tr>
<th>Year</th>
<th>Top 0.1 percent income share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>0%</td>
</tr>
<tr>
<td>1960</td>
<td>2%</td>
</tr>
<tr>
<td>1970</td>
<td>4%</td>
</tr>
<tr>
<td>1980</td>
<td>6%</td>
</tr>
<tr>
<td>1990</td>
<td>8%</td>
</tr>
<tr>
<td>2000</td>
<td>10%</td>
</tr>
<tr>
<td>2010</td>
<td>12%</td>
</tr>
</tbody>
</table>

The chart illustrates the distribution of income share among the top 0.1% of households over time, with a significant increase in capital gains from the 1990s onwards.
Pareto Distributions

\[\Pr [Y > y] = \left(\frac{y}{y_0} \right)^{-\xi} \]

- Let \(\tilde{S}(p) \) = share of income going to the top \(p \) percentiles, and \(\eta \equiv 1/\xi \) be a measure of Pareto inequality:

\[\tilde{S}(p) = \left(\frac{100}{p} \right)^{\eta^{-1}} \]

- If \(\eta = 1/2 \), then share to Top 1\% is \(100^{-1/2} \approx .10 \)
- If \(\eta = 3/4 \), then share to Top 1\% is \(100^{-1/4} \approx .32 \)

- Fractal: Let \(S(a) \) = share of \(10a \)’s income going to top \(a \):

\[S(a) = 10^{\eta^{-1}} \]
Fractal Inequality Shares in the United States

Fractal shares (percent)

From 20% in 1970 to 35% in 2010

A Schumpeterian Model of Top Income Inequality – p. 8
The Power-Law Inequality Exponent η, United States

$1 + \log_{10}\text{(top share)}$

η rises from .33 in 1970 to .55 in 2010

A Schumpeterian Model of Top Income Inequality – p. 9
A Simple Model
Key Idea: Exponential growth w/ death \Rightarrow Pareto
Simple Model for Intuition

- Exponential growth often leads to a Pareto distribution.
- Entrepreneurs
 - New entrepreneur (“top earner”) earns y_0
 - Income after x years of experience:
 \[y(x) = y_0 e^{\mu x} \]
- Poisson “replacement” process at rate δ
 - Stationary distribution of experience is exponential
 \[\Pr[\text{Experience} > x] = e^{-\delta x} \]
What fraction of people have income greater than y?

- Equals fraction with at least $x(y)$ years of experience

\[x(y) = \frac{1}{\mu} \log \left(\frac{y}{y_0} \right) \]

- Therefore

\[\Pr [\text{Income} > y] = \Pr [\text{Experience} > x(y)] = e^{-\delta x(y)} = \left(\frac{y}{y_0} \right)^{-\frac{\delta}{\mu}} \]

- So power law inequality is given by

\[\eta_y = \frac{\mu}{\delta} \]
Intuition

• Why does the Pareto result emerge?
 ◦ Log of income \propto experience (Exponential growth)
 ◦ Experience \sim exponential (Poisson process)
 ◦ Therefore log income is exponential

 \Rightarrow Income \sim Pareto!

• A Pareto distribution emerges from exponential growth experienced for an exponentially distributed amount of time.

 Full model: endogenize μ and δ and how they change
The Model

– Pareto distribution in partial eqm
– GE with exogenous research
– Full general equilibrium
Entrepreneur’s Problem

Choose \(\{e_t\} \) to maximize expected discounted utility:

\[
U(c, \ell) = \log c + \beta \log \ell
\]

\[
c_t = \psi_t x_t
\]

\[
e_t + \ell_t + \tau = 1
\]

\[
dx_t = \mu(e_t)x_t dt + \sigma x_t dB_t
\]

\[
\mu(e) = \phi e
\]

- \(x \) = idiosyncratic productivity of a variety
- \(\psi_t \) = determined in GE (grows)
- \(\delta \) = endogenous creative destruction
- \(\bar{\delta} \) = exogenous destruction
Entrepreneur’s Problem – HJB Form

- The Bellman equation for the entrepreneur:

\[
\rho V(x_t, t) = \max_{e_t} \log \psi_t + \log x_t + \beta \log(\Omega - e_t) + \frac{\mathbb{E}[dV(x_t, t)]}{dt} \\
+ (\delta + \bar{\delta})(V^w(t) - V(x_t, t))
\]

where \(\Omega \equiv 1 - \tau \)

- Note: the “capital gain” term is

\[
\frac{\mathbb{E}[dV(x_t, t)]}{dt} = \mu(e_t)x_tV_x(x_t, t) + \frac{1}{2}\sigma^2x_t^2V_{xx}(x_t, t) + V_t(x_t, t)
\]
Solution for Entrepreneur’s Problem

• Equilibrium effort is constant:

\[e^* = 1 - \tau - \frac{1}{\phi} \cdot \beta (\rho + \delta + \bar{\delta}) \]

• Comparative statics:

 ◦ \(\uparrow \tau \Rightarrow \downarrow e^* \): higher “taxes”
 ◦ \(\uparrow \phi \Rightarrow \uparrow e^* \): better technology for converting effort into \(x \)
 ◦ \(\uparrow \delta \) or \(\bar{\delta} \) \(\Rightarrow \downarrow e^* \): more destruction
Stationary Distribution of Entrepreneur’s Income

- Unit measure of entrepreneurs / varieties
- Displaced in two ways
 - Exogenous misallocation (δ): new entrepreneur $\to x_0$.
 - Endogenous creative destruction (δ): inherit existing productivity x.
- Distribution $f(x, t)$ satisfies Kolmogorov forward equation:

$$\frac{\partial f(x, t)}{\partial t} = -\delta f(x, t) - \frac{\partial}{\partial x} \left[\mu(e^*)xf(x, t) \right] + \frac{1}{2} \cdot \frac{\partial^2}{\partial x^2} \left[\sigma^2 x^2 f(x, t) \right]$$

- Stationary distribution $\lim_{t \to \infty} f(x, t) = f(x)$ solves

$$\frac{\partial f(x, t)}{\partial t} = 0$$
• Guess that \(f(\cdot) \) takes the Pareto form \(f(x) = Cx^{-\xi-1} \Rightarrow \)
\[
\xi^* = -\frac{\tilde{\mu}^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}^*}{\sigma^2}\right)^2 + \frac{2\bar{\delta}}{\sigma^2}}
\]
\[
\tilde{\mu}^* \equiv \mu(e^*) - \frac{1}{2}\sigma^2 = \phi(1 - \tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2}\sigma^2
\]
• Power-law inequality is therefore given by
\[
\eta^* = 1/\xi^*\]
Comparative Statics (given δ^*)

$$\eta^* = 1/\xi^*, \quad \xi^* = -\frac{\tilde{\mu}^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}^*}{\sigma^2}\right)^2 + \frac{2}{\sigma^2}}$$

$$\tilde{\mu}^* = \phi(1 - \tau) - \beta(\rho + \delta^* + \bar{\delta}) - \frac{1}{2\sigma^2}$$

- Power-law inequality η^* increases if
 - $\uparrow \phi$: better technology for converting effort into x
 - $\downarrow \delta$ or $\bar{\delta}$: less destruction
 - $\downarrow \tau$: Lower “taxes”
 - $\downarrow \beta$: Lower utility weight on leisure
Luttmer and GLLM

- Problems with basic random growth model:
 - Luttmer (2010): Cannot produce “rockets” like Google or Uber
 - Gabaix, Lasry, Lions, and Moll (2015): Slow transition dynamics

- Solution from Luttmer/GLLM:
 - Introduce heterogeneous mean growth rates: e.g. “high” versus “low”
 - Here: $\phi_H > \phi_L$ with Poisson rate \bar{p} of transition ($H \rightarrow L$)
Pareto Inequality with Heterogeneous Growth Rates

\[\eta^* = 1 / \xi_H, \quad \xi_H = -\frac{\tilde{\mu}_H^*}{\sigma^2} + \sqrt{\left(\frac{\tilde{\mu}_H^*}{\sigma^2}\right)^2 + \frac{2 (\bar{\delta} + \bar{p})}{\sigma^2}} \]

\[\tilde{\mu}_H^* = \phi_H (1 - \tau) - \beta (\rho + \delta^* + \bar{\delta}) - \frac{1}{2} \sigma^2 \]

- This adopts Gabaix, Lasry, Lions, and Moll (2015)
- Why it helps quantitatively:
 - \(\phi_H \): Fast growth allows for Google / Uber
 - \(\bar{p} \): Rate at which high growth types transit to low growth types raises the speed of convergence = \(\bar{\delta} + \bar{p} \).
Growth and Creative Destruction

Final output

\[Y = \left(\int_0^1 Y_i^\theta \, di \right)^{1/\theta} \]

Production of variety \(i \)

\[Y_i = \gamma^n x_i^\alpha L_i \]

Resource constraint

\[L_t + R_t + 1 = \bar{N}, \quad L_t \equiv \int_0^1 L_{it} \, di \]

Flow rate of innovation

\[\dot{n}_t = \lambda (1 - \bar{z}) R_t \]

Creative destruction

\[\delta_t = \dot{n}_t \]
Suppose \(R/\bar{L} = \bar{s} \) where \(\bar{L} \equiv \bar{N} - 1 \).

Define \(X \equiv \int_0^1 x_i di = \frac{x_0}{1 - \eta} \). Markup is \(1/\theta \).

Aggregate PF

\[Y_t = \gamma^{n_t} X^\alpha L \]

Wage for \(L \)

\[w_t = \theta \gamma^{n_t} X^\alpha \]

Profits for variety \(i \)

\[\pi_{it} = (1 - \theta) \gamma^{n_t} X^\alpha L \left(\frac{x_i}{X} \right) \propto w_t \left(\frac{x_i}{X} \right) \]

Definition of \(\psi_t \)

\[\psi_t = (1 - \theta) \gamma^{n_t} X^{\alpha - 1} L \]

Note that \(\uparrow \eta \) has a level effect on output and wages.
Growth and Inequality in the \bar{s} case

- Creative destruction and growth

\[\delta^* = \lambda R = \lambda(1 - \bar{z})\bar{s}\bar{L} \]

\[g_y^* = \dot{n} \log \gamma = \lambda(1 - \bar{z})\bar{s}\bar{L} \log \gamma \]

- Does rising top inequality always reflect positive changes?

 - No! $\uparrow \bar{s}$ (more research) or $\downarrow \bar{z}$ (less innovation blocking)

 - Raise growth and reduce inequality via \uparrow creative destruction.
Endogenizing Research and Growth
Endogenizing $s = R/\bar{L}$

- **Worker:**
 \[
 \rho V^w(t) = \log w_t + \frac{dV^W(t)}{dt}
 \]

- **Researcher:**
 \[
 \rho V^R(t) = \log(\bar{m}w_t) + \frac{dV^R(t)}{dt} + \lambda \left(\mathbb{E}[V(x, t)] - V^R(t) \right) \\
 + \tilde{\delta}_R \left(V(x_0, t) - V^R(t) \right)
 \]

- **Equilibrium:**
 \[
 V^w(t) = V^R(t)
 \]
Stationary equilibrium solution

Drift of log x

\[\tilde{\mu}^*_H = \phi_H (1 - \tau) - \beta (\rho + \delta^* + \bar{\delta}) - \frac{1}{2} \sigma^2_H \]

Pareto inequality

\[\eta^* = 1 / \xi^*, \quad \xi^* = -\frac{\tilde{\mu}^*_H}{\sigma^2_H} + \sqrt{\left(\frac{\tilde{\mu}^*_H}{\sigma^2_H}\right)^2 + \frac{2(\bar{\delta} + \bar{p})}{\sigma^2_H}} \]

Creative destruction

\[\delta^* = \lambda (1 - \bar{z}) s^* \bar{L} \]

Growth

\[g^* = \delta^* \log \gamma \]

Research allocation

\[V^w (s^*) = V^R (s^*) \]
Varying the x-technology parameter ϕ

The graph shows the relationship between power law inequality and growth rate (percent) varying with the parameter ϕ. The graph includes two curves: one representing power law inequality and the other representing growth rate. The x-axis represents different values of ϕ, ranging from 0.3 to 0.7, while the y-axis represents the growth rate in percent, ranging from 0 to 4.
Why does $\uparrow \phi$ reduce growth?

• $\uparrow \phi \Rightarrow \uparrow e^* \Rightarrow \uparrow \mu^*$

• Two effects
 ◦ **GE effect**: technological improvement \Rightarrow economy more productive so higher profits, but also higher wages
 ◦ **Allocative effect**: raises Pareto inequality (η), so $\frac{x_i}{X}$ is more dispersed $\Rightarrow E \log \frac{\pi_i}{w}$ is lower. Risk averse agents undertake less research.

• Positive level effect raises both profits and wages. Riskier research \Rightarrow lower research and lower long-run growth.
Growth and Inequality

• Growth and inequality tend to move in opposite directions!

• Two reasons
 1. Faster growth ⇒ more creative destruction
 ◦ Less time for inequality to grow
 ◦ Entrepreneurs may work less hard to grow market
 2. With greater inequality, research is riskier!
 ◦ Riskier research ⇒ less research ⇒ lower growth

• Transition dynamics ⇒ ambiguous effects on growth in medium run
Possible explanations: Rising U.S. Inequality

- **Technology (e.g. WWW)**
 - Entrepreneur’s effort is more productive $\Rightarrow \uparrow \eta$
 - Worldwide phenomenon, not just U.S.
 - Ambiguous effects on U.S. growth (research is riskier!)

- **Lower taxes on top incomes**
 - Increase effort by entrepreneur’s $\Rightarrow \uparrow \eta$
Possible explanations: Inequality in France

- **Efficiency-reducing explanations**
 - Delayed adoption of good technologies (WWW)
 - Increased misallocation (killing off entrepreneurs more quickly)

- **Efficiency-enhancing explanations**
 - Increased subsidies to research (more creative destruction)
 - Reduction in blocking of innovations (more creative destruction)
Micro Evidence
Overview

• Geometric random walk with drift = canonical DGP in the empirical literature on income dynamics.
 – Survey by Meghir and Pistaferri (2011)

• The distribution of growth rates for the Top 10% earners
 ◦ Guvenen, Karahan, Ozkan, Song (2015) for 1995-96
 ◦ IRS public use panel for 1979–1990 (small sample)
Pareto Tails of the Growth Rate Distribution

From Guvenen et al (2015)
Growth Rates of Top 5% Incomes, 1988–1989
Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\delta} + \delta$</td>
<td>0.07</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>σ_H</td>
<td>0.122</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>\bar{p}</td>
<td>0.767</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>$\tilde{\mu}_H$</td>
<td>0.244</td>
<td>0.303</td>
<td>0.435</td>
</tr>
<tr>
<td>Model: η^*</td>
<td>0.330</td>
<td>0.398</td>
<td>0.556</td>
</tr>
<tr>
<td>Data: η</td>
<td>0.33</td>
<td>0.48</td>
<td>0.55</td>
</tr>
</tbody>
</table>

A Schumpeterian Model of Top Income Inequality – p. 39
Three numerical examples
Three numerical examples

- The examples
 1. Match U.S. inequality 1980–2007 (ϕ)
 2. Match inequality in France (\bar{z}, \bar{p})
 3. Match U.S. and French data using taxes (τ)

- Why these are just examples
 - Identification problem: observe μ but not structural parameters, e.g. ϕ and τ
 - Sequence of steady states, not transition dynamics
Parameters

- Parameters consistent with IRS panel:
 - $\phi \approx 0.5 \Rightarrow \tilde{\mu}_H \approx 0.3$
 - $\sigma_H = \sigma_L = 0.122$
 - $\bar{p} = 0.767$
 - $\bar{q} = 0.504$ – 2.5% of top earners are high growth

- Other parameter values
 - Match U.S. growth of 2% per year and Pareto inequality in 1980
 - $\bar{\delta} = 0.04$ and $\gamma = 1.4 \Rightarrow \delta + \bar{\delta} \approx 0.10$
 - $\rho = 0.03, \bar{L} = 15, \tau = 0, \theta = 2/3, \beta = 1, \lambda = 0.027, \bar{m} = 0.5, \bar{z} = 0.20$
Numerical Example: Matching U.S. Inequality

ϕ^H in US rises from 0.385 to 0.568
Numerical Example: U.S. and France

\(\bar{z} \) in France falls from 0.350 to 0.250
\(\bar{p} \) in France rises from 0.89 to 1.09
Numerical Example: Taxes and Inequality

\[\tau \text{ in the U.S. falls from } 0.350 \text{ to } 0.038 \]
\[\tau \text{ in France falls from } 0.395 \text{ to } 0.250 \]
Conclusions: Understanding top income inequality

- Information technology / WWW:
 - Entrepreneurial effort is more productive: $\uparrow \phi \Rightarrow \uparrow \eta$
 - Worldwide phenomenon (?)

- Why else might inequality rise by less in France?
 - Less innovation blocking / more research: raises creative destruction
 - Regulations limiting rapid growth: $\uparrow \bar{p}$ and $\downarrow \phi$

Theory suggests rich connections between:
models of top inequality \leftrightarrow micro data on income dynamics
Extra Slides
Overview

- Atkinson / Piketty / Saez stylized facts on top income inequality
 - Rising sharply in US since 1980
 - More stable in France and Japan
 - Why?
The Pareto Nature of Labor Income

Income ratio: $\frac{\text{Mean}(y \mid y > z)}{z}$

Equals $\frac{1}{1-\eta}$ if Pareto...
Skill-Biased Technical Change?

- Let $x_i = \text{skill}$ and $\bar{w} = \text{wage per unit skill}$

$$y_i = \bar{w}x_i^\alpha$$

- If $\Pr[x_i > x] = x^{-1/\eta_x}$, then

$$\Pr[y_i > y] = \left(\frac{y}{\bar{w}}\right)^{-1/\eta_y} \text{ where } \eta_y = \alpha\eta_x$$

- That is y_i is Pareto with inequality parameter η_y
 - SBTC ($\uparrow \bar{w}$) shifts distribution right but η_y unchanged.
 - $\uparrow \alpha$ would raise Pareto inequality...
 - This paper: why is $x \sim \text{Pareto}$, and why $\uparrow \alpha$
Why is experience exponentially distributed?

- Let $F(x, t)$ denote the distribution of experience at time t
- How does it evolve over discrete interval Δt?

\[
F(x, t + \Delta t) - F(x, t) = \delta \Delta t (1 - F(x, t)) - [F(x, t) - F(x - \Delta x, t)]
\]

inflow from above x
outflow as top folks age

- Dividing both sides by $\Delta t = \Delta x$ and taking the limit

\[
\frac{\partial F(x, t)}{\partial t} = \delta (1 - F(x, t)) - \frac{\partial F(x, t)}{\partial x}
\]

- Stationary: $F(x)$ such that $\frac{\partial F(x,t)}{\partial t} = 0$. Integrating gives the exponential solution.
How the model works

• \(\uparrow \phi \) raises top inequality, but leaves the growth rate of the economy unchanged.

 ◦ Surprising: a “linear differential equation” for \(x \).

• Key: the distribution of \(x \) is stationary!

• Higher \(\phi \) has a positive level effect through higher inequality, raising everyone’s wage.

 ◦ But growth comes via research, not through \(x \)...

Lucas at “micro” level, Romer/AH at “macro” level