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As Romer andWeitzman emphasized in the 1990s, new ideas are often
combinations of existing ideas, an insight absent from recent models.
In Kortum’s research around the same time, ideas are draws from a
probability distribution, and Pareto distributions play a crucial role.
Why are combinations missing, and do we really need such strong dis-
tributional assumptions to get exponential growth? This paper demon-
strates that combinatorially growing draws from standard thin-tailed
distributions lead to exponential growth; Pareto is not required. More
generally, it presents a theorem linking the max extreme value to
the number of draws and the shape of the upper tail for probability
distributions.

I. Introduction

It has long been appreciated that new ideas are often combinations of ex-
isting goods or ideas. Gutenberg’s printing press was a combination of
movable type, paper, ink, metallurgical advances, and a wine press. State-
of-the-art photolithographic machines for making semiconductors weigh
180 tons and combine inputs from 5,000 suppliers, including robotic arms
andmirrors of unimaginable smoothness (Economist 2020). Romer (1993)
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observes that ingredients from a children’s chemistry set can create more
distinct combinations than there are atoms in the universe. Building on this
insight, Weitzman (1998) constructs a growth model in which new ideas
are combinations of old ideas. Because combinatorial growth is so fast,
however, he finds that growth is constrained by our limitations in process-
ing an exploding number of ideas, and the combinatorics plays essentially
no formal role indetermining the growth rate: there are somanypotential
combinations that the number is not a constraint. It is somewhat disap-
pointing andpuzzling that the combinatorial process does not play amore
central role.
A separate literature highlights the links between exponential growth

and Pareto distributions. In particular, Kortum (1997) introduced a new
way of modeling economic growth and argued that Pareto distributions
are crucial: if productivity is the maximum over a number of draws from
a distribution (you use only the best idea), then exponential growth in
productivity in his setup requires that the number of draws grows expo-
nentially and that the distribution being drawn from is Pareto, at least
in the upper tail. It is interesting that such a strong distributional assump-
tion seems to be required. Perhaps the underlying distribution from
which ideas are drawn is Pareto, but why would that be the case? After
all, inmany other applications in economics, the Pareto distribution is de-
rived rather than assumed. For example, Gabaix (1999), Luttmer (2007),
and Jones and Kim (2018) highlight that city sizes, firm employment, in-
comes, and wealth all feature Pareto distributions. However, that litera-
ture shows how these Pareto distributions emerge as an endogenous out-
come. This raises the question of whether the Pareto distribution really is
necessary in theKortumapproach. And regardless, what happened to the
Romer andWeitzman insight that combinatorics should be central to un-
derstanding growth?
This paper answers these questions by combining the insights of Kor-

tum (1997) and Weitzman (1998). Suppose that ideas are combinations
of existing ingredients, much like a recipe. Each recipe has a productivity
that is a draw from a probability distribution. As in Romer andWeitzman,
the number of combinations we can create from existing ingredients is so
astronomically large as to be essentially infinite, and we are limited by our
ability to process these combinations. LetNt denote the number of ingre-
dients whose recipes have been evaluated as of date t. In other words, our
“cookbook” includes all the possible recipes that can be formed from Nt

ingredients: if each ingredient can be either included or excluded from a
recipe, a total of 2Nt recipes are in the cookbook. Finally, research consists
of adding new recipes to the cookbook—that is, evaluating them and
learning their productivities. In particular, suppose that researchers add
new ingredients to the cookbook and learn their productivities in such
a way that Nt grows exponentially. We call a setup with 2Nt recipes with
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exponential growth inNt combinatorial growth. (In themodel below, the ex-
ponential growth in Nt will occur because of population growth in the
number of researchers.)
One key result in the paper is this: combinatorial growth is so fast that

drawing from a conventional thin-tailed distribution—such as the nor-
mal, exponential, or Weibull distribution—generates exponential growth
in the productivity of the best recipe in the cookbook. Combinatorics and
thin tails lead to exponential growth.
The way we derive this result leads to broader insights. For example,

let K denote the cumulative number of draws (e.g., the number of reci-
pes in the cookbook), and let ZK be max of the K productivities. Let �F ðxÞ
denote the probability that a draw has a productivity higher than x—the
complement of the cumulative distribution function (cdf)—so that it
characterizes the search distribution. Then a key condition derived be-
low relates the rise in ZK to the number of draws and to the search distri-
bution: ZK increases asymptotically so as to stabilize K �F ðZK Þ. That is, given
a time path for the number of drawsKt, themaximumproductivitymarches
down the upper tail of the distribution so as to make Kt

�F ðZKtÞ stationary.
Kortum (1997) can be viewed in this context: exponential growth in

the max ZK is achieved by an exponentially growing number of draws K
from a Pareto tail in �F ð⋅Þ. Alternatively, with thinner-tailed distributions
like the normal or the exponential, combinatorial growth inK is required
to get exponential growth in themax. Even the Romer (1990) model can
be viewed in this light: if we get a constant number of draws each period,
the linear growth inK requires a log-Pareto tail for the search distribution
if the max is to exhibit exponential growth.
Finally, themodel features an important and testable empirical predic-

tion. Kortum (1997) predicts that the flow of valuable new ideas should
be constant over time, even as the number of researchers grows. For ex-
ample, the discovery of 40,000 valuable new ideas in 1915, 1950, and 1985
can deliver constant exponential growth. The reason is that successful
new ideas are “large” in some sense. They are drawn from a Pareto distri-
bution and therefore generate proportional improvements in productiv-
ity on average. In the combinatorial version in which ideas are drawn
from a thin-tailed distribution, new ideas are “small,” and exponential
growth therefore requires an exponentially rising flow of valuable new
ideas. Empirical evidence suggests that the annual flows of patents, break-
through patents, and academic publications have risen substantially over
time, supporting the combinatorial model.
The remainder of the paper is organized as follows. After a brief liter-

ature review, section II explains the basic insights in a simple setting,
while section III embeds the setup in a full growthmodel. Section IV con-
nects our results with the literature on extreme value theory and shows
how the results generalize to different distributions. Section V presents
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the evidence on patents and publications, providing empirical support
for themodel. Section VI then suggests a number of important directions
for future research, including the distributions of markups and produc-
tivity, the frequency of creative destruction, and broader applications of
the combinatorial approach to technology diffusion, international trade,
and search models. This paper develops a new tool, and it would be valu-
able to apply that tool in many existing literatures.
Literature review.—Beyond Kortum (1997) and Weitzman (1998), the

most important inspiration for this paper is Acemoglu and Azar (2020).
They study endogenous production networks in which every good uses
a combination of other goods as an intermediate input. If there are N
goods in the economy, then there are 2N possible combinations of inter-
mediate goods that could be used to produce a particular product, and
Acemoglu and Azar (2020) let the productivity of each of these combina-
tions be a draw from a probability distribution. Their setup inspired the
approach taken in this paper.
The two papers differ in thinking about how the number of goods/in-

gredients evolves over time. Because it is not the main contribution of
their paper, Acemoglu and Azar (2020) focus on the case in which one
new good gets introduced each period, so there is arithmetic growth in
Nt and therefore exponential growth in 2Nt . For this to produce exponen-
tial growth in productivity, they require the standard Kortum (1997) as-
sumption that the probability distribution determining productivity has
a Pareto upper tail.1 Their corollary 2 suggests that broader results are pos-
sible, and the present paper can be viewed as exploring those broader
results.
Akcigit, Kerr, and Nicholas (2013) provide the best empirical evidence

to date of the importance of combinations to idea production. The share
of US patents based on a novel combination of existing technologies rose
from 50% in the 1800s tomore than 75% in recent decades. Interestingly,
they also show that more than 80% of technologies ever developed still
get incorporated into new patents today, suggesting an incredibly long
impact of past technologies on today’s innovation. Fleming and Sorenson
(2001) and Youn et al. (2015) also provide evidence from patent data on
the importance of combinations.
Agrawal, McHale, andOettl (2019) build a growthmodel based explic-

itly on combinations in the idea production function. They assume that
the elasticity of new ideas with respect to combinations declines to zero in
order to prevent explosive growth.

1 They state the assumption in a different form: that the log of productivity is drawn
from a Gumbel distribution. But, as they note, this is identical to saying that productivity
itself is drawn from a Fréchet distribution.
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II. Combining Weitzman and Kortum

Suppose that there are a huge number of ingredients that can potentially
be combined into recipes, which we call ideas. Moreover, new ideas can
also serve as future ingredients, making the number of potential combi-
nations effectively infinite. Our cookbook, C is the set of all recipes we
have evaluated as of some point in time. Let K denote the number of rec-
ipes in the cookbook.
Each recipe can be good or bad or somewhere in between. In one of the

early seminars in which Paul Romer discussed these combinatorial calcu-
lations, George Akerlof is said to have remarked, “Yes, the number of pos-
sible combinations is huge, but aren’t most of them like chicken ice
cream!” Suppose that the productivity associated with each recipe is an in-
dependent draw from some distribution. In particular, let zc denote the
productivity of recipe c, and let F(x) be the cdf for each independent zc.
Now assume that we are interested in only the best recipe in our cook-

book. That is, different ideas have different productivities, zc, and we use
the idea with the highest productivity, as in Kortum (1997). Let ZK ;
max zc , where c ∈ f1, ::: , Kg. Because we care about the best idea, it is
convenient to define the tail cdf:

�F ðxÞ ; Pr zc ≥ x½ � 5 1 2 F ðxÞ: (1)

From a growth perspective, the question is this: How does the produc-
tivity associated with the best idea, ZK, change as the number of recipes in
the cookbook, K, increases over time? And in particular, under what con-
ditions can we get exponential growth in ZK?
To answer these questions, consider the distribution of the maximum

productivity, ZK, if we have taken K draws from the distribution F(x). Be-
cause the draws are independent,

Pr ZK ≤ x½ � 5 Pr z1 ≤ x, z2 ≤ x, ::: , zK ≤ x½ �
5 F ðxÞK

5 ð1 2 �F ðxÞÞK :
(2)

If we take more andmore draws from the distribution over time so that K
gets larger, then obviously F(x)K shrinks. To get a stable distribution, we
need to normalize the max by some function of K, analogous to how in
the central limit theorem we multiply the mean by the square root of the
number of observations to get a stable distribution. Mechanically, if we
replace the �F ðxÞ on the right-hand side of (2) with something that de-
pends on 1=K and then take the limit as K goes to infinity, the exponen-
tial function will appear.
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The following theorem provides a general result that will be useful in
our growth application but may be useful more broadly as well.
Theorem 1 (A simple extreme value result). Let ZK denote the max-

imum value from K > 0 independent draws from a continuous distribu-
tion F(x), with �F ðxÞ ; 1 2 F ðxÞ strictly decreasing on its support. Then
for m ≥ 0,

lim
K →∞

Pr K �F ðZK Þ ≥ m½ � 5 e2m: (3)

Proof. Given that ZK is the max over K independently and identically
distributed (i.i.d.) draws, we have

Pr ZK ≤ x½ � 5 ð1 2 �F ðxÞÞK : (4)

Let MK ; K �F ðZK Þ denote a new random variable. Then for 0 ≤ m < K ,

Pr MK ≥ m½ � 5 Pr K �F ðZK Þ ≥ m½ �
5 Pr �F ðZK Þ ≥ m

K

h i
5 Pr ZK ≤ �F 21 m

K

� �h i
5 1 2

m

K

� �K

,

where the penultimate step uses the fact that �F ðxÞ is a strictly decreasing
and continuous function and the last step uses the result from (4). The
fact that limK →∞ð1 2 m=K ÞK 5 e2m proves the result. QED
Let us pause here to notice what is happening in theorem 1. We have a

new random variable, K �F ðZK Þ. As K goes to infinity, ZK—the max over K
draws from the distribution—is getting larger. So �F ðZK Þ—the probability
the next draw exceeds ZK—is shrinking toward zero as wemarch down the
tail of the distribution. Multiplying by K raises the value away from zero,
and it is the product K �F ðZK Þ that is asymptotically stationary. Theorem 1
says that under very weak conditions—basically, that the underlying dis-
tribution we draw from is continuous andmonotone—K �F ðZK Þ converges
in distribution to a standard exponential distribution.
A few remarks about this theorem are helpful. First, for using the the-

orem, it is convenient to note that the result can be written as

K �F ðZK Þ 5 ε 1 opð1Þ, (5)

where ε is an exponential random variable with a mean equal to 1. This
expression can be rearranged to provide intuition for the result:

�F ðZK Þ ; Pr Next draw > ZK½ � 5 1

K
ðε 1 opð1ÞÞ: (6)
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That is, as K gets large and apart from some random variation, the prob-
ability that the next draw exceeds the max is 1=K , regardless of the distri-
bution we are drawing from. This ties in nicely with the theory of record
breaking (Glick 1978). For example, suppose that wehave observedKdays
of temperatures in Palo Alto. What is the probability that today’s temper-
ature is a recordhigh? If everything is i.i.d., then the unconditional answer
is just 1=K : any day could be the record. Theorem 1 shows that this intu-
ition carries over even for the conditional probability; the randomness as-
sociated with ε captures the fact that wemay have a particularly high or low
maximum after K draws relative to what one would usually expect.
Next, nothing in the theorem requires that the distribution be un-

bounded. For example, the theorem applies to the uniform distribution
as well: even though the max is bounded, �F ðZK Þ is falling to zero, and
blowing this up by the factor K leads to an exponential distribution for
the product.
Finally, an alternative version of theorem 1 is presented in section III

that uses a Poisson assumption as in Kortum (1997) to derive a similar
result at each point in time without needing to take the limit as t goes
to infinity.
Results related to theorem 1 are of course known in the mathematical

statistics literature. The earliest reference I have found is Barton and Da-
vid (1959). It is also closely related to proposition 3.1.1 in Embrechts,
Mikosch, and Klüppelberg (1997). Galambos (1978, chap. 4) develops
a “weak law of large numbers” and a “strong law of large numbers” for ex-
treme values; some of the results belowwill fit this characterization.2How-
ever, the tight link between the number of draws, the shape of the tail,
and the way the maximum increases is not emphasized in these treat-
ments.More generally, I discuss the result’s relationship with standard ex-
treme value theory in section IV.
The result in (3) means that K �F ðZK Þ is asymptotically stationary. Since

ZK and K are both rising, the rate at which the tail �F ð⋅Þ decays tells us how
the rates of increase of ZK and K are related. We now apply this logic to
growthmodels, first as in Kortum (1997) and then in a new way involving
combinatorics.

A. Kortum (1997)

Kortum (1997) showed one way to get exponential growth in productiv-
ity ZK in a setup similar to this: assume that F(x) is a Pareto distribution,
at least in the upper tail, and have K grow exponentially—for example,
because of population growth in the number of researchers.

2 But not all: e.g., the Kortum (1997) result and the Romer (1990) example at the end
are convergence in distribution results, not convergence in probability results.
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To see how this works, let F ðxÞ 5 1 2 x2b so that �F ðxÞ 5 x2b, which is a
Pareto distribution where a higher b means a thinner upper tail. In this
case, K �F ðZK Þ 5 KZ2b

K , and theorem 1 gives

K �F ðZK Þ 5 ε 1 opð1Þ,
KZ2b

K 5 ε 1 opð1Þ,
K

Z b
K

5 ε 1 opð1Þ,

and therefore

ZK

K 1=b
5 ðε 1 opð1ÞÞ21=b: (7)

In words, to get a stable distribution for the max over K draws from a
Pareto distribution, we divide the max ZK by K 1=b. This scaled-down
max then is distributed asymptotically just like ~ε ; ε21=b, which has a
Fréchet distribution. If the number of drawsK grows exponentially at rate
gK (say, because each researcher gets one draw per period and there is
population growth), then the growth rate of productivity ZK asymptotically
averages to

gZ 5
gK
b
: (8)

It equals the growth rate of the number of draws deflated by b, the rate at
which good ideas are getting harder to find. This is the Kortum (1997)
result.

B. Weitzman Meets Kortum

The Kortum result is beautiful, and it may be the way the world works.
However, there are two features that are slightly uncomfortable. First,
does the real world’s idea distribution have a Pareto upper tail? Maybe.
But given the large literature on generating Pareto distributions from ex-
ponential growth, it is slightly uncomfortable to have to assume an un-
derlying Pareto distribution to get economy-wide growth. Can we do
without this assumption?
Second, the combinatorics of ideas that Romer (1993) and Weitzman

(1998) emphasized is entirely missing from this structure. What we show
next is that addressing these two concerns together reveals an elegant
alternative.
Let us change the Kortum setup in two ways. First, rather than drawing

from a distribution with a Pareto upper tail, we draw from a standard
thin-tailed distribution, such as the normal or exponential. To illustrate
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the logic, we begin with the exponential distribution: F ðxÞ 5 1 2 e2vx so
that �F ðxÞ 5 e2vx .
Second, let us assume that our cookbook consists of all recipes that

come from combining N ingredients. Each ingredient can be either in-
cluded or excluded from a recipe, so there are a total of K 5 2N recipes.
(Recall that 2N 5 oN

k50

�
N
k

�
, the total number of combinations.) The

economy picks fromK 5 2N different combinations and chooses the rec-
ipe with the highest productivity. We say that K exhibits combinatorial
growth if K 5 2N and N itself grows at a constant and positive exponen-
tial rate.
Applying theorem 1 to this setup with �F ðxÞ 5 e2vx gives

K �F ðZK Þ 5 ε 1 opð1Þ,
Ke2vZK 5 ε 1 opð1Þ,

⇒ log K 2 vZK 5 logðε 1 opð1ÞÞ,

⇒ ZK 5
1

v
½log K 2 logðε 1 opð1ÞÞ�,

⇒
ZK

log K
5

1

v
1 2

logðε 1 opð1ÞÞ
log K

� �
,

(9)

and therefore

ZK

log K
→
p
Constant,

(10)

where here and later we will follow the convention that “Constant” de-
notes an unimportant positive constant that may change across equa-
tions. With draws from an exponential distribution, the max grows as-
ymptotically with the natural log of the number of draws, a well-known
result.
If the number of draws K were to grow exponentially at rate gK, then

productivity would grow linearly rather than exponentially, and the expo-
nential growth rate would converge to zero, a point noted by Kortum
(1997).
A key insight here is that if the number of draws is combinatorial in-

stead, exponential growth is restored. In particular, if K 5 2N and N
grows exponentially at rate gN, then

ZK

log K
5

ZK

N log 2
→
p
Constant, (11)

and the asymptotic growth rate of productivity in this economy will equal

ð10Þ
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gZ 5 g log K 5 gN : (12)

Productivity growth is asymptotically equal to the growth rate of the num-
ber of ingredients whose recipes have been evaluated.
To summarize, the first new growth result is this: if recipes are combi-

nations of N ingredients, and if the number of ingredients processed by
the economy grows exponentially over time, then we no longer require
draws from a thick-tailed Pareto distribution. Combinatorial expansion
is so fast that we get enough draws from the thin-tailed exponential dis-
tribution to generate exponential growth in productivity.

C. The Weibull Distribution

A convenient shortcut allows us to generalize this result to other distri-
butions. For now, we show how it generalizes to the Weibull distribution,
as this will be particularly useful. In section IV, we will derive a necessary
and sufficient condition for combinatorial draws to generate exponen-
tial growth, precisely characterizing the generality.
Equation (10) states that the max from K draws of an exponential, di-

vided by log K, converges in probability to a constant. Now, consider the
Weibull distribution, F ðxÞ 5 1 2 e2xb

, and define y 5 xb. If x is distri-
buted as Weibull, then y is exponentially distributed. We can combine
this change of variables with the scaling result for an exponential:

max y

log K
→
p
Constant

⇒
max xb

log K
→
p
Constant

⇒
max x

ðlog K Þ1=b →
p
Constant:

(13)

That is, the maximum over K draws from a Weibull distribution grows as-
ymptotically as ðlog K Þ1=b. Assuming K 5 2N , the max grows with N 1=b,
and if N grows exponentially at rate gN, the growth rate of the max is as-
ymptotically given by

g weibull
Z 5

gN
b
: (14)

Intuitively, a higher value of b means a thinner tail of the Weibull distri-
bution—the exponential tail decays more rapidly. The growth rate of the
max is the growth rate of the number of ingredients deflated by b, the
rate at which ideas are getting harder to find. The Weibull distribution
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is to combinatorial growth what the Pareto distribution was to an expo-
nentially growing number of draws in Kortum (1997).

III. Growth Model

This section embeds the extreme value logic provided above into a basic
growthmodel. The setup is similar to Kortum (1997) except that we use a
thin-tailed search distribution and combinatorial growth in the number
of draws.

A. A Poisson Version of Theorem 1

We first state a corollary to theorem 1 that uses a Poisson assumption to
get the extreme value result for all t rather than as an asymptotic result. I
am grateful to Sam Kortum for suggesting it and outlining a derivation.
Corollary 1 (Poisson version of theorem 1). Let ZK denote themax-

imum over P independent draws from a distribution with tail cdf �F ðxÞ
that is strictly decreasing and continuous on its support, and suppose that
P is distributed as Poisson with parameter K. Then for 0 ≤ m < K and
when P > 0 (so there are observations over which to take the max),

Pr K �F ðZK Þ ≥ m½ � 5 e2m 2 e2K

1 2 e2K : (15)

Proof.—See the appendix.
In the corollary, notice that the e2K term appears because Pr½P 5 0� 5

e2K and Pr½P > 0� 5 1 2 e2K—the max exists only once P > 0. Also, no-
tice that as K →∞, we get the pure exponential distribution, as in theo-
rem 1. The advantage of this Poisson version is that it applies for any K,
not just asymptotically. Therefore, we can average over a continuum of
sectors to get rid of the randomness and then use continuous-time meth-
ods for the growth theory, which simplifies the presentation.

B. The Environment

The economic environment for the full growthmodel is shown in table 1.
The setup embeds combinatorial draws from a Weibull distribution into
a continuous-time growth framework.
Aggregate output is a constant elasticity of substitution (CES) combi-

nation of a unit measure of varieties, as in equation (16). The production
of each variety is given by (17). Each variety is produced using a different
recipe from the cookbook. A recipe uses Mit ≤ Nt ingredients that com-
bine in a CES fashion, and one unit of each ingredient can be produced
with one worker, as in equation (18). TheM21=r

it term in (17) is a Benassy
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(1996)-type term that neutralizes the standard love-of-variety effect so
that recipes that usemore ingredients are neither better nor worse inher-
ently. Instead, the productivity of a recipe is captured completely by its
productivity index, zic.
Let ~Kit denote the number of recipes in the cookbook for variety i at

date t. Rather than ~Kit being given directly by Kt, we assume that ~Kit is in-
stead a Poisson random variable with parameter Kt and is independent
across varieties.3 As explained in corollary 1, introducing this bit of ran-
domness has technical value in that the extreme value theorem applies
for all Kt rather than asymptotically. Because we have a continuum of va-
rieties with unit measure, the aggregate number of recipes is given by the
mean of the Poisson distribution and therefore equals Kt at each point
in time.
Each recipe has a productivity that is i.i.d. with z ∼ F ðxÞ. For now, we

assume that the draws are from a Weibull distribution; in section III.C,
we will explain how this generalizes.
The Poisson parameter governing the evolution of recipes in the cook-

book exhibits combinatorial growth, as defined earlier. That is, Kt 5 2Nt ,
where Nt will (eventually) grow at a constant exponential rate. Research-
ers add ingredients to the cookbook and learn the productivities associ-
ated with the new recipes. With Rt as the measure of researchers, _Nt 5
aR l

t N
f
t is the flow of new ingredients whose recipes get evaluated each pe-

riod, where l > 0 and f < 1, as in Jones (1995). The parameter l allows for
“stepping on toes” effects such as duplication, for example, if l < 1. The pa-
rameter f allows for intertemporal spillovers: as researchers evaluate more
ingredients over time, it can get easier via “standing on shoulders” effects
(f > 0) or possibly harder because of “fishing out” effects (f < 0).

3 More precisely, the number of recipes added to the cookbook for variety i between
date t and date t 1 s is a Poisson process with arrival rate Kt1s 2 Kt , which, given the addi-
tivity of Poisson processes, delivers the statement in the main text.

TABLE 1
Economic Environment

Equation
Equation
Number

Aggregate output Yt 5 ðÐ 1

0 Y
ðj21Þ=j
it diÞj=ðj21Þ with j > 1 (16)

Variety i output Yit 5 ZKitðM21=r
it oMit

j51x
ðr21Þ=r
ijt Þr=ðr21Þ with r > 1 (17)

Production of ingredients xijt 5 Lijt (18)
Best recipe ZKit 5 maxc51, ::: ,~Kit

zic ,  where  ~K it ∼ PoissonðKtÞ (19)
Weibull distribution of zic zic ∼ F ðxÞ 5 1 2 e2xb

(20)
Number of ingredients evaluated _Nt 5 aRl

t N
f
t , f < 1 (21)

Number of recipes Kt 5 2Nt (22)
Resource constraint:
Workers Lit 5 oMit

j51Lijt  and 
Ð 1

0 Litdi 5 Lyt (23)
R&D Rt 1 Lyt 5 Lt (24)

Population growth (exogenous) Lt 5 L0eg L t (25)
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The remainder of table 1 gives the resource constraints for the econ-
omy. In short, the sum of all the workers and the researchers is equal to
the total population, of measure Lt. And there is exponential population
growth at a constant rate gL.
Does the idea distribution shift out over time?—The model is built around

the assumption that there is a single fixed distribution �F ðxÞ that deter-
mines the productivity of all recipes. At some philosophical level, this
is arguably a plausible assumption: the space of past, current, and future
technologies is a set of recipes and each technology is associated with
some productivity. Let �F ðxÞ be the distribution of these productivities.
When one asks about a shifting distribution, what one really has in

mind is that ideas are discovered in some order: it would have been in-
conceivable that the smartphonewas discoveredbefore telephones, radio,
and semiconductors. To see how this is already implicitly incorporated
here, recall that new ideas are themselves potential ingredients for future
recipes. Then the telephone and semiconductors must be invented be-
fore the smartphone even though the underlying distribution of possible
technologies does not shift.4

C. Solving the Model

To keep things simple, we consider the allocation that maximizes Yt at
each point in time with a fixed rule of thumb allocation of people be-
tween research and working: Rt 5 �sLt .
The symmetry in equations (17) and (18) imply that it is efficient to

use the same quantity of each ingredient, so that

xijt 5 xit 5
Lit

Mit

:

Substituting this into the production function in (17) gives

Yit 5 ZKitLit : (26)

Given a number of workers Lyt 5 ð1 2 �sÞLt , the allocation that maxi-
mizes Yt solves

max
Litf g

Yt 5

ð1

0

ZKitLitð Þ j21ð Þ=jdi

� �j= j21ð Þ
(27)

subject to
Ð 1

0 Litdi 5 Lyt . The solution to this standardCESproblem is given
by

4 Alternatively, it would be easy to incorporate a shifting distribution as in Kortum
(1997).
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Yt 5 ZKtð1 2 �sÞLt ,  where (28)

ZKt 5

ð1

0

Z j21
Kit di

� �1= j21ð Þ
: (29)

Turning to the research side of the model, we have

_Nt

Nt

5
aRl

t

N 12f
t

5
að�sLtÞl
N 12f

t

:

This stable differential equation implies a constant asymptotic growth
rate for Nt. In that case, the ratio on the right-hand side of the equation
must be constant, which implies that the numerator and denominator
grow at the same rate. Therefore,

gN ; lim
t →∞

_Nt

Nt

5
lgL

1 2 f
: (30)

Given the combinatorial growth process, we then have

glog K 5 gN 5
lgL

1 2 f
,

and therefore Kt goes to infinity as a double exponential process.
Combining corollary 1 with the Weibull distribution �F ðxÞ 5 e2xb

gives

K �F ðZKiÞ 5 ε,

Ke2Z b

Ki 5 ε,

⇒ log K 2 Z b
Ki 5 log ε,

⇒ ZKi 5 ðlog K 2 log εÞ1=b,

⇒ ZKi 5 ðlog K Þ1=b 1 2
log ε

log K

� �1=b

,

(31)

where ε ∼ GðεÞ and G(ε) is the normalized exponential distribution from
corollary 1, with 0 ≤ ε < K .
Now we can integrate across the different sectors—and change the var-

iable of integration to ε—to get aggregate productivity. Recall that a frac-
tion e2K of our sectors will not have received any draws from the Poisson
process; we assume that their productivity is zero. The remaining 1 2 e2K

receive draws, so their productivity in characterized by equation (31)
above. Therefore,
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ZKt 5

ð1

0

Z j21
Kit di

� �1= j21ð Þ
 

5 e2K ⋅ 0 1 ð1 2 e2K ÞðlogK Þðj21Þ=b
ð

1 2
log ε

log K

� � j21ð Þ=b
dGðεÞ

� 	1= j21ð Þ

 

5 ðlogK Þ1=b ð1 2 e2K Þ
ð

1 2
log ε

log K

� �ðj21Þ=b
dGðεÞ

� �1= j21ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
; hðK Þ

 

5 ðlogK Þ1=b hðK Þ,  

(32)

where h(K) is a particular moment of the G(ε) distribution that depends
on K. More importantly, notice that h(K) converges to one as K goes to
infinity and therefore

gZ ; lim
K →∞

_ZKt

ZKt

5
glog K
b

5
gN
b

and

gy 5 gZ 5
gN
b

5
1

b

lgL
1 2 f

:

As was suggested by the basic statistical model, we have a setting where
output per person, y ; Y =L, grows exponentially. Valuable new ideas get
increasingly hard to find over time at a rate that depends on b, the param-
eter governing the thinness of the tail of theWeibull distribution.But com-
binatorial growth in the number of recipes, driven by population growth
in the number of researchers, offsets the thinness of the tail and produces
exponential growth in incomes. Interestingly, this formulation simulta-
neously allows for both “ideas get harder to find” via b and “standing on
the shoulders of giants” if f > 0.

IV. Generalizing to Other Distributions

In sections II–III, we characterized the asymptotic growth rate of ZK when
the underlying distribution was Pareto, exponential, or Weibull. In this
section, we explain how these results generalize.

A. Relationship with Extreme Value Theory

The classic results in extreme value theory take the following form: let
aK > 0 and bK be normalizing sequences that depend only on K. If
ðZK 2 bK Þ=aK converges in distribution, then it converges to one of three

(33)
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types, two of which are the Fréchet and the Gumbel mentioned above.
Moreover, this convergence occurs if and only if the tail of the distribu-
tion behaves in particular ways. In other words, the theorem requires
strong assumptions on the underlying F(x). This featured prominently
in Kortum (1997) and is given textbook treatment by Galambos (1978),
Johnson, Kotz, and Balakrishnan (1995), Embrechts, Mikosch, and Klüp-
pelberg (1997), de Haan and Ferreira (2006), and Resnick (2008).
Interestingly, the result that K �F ðZK Þ converges in distribution to an ex-

ponential, as shown in theorem 1, does not require any such assump-
tions. In particular, essentially all we assumed is that the distribution func-
tion is continuous and invertible. At some level of course, this is not
surprising: we are applying the distribution function �F ð⋅Þ itself to the
max, and this undoes the role playedby thedistribution in the convergence.

B. A General Condition for Combinatorial Growth

Up to this point, we have shown that the exponential and Weibull distri-
butions lead combinatorial growth in the number of draws to produce
exponential growth in the max extreme value. In this section and sec-
tion IV.C, we explain how this result generalizes. We begin by character-
izing the set of distributions such that this is true.
Theorem 2 (A general condition for combinatorial growth). Con-

sider the growth model of section III but with zi ∼ F ðzÞ as a general con-
tinuous and unbounded distribution, where F(⋅) is monotone and differ-
entiable on its support [z 0, ∞), with z 0 ≥ 0. Let h(x) denote the elasticity
of the tail cdf �F ðxÞ; that is, hðxÞ ; 2d log �F ðxÞ=d log x. Then

lim
t →∞

_ZKt

ZKt

5
gN
a

(34)

if and only if

lim
x →∞

hðxÞ
xa 5 Constant > 0 (35)

for some a > 0.
Proof.—See appendix B.
It has long been appreciated that constant exponential growth requires

power functions, and this result shows that combinatorial growth is no dif-
ferent. The set of distributions that lead to constant exponential growth in
the max when draws are combinatorial is the set for which the elasticity of
the tail cdf is asymptotically a power function; that is, the elasticity of the
elasticity (the superelasticity?) is itself asymptotically constant.5

5 Klenow and Willis (2016) consider demand functions with this property.
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Some remarks and examples are helpful to understand this result.
First, consider the Kortum (1997) result, where the upper tail must be
equivalent to a Pareto distribution. For Pareto, �F ðxÞ 5 x2a, so hðxÞ 5 a;
the elasticity itself is constant. Combinatorial growth moves the constant
elasticity down a log derivative. For example, consider the Weibull distri-
bution with �F ðxÞ 5 e2xb

. In this case, it is straightforward to show that
hðxÞ 5 bxb; the exponential distribution is the same with b 5 1.
Another useful example is the standard normal distribution, which

has tail cdf �F ðxÞ 5 1 2 ð1= ffiffiffiffiffiffi
2p

p ÞÐ x

2∞e
2u2=2du. The similarity between the

normal and the Weibull with b 5 2 is suggested by the fact that the tail
of a normal falls with e2x2

and the tail of a Weibull falls with e2xb

. In fact,
h(x) behaves like x2 asymptotically in the normal case, just like the
Weibull with b 5 2. Therefore, the max over K draws from a normal rises
with ðlog K Þ1=2, and combinatorial draws from a normal distribution lead
to exponential growth at the rate gN=2.6

Next, consider a generalized Weibull distribution with �F ðxÞ 5 xge2xb

.
In this case, hðxÞ 5 bxb 2 g, which is asymptotically a power function
with parameter b once again. Or generalizing a different way, suppose
�F ðxÞ 5 e2ðxb1xgÞ, where b > g. It is straightforward to show that the asymp-
totic power exponent is again just b.
Familiar examples of distributions in this class include the normal, the

exponential, theWeibull, the Gumbel, the logistic, and the gamma distri-
butions. Additional less familiar examples are provided in section IV.C.
One final remark about theorem 2 is helpful in putting the result into

context. There is nothing essential about the number 2 in the expression
K 5 2N for generating the result (though it is of course valuable for the
combinatorial interpretation). Instead, for example, we could make the
base e itself so that Kt 5 ee

nt

and the tail of �F continues to behave like e2xa

.
Compare this with Kortum (1997), where Kt 5 ent and �F looks like x2a.
We are making the tail exponentially thinner but marching down this
thin tail exponentially faster. It just so happens that many conventional
distributions have precisely this kind of thin tail, and combinatorial
growth is an intuitive example of this double exponential growth.

C. Scaling and Growth for Other Distributions

Section IV.B characterized the class of distributions for which combina-
torial growth in draws leads to exponential growth in the extreme value.

6 For the standard normal distribution, hðxÞ 5 xe2x2=2= �F ðxÞ (where we ignore the 1= ffiffiffiffiffiffi
2p

p
since it does not affect the elasticity). Then hðxÞ=x2 5 e2x2=2=ðx �F ðxÞÞ, and one use of
L’Hôpital’s rule verifies that this has a constant limit as x →∞. (The result uses the fact that
hðxÞ→∞ for the normal.)
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We now consider some other distributions and use theorem 1 to charac-
terize the max.
First, consider the lognormal distribution. In that case, log x has a nor-

mal distribution. Using the change of variables method and the normal
scaling discussed above, we obtain

max log x

ðlogK Þ1=2 →
p
Constant

⇒
max x

expð ffiffiffiffiffiffiffiffiffiffiffiffi
log K

p Þ →
p
Constant :

That is, the max grows with expð ffiffiffiffiffiffiffiffiffiffiffiffi
log K

p Þ. If K 5 2N and N itself grows
exponentially, then the max grows with expð ffiffiffiffiffi

N
p Þ and gZ 5 1=2 ⋅ gN

ffiffiffiffiffi
N

p
,

so the growth rate itself grows exponentially.
This is an important and perhaps slightly surprising finding: not all

thin-tailed distributions give rise to exponential growth when draws are
combinatoric. When x is drawn from a normal distribution, exponential
growth emerges. But when log x is drawn from a normal distribution, the
tails are now too thick: we are drawing proportional increments from the
normal and those proportional increments grow exponentially, which
delivers faster than exponential growth. This same logic applies to other
cases: if we find a distribution for which the max x grows as a power func-
tion of logK, then if log x is drawn from that same distribution, its tail will
be too thick and combinatorial growth in K will cause the max to explode.7

However, one can calculate the growth rate of K that is required to pro-
duce exponential growth in ZK in the lognormal case. Because the max
grows with expð ffiffiffiffiffiffiffiffiffiffiffiffi

log K
p Þ, we need

ffiffiffiffiffiffiffiffiffiffiffiffi
log K

p
5 gt and therefore log K 5

ðgtÞ2 or Kt 5 exp ðgtÞ2: the number of draws grows faster than exponen-
tially but slower than combinatorially.
Our next instructive example features tails that are thinner than the

class of exponential-like distributions. Consider the Gompertz distribu-
tion, which is commonly used by demographers tomodel life expectancy.
Its distribution function is F ðxÞ 5 1 2 expð2ðebx 2 1ÞÞ so that its tail is
�F ðxÞ 5 expð2ðebx 2 1ÞÞ. In other words, the exponential tail of the distri-
bution itself falls off exponentially as e bx rather than as a power function
like xb in the Weibull case. The change of variables method works here:
assume that y is exponentially distributed, and let y 5 ebx 2 1 so that x
has a Gompertz distribution. Then

7 To see another interesting application of this fact, suppose that log x is drawn from an
exponential distribution. Notice that this is equivalent to x being drawn from a Pareto dis-
tribution. Exponential growth in K delivers exponential growth in the max, as in Kortum
(1997). Therefore, combinatorial draws will lead to explosive growth.
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max y

logK
→
p
Constant

⇒
max ebx 2 1

log K
→
p
Constant

⇒
max ebx

log K
→
p
Constant

⇒
max x

1=bð Þ logðlog K Þ →
p
Constant:

In this case, the max grows with log(log K). Exponential growth in the
max requires log(log K) to grow exponentially. Even combinatorial ex-
pansion is not enough: if K 5 2N , the max grows with log N, and expo-
nential growth in N yields arithmetic (linear) growth in the max.
Another distribution that features a double exponential is the Gumbel

distribution itself, F ðxÞ 5 e2e2x

. However, notice that the Gumbel distri-
bution is tail equivalent to the exponential distribution. That is, for x
large, e2e2x

≈ 1 2 e2x , so the Gumbel has an exponential upper tail. For
this reason, the max grows directly with log K, just like the exponential.

1. Microfoundations for Romer (1990)

There is a final special case worth considering. One of the interesting
findings in Kortum (1997) is that in his setup, there did not exist a sta-
tionary distribution from which a constant number of draws each period
leads to exponential growth in the max. In other words, in Kortum’s en-
vironment, there was no microfoundation for the Romer (1990) model,
in which a constant population leads to exponential growth. However,
this turns out to result from the fact that Kortum restricted his setup to
one in which the classic extreme value theorem applies (i.e., that an af-
fine transformation of the max converges in distribution). The alterna-
tive approach here can be used to derive just such a microfoundation.
Suppose that y is drawn from a Pareto distribution. Let y 5 log x, and

let us say that x has a log-Pareto distribution (analogous to the lognor-
mal): F ðxÞ 5 1 2 1=ðlog xÞa and �F ðxÞ 5 1=ðlog xÞa. We could use the
change of variables method to get the scaling immediately, but it is even
more instructive to go back to equation (5):

K �F ðZK Þ 5 ε 1 opð1Þ

⇒
K

ðlog ZK Þa 5 ε 1 opð1Þ

⇒
log ZK

K 1=a
5

1

ε 1 opð1Þ
� �1=a

:

(36)
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Next, because ε is distributed as exponential with mean 1, ε21=a is a Fré-
chet random variable with parameter a.8 Using this fact in equation (36)
gives

log ZK

K 1=a
∼a FréchetðaÞ, (37)

and therefore

log ZK 5 K 1=að~ε 1 opð1ÞÞ, (38)

where ~ε is a Fréchet random variable with parameter a.
To see the microfoundations for Romer (1990), suppose ΔKt 5 bL,

whereL is a constant population. ThenKt 5 K0 1 gt grows linearly where
g ; bL and—if a 5 1—log ZK will grow linearly as well, apart from the
shocks, which delivers exponential growth in ZK.9 In other words, if our
productivity draws are log-Pareto distributed with the Pareto parameter
equal to 1, we get a microfoundation for the Romer (1990) model.
It is interesting to contrast this result with Kortum (1997). Kortum found

that standard extreme value theory could not provide a microfoundation
for Romer (1990). Looking at equation (36), we can see why: to get a sta-
tionary distribution, we need to take the natural logarithm of ZK. This is a
nonlinear transformation rather than an affine transformation and there-
fore does not fit the framework of the standard extreme value theory.
Finally, it is worth noting that the microfoundation of the Romer case

leads to several counterfactual predictions. For example, according to
equation (37), the log of productivity, not the level, would have a Fréchet
distribution and therefore a Pareto upper tail. This implies much more
inequality in the firm size distribution than we observe (see Axtell 2001;
Luttmer 2010). In addition, ifK rises linearly, then the variance of log pro-
ductivity would increase over time.10 But even that prediction is more
complicated than it first appears: for a 5 1, neither themean nor the var-
iance of the Fréchet distribution for ~ε exists; the tail of the distribution is

8 Since ε has an exponential distribution with a mean equal to 1,

e2m 5 Pr½ε ≥ m�

5 Pr
1

ε
≤

1

m

� 	

5 Pr
1

ε

� �1=a

≤
1

m

� �1=a� 	
:

Now let y ; ε21=a and x ; m21=a so that m 5 x2a. With these substitutions, we have

Pr½ y ≤ x� 5 e2x2a

:

9 The Fréchet distribution now shocks the growth rate, and for a 5 1, the tail of the
Fréchet distribution is so thick that the mean of these shocks does not exist.

10 For this to hold, suppose a > 2, so the variance of the Fréchet distribution exists.
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too thick. All of this is to say that I see the microfoundations for the
Romer case as an interesting illustration of the technique, not as provid-
ing a realistic model of growth.

2. Summary

These results are collected together in table 2. In particular, they show
how the max ZK scales as a function of K.
In Kortum (1997), an exponentially growing number of draws from

any distribution in the Fréchet domain of attraction leads to exponential
growth in themax. Onemight have conjectured that combinatorial growth
would work the same way. In particular, a natural guess is that all distribu-
tions in the basin of attraction of the Gumbel distribution could deliver
exponential growth in productivity when the number of draws grows
combinatorially. This guess turns out to be wrong. The set of distributions
in the Gumbel basin of attraction is large and includes slightly thick tails
like the lognormal; thin tails like the normal, exponential, gamma, and
the Gumbel itself; as well as even thinner tails, like the Gompertz. Only
the intermediate class delivers exponential growth in the max for combi-
natorially growing draws.

V. Evidence

One of the facts that Kortum (1997) sought to explain was the time series
of patents in the United States. In particular, Kortum emphasized the rel-
ative stability of patents: the number of patents granted to US inventors
in 1915, 1950, and 1985 was roughly the same, around 40,000. In his
setup, each new patent is on average a proportional improvement on

TABLE 2
Scaling of Z

K
for Various Distributions

Distribution
cdf
(1)

bK
(2)

bK(N )
for K 5 2N

(3)

Growth Rate
for K 5 2N

(4)

Exponential 1 2 e2vx log K N gN
Gumbel e2e2x

log K N gN
Weibull 1 2 e2xb

(log K )1/b N 1/b gN
b

Normal 1ffiffiffiffi
2p

p
Ð
e2x2=2dx (log K )1/2

ffiffiffiffiffi
N

p gN
2

Lognormal 1ffiffiffiffi
2p

p
Ð
e2ðlog xÞ2=2dx expð ffiffiffiffiffiffiffiffiffiffiffiffi

logK
p Þ e

ffiffiffi
N

p gN
2 ⋅

ffiffiffiffiffi
N

p

Gompertz 1 2 expð2ðebx 2 1ÞÞ 1
b
logðlogK Þ 1

b
logN Arithmetic

Log-Pareto 1 2 1
ðlog xÞa exp(K 1/a) . . . . . .

Note.—In all rows except the final one, ZK=bK →
p
Constant. The final row is more subtle,

as discussed in the main text. Columns 3 and 4 focus on the combinatorial case. Column 3
translates this into scaling with N for K 5 2N (ignoring some multiplicative constants).
Column 4 shows the asymptotic growth rate of ZK if N(t) grows exponentially at rate gN.
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the previous state of the art, so a constant flow of new patents generates
stable exponential growth.
To see this point, we first have to define what we mean by a patent or a

valuable new idea in the model. We follow Kortum (1997) in defining
the flow of new patents as the flow of new ideas that are improvements
over the state of the art. Recall the intuition we developed for theorem 1
back in equation (6). In particular, the probability that a new idea ex-
ceeds the current frontier is 1=K on average:

�F ðZK Þ 5 1

K
ðε 1 opð1ÞÞ : (39)

What does this imply about the flow of patents in the growth model?
With _Kt new ideas being discovered at date t and the fraction 1=Kt ex-
ceeding the frontier, the time series of patents in the model is on average
_Kt=Kt . This is precisely the logic in Kortum (1997), and it is therefore
easy to see how the flow of patents could be constant in that setup. With
the Pareto distribution, ideas are large—proportional improvements—
so a constant flow of new patents can generate exponential growth.
In the combinatorial model, however, this quantity is not constant. In-

stead, first consider themodel in which _Nt 5 aRt (i.e., l 5 1 and f 5 0):

Kt 5 2Nt

⇒
_Kt

Kt

5 log 2 ⋅ _Nt

5 log 2 ⋅ aRt

5 log 2 ⋅ a�sL0e
gLt :

(40)

That is, the number of new patents in the combinatorial model grows ex-
ponentially over time. In fact, the number of patents per researcher
would actually be constant in this case. More generally, if one allows for
l ≠ 1 or f ≠ 0, the number of patents will (asymptotically) exhibit expo-
nential growth and the number of patents per researcher can either de-
cline or increase over time.11

The intuition for this result is straightforward: because of the thin tail
of the probability distribution, the typical new patent is only slightly bet-
ter than the previous state of the art: ideas are small on average. Exponen-
tial growth in productivity requires us tomarch down the tail very quickly.
Because new ideas are small, we need an exponentially growing number

11 Kogan et al. (2017) document that patents per capita were relatively stationary be-
tween 1930 and 1990 but have risen since then. The pre-1990 evidence would be consistent
with the combinatorial model with f 5 0, while the period since 1990 is more consistent
with f > 0.

recipes and economic growth 2015



of them to increase productivity proportionally, and this corresponds to
exponential growth in the flow of patents in the model.
In summary, the Kortum (1997) setup implies that the flow of new pat-

ents will be constant. The combinatorial model instead implies that the
flow of new patents will rise exponentially. What does the evidence say?
Figure 1 shows the time series for patents granted by the US Patent Of-

fice both in total (i.e., including foreign inventors) and to US inventors
only. Far from being constant, the patent series viewed from the perspec-
tive of today looks muchmore like a series that itself exhibits exponential
growth. This is especially true for the “Total” series, which is surely the
most relevant: growth in a country depends on ideas that are used there,
regardless of where they are invented. Put differently, in the Kortum (1997)
setup, the rise in patents in the United States would imply an eightfold
increase in the rate of economic growth, something we certainly do not
see in the data.
One resolution is that perhaps the meaning of a patent has changed

over time. Legal reforms and other changes may imply that a patent in
2020 is not the same as a patent in 1980 (Kortum and Lerner 1998; Hall
and Ziedonis 2001); if they are not comparable, then one cannot view
this graph as telling us about the behavior of ideas over time. Perhaps
a true series for new ideas is actually constant.
Kelly et al. (2021) usemachine learningmethods on the text of patents

tomeasure breakthrough patents, defined as those that are novel relative

FIG. 1.—Patents granted by US Patent and Trademark Office. Source: US Patent and
Trademark Office (2020).
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to previous patents and that are related to subsequent innovations. One
might suppose that breakthrough ideas would be patented under both
the pre-1980 and post-1980 regimes, so this is one way to address these
concerns. Their aggregate time series for breakthrough patents is shown
in figure 2. Two things stand out. First, the time series is far from constant.
For example, between 1900 and 1980, the number of breakthrough pat-
ents rises by a factor of 4, and over the entire century, the flow of break-
through patents increases by more than a factor of 20. That is, break-
through patents look very different from the constant that is implied by
Kortum (1997). On the otherhand, the time series does not exhibit stable
exponential growth. Instead, it rises steadily between 1900 and the end of
the 1930s before plummeting duringWorldWar II. It is then relatively sta-
ble between 1950 and 1980 before rising sharply after 1980 (by something
like a factor of 8 between 1980 and 2002). Long and variable lags andmea-
surement issues are surely relevant; otherwise, it is hard to understand the
stability of gross domestic product per-person growth rates during the
twentieth century.
Another important factor is of course the rise of computers and infor-

mation technology. For example, the growth rate of breakthrough pat-
ents from figure 2 between 1950 and 2002 is 3.9% per year. In part, this
reflects an extraordinary growth rate in computers/electronics of 9.1%
per year. Nevertheless, even omitting computers/electronics entirely, the
growth rate of the remaining breakthrough patents still averages 2.0%
per year since 1950.

FIG. 2.—Breakthrough patents from Kelly et al. (2021). Source: author’s calculations us-
ing data from Kelly et al. (2021).
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Figure 3 shows related evidence by plotting the average annual growth
rate of patents granted by the US Patent and Trademark Office for 129
technology classes over the period 1950–90, that is, before the explosion
of patenting associated with legal changes. Only eight of the technology
classes show declines in patenting over this period, and this is primarily in
classes related to industries that are either in decline or offshored, such as
leather/pelts (C14), railways (B61), and textile treatments (D06). The
other 121 classes show positive and typically substantial rates of growth
in patenting; the weighted average of the growth rates is 3.6% per year.
Including more recent data (not shown) would only reinforce this point:
between 1950 and 2019, only a single technology class (leather/pelts
[C14]) displays a decline in patenting.
Alternatively, we can also consider a different measure of innovation:

academic publications. Figure 4 shows that exponential growth also char-
acterizes annual publication counts. Depending on the measure used,
publications grew at between 3.3% and 4.4% per year, increasing overall
by a factor of between 5 and 9 since 1970.
While none of these measures is perfect—and indeed, one drawback

of the innovation literature is that we do not have solid measures of

FIG. 3.—US patent growth by technology class, 1950–90. The vertical axis shows the av-
erage annual growth rate of patents granted by the US Patent and Trademark Office for
129 technology classes. The horizontal axis shows the corresponding number of patents
granted in the year 1970. Source: author’s calculation using data provided by Amit Seru.

2018 journal of political economy



innovation—they all suggest that valuable new ideas may well be charac-
terized as growing over time rather than being constant. Though more
work and better idea measures are surely needed, the basic evidence ap-
pears to bemore consistent with the combinatorial model with thin-tailed
distributions rather than the Kortum (1997) model.
Can researchers evaluate a combinatorially growing number of recipes?—This

is now a good place to discuss one of the features of the model that might
raise a question. An implication of our setup is that researchers are eval-
uating the productivity of a rapidly increasing number of recipes over
time: they each evaluate the recipes associated with, say, a new ingredi-
ents each period, but the number of recipes that can be formed from
the new and existing number of ingredients grows combinatorially. Is
it possible for researchers to evaluate a combinatorially growing number
of recipes to find the best one?
We have several responses to this question. The first is the empirical

evidence provided above: the combinatorial process leads to exponen-
tial growth in valuable new ideas, which is a good description of the data
itself. Second, andmore philosophically, perhaps it is only the truly good
ideas that take time to evaluate: Akerlof ’s chicken ice cream can be dis-
carded quickly. Chess grandmasters sort through combinatorially grow-
ing lines of play with remarkable speed and often find the best move ac-
cording to computers that search billions of moves per second (Sadler

FIG. 4.—Annual academic publication counts, 1970–2020. CAGR5 cumulative average
annual growth rate over the period. Source: author’s calculations using Google Scholar
(2021), Scopus (2021), and Web of Science (2021).
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and Regan 2019). The number of truly new ideas grows exponentially
precisely with the number of researchers in equation (40), so each re-
searcher would need to devote time to a constant number of new ideas,
which seems reasonable.12 Finally, Jones (2009) and Pearce (2022) show
that the size of research teams has been rising over time, and Akcigit,
Kerr, and Pearce (2022) show that the number of technologies combined
in each patent has also been rising over time. Perhaps these two trends
are related: it requires larger teams to successfully evaluate the productiv-
ity of the best recipes. In the context of the model here, this would be
consistent with f < 0.

VI. Discussion and Further Connections
to the Literature

This section explores various implications of the setup and connections
to the literature.

A. Markets, Markups, and the Cross Section Distribution
of Productivity

This paper takes a shortcut in considering the allocation of resources by
focusing on an allocation with a constant fraction of labor engaged in re-
search and with the allocation of the remaining workers across varieties
set to maximize output. It would definitely be valuable to study the mar-
ket allocation as well as the equilibrium distribution of markups and pro-
ductivities across varieties. Letmemake a few observations about why that
is even more interesting than it first appears and a valuable direction for
future research.
First, recall that in Kortum (1997), the distribution of productivity

across varieties is Fréchet. This is hinted at in equation (7). With thin-
tailed distributions like the exponential or normal, the distribution of
themax is asymptotically Gumbel. An example of this is provided in equa-
tion (9), repeated here:

12 The mathematician Henri Poincaré ([1910] 2000, 88) advocates this view: “To in-
vent, I have said, is to choose; but the word is perhaps not wholly exact. It makes one think
of a purchaser before whom are displayed a large number of samples, and who examines
them, one after the other, to make a choice. Here the samples would be so numerous that a
whole lifetime would not suffice to examine them. This is not the actual state of things. The
sterile combinations do not even present themselves to the mind of the inventor. Never in
the field of his consciousness do combinations appear that are not really useful, except
some that he rejects but which have to some extent the characteristics of useful combina-
tions. All goes on as if the inventor were an examiner for the second degree who would
only have to question the candidates who had passed a previous examination.” I thankMatt
Clancy for this reference.
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ZK

log K
5

1

v
1 2

logðε 1 opð1ÞÞ
log K

� �
:

Recall that ε is an exponentially distributed random variable, so log εhas a
Gumbel distribution. In other words, the cross section distribution of
productivity in this setup is Gumbel instead of Fréchet. However, a close
look at the equation reveals that this is not the end of the story. In partic-
ular, theGumbel random variable is divided by logK, so that over time, the
variance of detrended log productivity shrinks to zero. In other words,
while the Kortum (1997) setup provides microfoundations for heteroge-
neity in productivity, a model with draws from a thin-tailed distribution
does not, at least not in the long run. Evidently, if the combinatorial frame-
work is correct, one needs a different theory of heterogeneity in produc-
tivity across firms and varieties.
This same point repeats in other interesting ways. For example, now

consider the distribution of markups. When ideas are drawn from a
Pareto distribution, Kortum (1997) shows that ideas are “large.” As dis-
cussed above, a constant flow of patents can generate exponential growth
in productivity. This is because each new patent is, on average, a propor-
tional improvement over the preceding max. This proportionality gives
rise to a distribution of markups in which the average markup is also gov-
erned by the parameter of the Pareto distribution.
In contrast, when ideas are drawn from a thin-tailed distribution, as in

the combinatorial setup, we showed above that ideas are “small.” That is,
it requires exponential growth in the flow of patents to generate expo-
nential economic growth. Because ideas are small improvements, the
gap between ideas is small, and therefore so are markups. For example,
it is well known that for the exponential distribution with parameter v,
the expected gap between the maximum and the second-largest value
is 1=v. That is, additive gaps are constant, so proportional gaps are shrink-
ing at a rate that depends on log K.13

In other words, the Pareto distributions associated with Kortum (1997)
and a large literature that builds on that paper provides a theory of het-
erogeneous productivity and stable but heterogeneous markups. How-
ever, the combinatorial approach with thin-tailed distributions does not:
the distribution of productivity andmarkups would shrink over time. This
can be read as a shortcoming, but instead I think it is an opportunity. Per-
haps, motivated by the data on patents and ideas, the combinatorial ap-
proach is correct. This means that we need a new and richer theory of het-
erogeneous markups and productivity, because the idea distribution no
longer provides it.

13 For example, see Arnold, Balakrishnan, and Nagaraja (2008, 73), eq. (4.6.6).
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Finally, this brings us back to the market equilibrium. If markups were
determined by the gap between the most productive and second most
productive firm, proportional markups would fall to zero, causing the re-
turn to innovation shrink. Exponential growth in such an equilibrium
would decline rather than being constant because of the declining mark-
ups. This is another reason why having a richer equilibrium that delivers
stable markups is important. I verify (see app. C) that the optimal alloca-
tion features sustained exponential growth, so the problem is not with
the economic environment. Instead, the standard approach to setting
up an equilibrium seems destined to fail in that it would produce an al-
location that is far fromoptimal and does notmatch the facts aboutmark-
ups and productivity. A richer theory ofmarkups and creative destruction
in thin-tailed environments is a logical next step for future research.

B. Correlation

What if the draws from the search distribution �F ðxÞ are correlated for rec-
ipes that share many ingredients? This would be a useful extension to ex-
plore but is beyond the scope of the present paper. Most of the results in
the extreme value literature, for example, consider the independently
and identically distributed (i.i.d.) case. Still, broader results are possible.
For example, if the correlation dies off quickly, there are results related to
blocks of draws that can be viewed as i.i.d. In this sense, the result is likely
to generalize to cases with correlation.

C. Other Applications

Many papers in different literatures build on Kortum (1997) and assume
a distribution with a Pareto upper tail. Beyond economic growth, exam-
ples include the extensive literature on international trade following Ea-
ton and Kortum (2002) andmodels of heterogeneous productivity based
onHopenhayn (1992) andMelitz (2003). In each of these cases, it may be
productive to consider the combinatorial approach with thin-tailed dis-
tributions developed here.
Two more specific applications are worth noting. First are the labor

search models of Barlevy (2008) and Martellini and Menzio (2020).
The latter studies a search andmatchingmodel of the labormarket, seek-
ing to understand why technological progress in matching has not led to
trends in unemployment or vacancy rates. They show that if match qual-
ities are drawn from a Pareto distribution, then improvements in search
technologies—which would tend to increase the frequency ofmatching—
lead to perfectly offsetting effects that leave unemployment and vacancy
rates unchanged. In particular, better search technologies also raise work-
ers’ reservationquality because it is easier for workers tofindnewmatches.
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How would this work with combinatorial matching and thin-tailed
distributions?
Finally, a very interesting direction for future research is related to Lu-

cas and Moll (2014), Perla and Tonetti (2014), and the extensive litera-
ture that has built on these papers. The basic insight in these papers is
related to Kortum (1997): an exponentially growing number of draws (e.g.,
because of meetings between firms or people) from a Pareto distribution
can generate exponential growth and an evolving distribution of hetero-
geneous productivities. Can combinatorics and thin-tailed distributions
replace the continuum and Pareto assumptions underlying these papers?

D. Conclusion

In the end, the paper can be read in two ways. First, there is the “Weitz-
manmeets Kortum” interpretation: if we have the number of draws grow
combinatorially then we do not need thick-tailed Pareto distributions to
generate economic growth. Instead, draws from standard distributions
with thin exponential tails are sufficient. Second, there is a broader con-
tribution embodied in theorem 1. When we consider the max ZK over K
i.i.d. draws from a distribution with tail distribution function �F ðxÞ, the
transformed random variable K �F ðZK Þ asymptotically has an exponential
distribution under very weak conditions. This result can be used to char-
acterize the way in which the max ZK increases for any continuous distri-
bution �F ðxÞ and any time path of (large) K.

Data Availability

Code replicating the figures in this article can be found in Jones (2023)
in the Harvard Dataverse, https://dataverse.harvard.edu/dataset.xhtml
?persistentId5doi:10.7910/DVN/X0YWXF.

Appendix

A1. Proof of Corollary 1

Proof. Let Mp ; K �F ðZK Þ denote a new random variable, conditional on P 5 p.
Given that ZK is the max over P i.i.d. draws, exactly the same steps used in proving
theorem 1 give

Pr Mp ≥ m
� 

5 1 2
m

K

� �p

when p > 0.
Now we use the Poisson assumption to get the unconditional distribution. Im-

portantly, notice that it is only when the realized number of draws P is greater
than zero that the problem is well defined; if there are zero draws to consider,
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there is nothing to take the max over. Recall that Pr½P 5 p� 5 e2KK p=p ! so that
Pr½P 5 0� 5 e2K and Pr½P > 0� 5 1 2 e2K . Therefore, for 0 ≤ m < K ,

Pr K �F ðZK Þ ≥ m½ � 5 o
∞

p51

Pr Mp ≥ m
� 

⋅ Pr P 5 p jP > 0½ �

5 o
∞

p51

1 2
m

K

� �p

⋅
Pr P 5 p½ �
Pr P > 0½ �

5
1

Pr P > 0½ �o
∞

p51

1 2
m

K

� �p

⋅
e2KK p

p !

5
1

Pr P > 0½ � o
∞

p51

1 2
m

K

� �p

⋅
e2KK p

p !
1 e2K 2 e2K

" #

5
1

Pr P > 0½ � o
∞

p50

1 2
m

K

� �p

⋅
e2KK p

p !
2 e2K

" #

5
1

Pr P > 0½ � e2mo
∞

p50

e2K ð12m=K ÞðK ð1 2 m=K ÞÞp
p !

2 e2K

" #

5
e2m 2 e2K

1 2 e2K ,

where the last step uses the fact that the summation term is just the probability
that any number of events occurs for a Poisson distribution with parameterK ð1 2
m=K Þ, that is, the value of the cdf at infinity, which is equal to 1. QED

A2. Proof of Theorem 2

Here we prove theorem 2, which provides a necessary and sufficient condition
on the shape of the search distribution for combinatorial growth in the draws
to deliver exponential growth in the max extreme value.

A2.1. Lemma 1 and Its Proof

In proving this result, the following lemma is very helpful, as it allows us to go
back and forth between the elasticity of �F and the elasticity of �F 21. We will use
the notation ∼ to denote the following type of convergence: f ðxÞ ∼ xa is equiva-
lent to limx →∞f ðxÞ=xa 5 Constant.

Lemma 1. Let y 5 �F ðxÞ, where �F is a continuous, differentiable, and invert-
ible function. Then

2
d log �F ðxÞ
d log x

∼ xa

if and only if

2
d log �F 21ðyÞ

d log y
∼ ½ �F 21ðyÞ�2a

(recognizing that the relevant limits are as x →∞ and therefore y 5 �F ðxÞ→ 0).
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Proof. Let hðyÞ ; �F 21ðyÞ. Applying the function �F to both sides gives

y 5 �F ðhðyÞÞ,
log y 5 log �F ðhðyÞÞ,

d log y 5
d log �F ðhðyÞÞ
d log hðyÞ ⋅ d log hðyÞ:

Rearranging then gives

d log hðyÞ
d log y

5
d log �F ðhðyÞÞ
d log hðyÞ

� 	21

and therefore

d log �F 21ðyÞ
d log y

5
d log �F ðhðyÞÞ
d log hðyÞ

� 	21

:

Then the result is obvious. If 2d log �F ðxÞ=d log x ∼ xa, then 2d log �F 21ðyÞ=
d log y ∼ ½ �F 21ðyÞ�2a and vice versa since y 5 �F ðxÞ. QED

A2.2. Proof of Theorem 2

We are now ready to prove theorem 2.
Proof. By corollary 1, we have

Kt
�F ðZKitÞ 5 ε,

where ε ∼ GðεÞ and G(ε) is the normalized exponential distribution from corol-
lary 1, with 0 ≤ ε < K .

Inverting the distribution function and solving for ZKit gives

ZKit 5 �F 21 ε

Kt

� �
:

Recall the definition of aggregate productivity: ZKt is a power mean of the individ-
ual variety productivities. Changing the variable of integration from i to ε to take
advantage of the continuum of varieties and recalling that the fraction e2Kt of sec-
tors has zero Poisson draws and therefore zero productivity gives

Z j21
Kt 5 ð1 2 e2Kt Þ

ð
Z j21
K εt dGðεÞ

5 ð1 2 e2Kt Þ
ð

�F 21 ε

Kt

� �� 	j21

dGðεÞ:

To simplify the notation, define hðyÞ 5 �F 21ðyÞ. Taking logs and differentiating
both sides of the above equation with respect to time gives
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ðj 2 1Þ
_ZKt

ZKt

5
e2Kt

1 2 e2Kt

dKt

dt
1

j 2 1

Z j21
Kt

ð
h

ε

Kt

� �� 	j22

h0 ε

Kt

� �
2

ε

K 2
t

� �
dKt

dt
dGðεÞ

5
e2Kt

1 2 e2Kt

dKt

dt
1

j 2 1

Z j21
Kt

ð
h

ε

Kt

� �� 	j21

2
h0ðε=KtÞ ⋅ ε=Kt

hðε=KtÞ
� �

_Kt

Kt

dGðεÞ

5
e2Kt

1 2 e2Kt

dKt

dt
1

j 2 1

Z j21
Kt

ð
�F 21 ε

Kt

� �� 	j21

2
d log �F 21ðε=KtÞ
d logðε=KtÞ

� �
_Kt

Kt

dGðεÞ:

Rearranging the terms slightly and taking limits gives

lim
t →∞

_ZKt

ZKt

5

ð
lim

hðε=KtÞj21ð
hðε=KtÞj21dGðεÞ

⋅ lim 2
d log �F 21ðε=KtÞ
d logðε=KtÞ

� �
_Kt

Kt

dGðεÞ, (41)

where we have used the fact that e2Kt goes to zero to eliminate the first term.

A2.2.1. Only If. At this point, we are ready to consider the two directions

of the proof. We begin with the “only if ” portion. In particular, we can apply

lemma 1 to see that2ðd log �F 21ðε=K ÞÞ=ðd logðε=KtÞÞ ∼ �F 21ðε=KtÞ2a, which gives

lim
t →∞

_ZKt

ZKt

5

ð
lim

hðε=KtÞj21ð
hðε=KtÞj21dGðεÞ

⋅ lim
w _Kt=Kt

�F 21ðε=KtÞa dGðεÞ, (42)

where w is the limiting factor of proportionality from the elasticity term.
Now consider the limit of the second key term in equation (42) for each fixed

value of ε and use the combinatoric growth of Kt:

vt ;
w _Kt=Kt

�F 21ðε=KtÞa

5
w _Nt log 2
�F 21ðε=KtÞa

5 Constant
wegN t

�F 21ðε=KtÞa ,

where the last expression uses the fact thatNt grows at a constant exponential rate.14

By inspection, the limit of vt is∞=∞ as t →∞, so we apply L’Hôpital’s rule to get
the limit:

lim vt 5 lim Constant
wgN egN t

a �F 21ðε=KtÞa21ð �F 21Þ0ðε=KtÞ 2ε=K 2
tð Þ _Kt

5
gN
a

⋅ lim
ConstantegN t

_Kt=Kt

⋅ lim
w

½ �F 21ðε=KtÞ�a ⋅ 2 d log �F 21ðε=KtÞ
� �

= d logðε=KtÞð Þ� �
5

gN
a
,

where the last two terms in the penultimate equation each are equal to 1.

14 This is easiest in the case where Nt 5 N0egN t is just assumed but also holds exactly for
_N 5 aRt 5 a�sLt when l 5 1 and f 5 0 or asymptotically when l > 0 and f < 1.
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Finally, substituting this expression in for the limit of vt back into equation (42)
gives

lim
t →∞

_ZKt

ZKt

5
gN
a
lim

ð
hðε=KtÞj21ð

hðε=KtÞj21dGðεÞ
dGðεÞ

5
gN
a
:

That completes the “only if ” part of the proof.

A2.2.2. If. Now return to equation (41) for the “if ” direction: if

limð _ZKt=ZKtÞ 5 gN =a, then h(x) is asymptotically a power function with exponent

a. Applying this condition to (41) gives

gN
a

5

ð
lim

hðε=KtÞj21ð
hðε=KtÞj21dGðεÞ

⋅ lim 2
d log �F 21ðε=KtÞ
d logðε=KtÞ

� �
_Kt

Kt

dGðεÞ:

The first term on the right-hand side of this expression is a collection of weights

that integrate to a value of 1 for all Kt. Therefore, this term does not trend over

time. Since the left-hand side is constant, though, thismeans that the second term

on the right-hand side must also be constant. In particular, this means that the

elasticity termmust decline exponentially at the rate gN. Defining v(K ) to be this

elasticity, we have

vðK Þ ; 2
d log �F 21ðε=KtÞ
d logðε=KtÞ ,

and we require

vðK Þ
_Kt

Kt

→
gN
a
:

Now recall K 5 2N so that _Kt=Kt 5 _N log 2 and therefore

_Kt

Kt

a log K
5

_Nt log 2

aNt log 2

→
gN
a
:

Combining these last two expressions means that we require

vðK Þa log K → 1:

Let y ; ε=K for a fixed ε. Substituting into the previous expression gives

2
d log �F 21ðyÞ

d log y

� 	
2a log y½ �→ 1

since2log y= log K → 1 for a fixed ε.
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To finish the proof, we write this equation in terms of2log y, which is positive
since 0 < y < 1. We also switch to the ∼ version of this equation (being sure to keep
a since the convergence is to 1 rather than to any constant) and then integrate:

d log �F 21ðyÞ
dð2 log yÞ ∼

1

a
⋅

1

ð2 log yÞ

⇒ d log �F 21ðyÞ ∼
1

a
⋅
dð2 log yÞ
ð2 log yÞ

⇒
ð
d log �F 21ðyÞ ∼

1

a
⋅
ð
dð2 log yÞ
ð2 log yÞ

⇒ log �F 21ðyÞ ∼ Constant 1
1

a
logð2 log yÞ

⇒ �F 21ðyÞ ∼ Constant e logð2 log yÞ� 1=a
⇒ x ∼ ð2 log yÞ1=a

⇒ 2 log y ∼ xa

⇒ 2 log �F ðxÞ ∼ xa

⇒ 2
d log �F ðxÞ

dx
∼ axa21

⇒ 2
d log �F ðxÞ
d log x

∼ xa,

where we use the notation y 5 �F ðxÞ and take advantage of the ∼ notation to drop
the (positive) constants whenever convenient. QED

A3. The Optimal Allocation

In this section, we characterize the optimal allocation for the economic environ-
ment in table 1 and show that it features an asymptotic balanced growth path with
an interior solution for the fraction of labor devoted to R&D. Tomake this a well-
defined problem, we need to add a bit more structure: a standard utility function
with rate of time preference v, flow utility uðcÞ 5 c12g=ð1 2 gÞ, and the resource
constraint that ct 5 Yt=Lt . As explained in section III.C, the symmetry of the setup
and the fact that labor will be allocated across varieties to maximize output means
that the optimal allocation involves choosing the time path of research intensity, st:

max
stf g

ð∞

0

e2vtuðctÞdt subject to

ct 5 Yt=Lt 5 ZKtð1 2 stÞ
ZKt 5 ðlog KtÞ1=bhðKtÞ
Kt 5 2Nt

_Nt 5 aR l
t N

f
t , f < 1

Rt 5 stLt 5 stL0e
nt ,
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where h(Kt) is the function given in the main text in equation (32) and has the
property that limK →∞h0ðK Þ 5 0.

Combining some of these constraints, we see that the problem can be simpli-
fied further to

max
stf g

ð∞

0

e2vtuðctÞdt  subject to

ct 5
Yt

Lt

5 ~hðN ÞN 1=b
t ð1 2 stÞ

_Nt 5 aRl
t N

f
t , f < 1

Rt 5 stLt 5 stL0e
gL t ,

where ~hðN Þ ; ðlog 2Þ1=bhðK ðN ÞÞ is asymptotically constant.
As N gets large, ~hðN Þ converges to a constant and ~h0ðN Þ→ 0, so this problem is

a completely standard semiendogenous growth model. The optimal allocation
features an allocation of research that converges to s* such that

s* 5
w

1 1 w
,  where w ;

lgN =b

v 2 ð1 2 gÞgc 1 ð1 2 fÞgN ,

where

gy 5 gc 5
gN
b

5
1

b

lgL
1 2 f

:

This is exactly the same as the solution in the main text in equation (33).
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