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For the things we have to learn before we can do them, we learn by doing them.

Aristotle, The Nichomachean Ethics (Ross and Brown Translation, 2009, p. 24)

1 Introduction

In a broad range of professions, workers acquire important knowledge on the job. In these settings, on-

the-job training often involves working in teams with more experienced co-workers. Allowing inexperi-

enced workers to take part in decisions has real consequences, but also offers them an opportunity to learn.

Therefore, the nature of learning on the job has implications for how information should be used in team

decision-making. In particular, if learning is experiential, such that knowledge takes root only when learners

have a stake in their decisions and can explore the consequences of their actions, then there exists a tradeoff

between making the correct decision at hand and training the next generation of professionals.

This paper studies the process of training new physicians as a particularly salient setting for the general

issue of learning and decision-making in teams. Residency training is designed as an intensive program to

impart knowledge to physicians beyond facts, “developing habits, behaviors, attitudes, and values that will

last a professional lifetime” (Ludmerer, 2014). Yet, despite the intensity of selection and training in the

medical profession, there exists substantial variation in practices and beliefs across physicians (Currie and

MacLeod, 2017; Cutler et al., 2018), with large welfare implications (Finkelstein et al., 2016; Chandra et al.,

2016). The source of such practice variation, in health care and in other professions, remains a question with

little evidence to guide policy.

Medical residency provides a tractable setting for extracting and studying the general effects of workers

on team decisions as they progress in training. Physician trainees almost universally begin their first jobs

as physicians at the same point in their medical careers: immediately following medical school. For every

patient, decisions are explicitly made in a team comprising a junior trainee in the first year of training, a

senior trainee past the first year of training, and a supervising physician who has completed training. Patient

cases are quasi-randomly assigned to trainee teams, and teams are reshuffled weekly so that each physician

works with many co-workers throughout training. Finally, trainees are assigned a large number of patients

over the course of residency and take part in dozens of medical decisions per patient-day.

Specifically, I follow a diverse group of 802 physician trainees in a large academic hospital and exploit
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detailed administrative data of physician trainees to teams caring for patients. Team decisions are measured

over a five-year period as detailed orders for 3.4 million medications, 3.1 million laboratory tests, and

268,065 radiology tests. I aggregate dozens of physician orders by their costs to form summary statistics

of team decisions for each of 220,117 patient-days, in categories of laboratory testing, radiology testing,

medication, blood transfusion, and nursing. Using random assignment of patients to physician teams and

frequent rotation of trainees across teams, I identify the causal trainee effects on team decisions at various

points in the trainees’ tenure.1 I define practice variation as the standard deviation of the distribution of

these trainee effects across trainees in a given tenure period.

It is important to recognize that a trainee’s effect reflects two conceptual objects related to knowl-

edge—judgment (what the provider would have decided on her own) and influence (the extent to which

her judgment sways the team decision). Thus, practice variation may reflect variation in judgments across

providers, which should decrease as a group of providers gains more complete knowledge. But at the same

time, holding judgments constant, practice variation increases with influence in team decisions, which ac-

crues with knowledge. In reduced form, I am able to assess the role of influence by exploiting a discontinuity

in the relative experience at the end of the trainees’ first year of training: Trainees have relatively less experi-

ence than their teammate in their first year, and relatively more experience than their teammate immediately

after their first year. Under the assumption that trainee judgments (and other characteristics) are continuous

across the one-year mark, a discontinuous increase in practice variation across one year implies the effect of

influence on practice variation via a change in relative experience.

I find a significant and discontinuous increase in practice variation across the one-year mark of training.

Junior trainees before this mark show variation in total spending effects with a standard deviation of 5%,

while senior trainees beginning their second year show variation in total spending effects with a standard

deviation of 24%. Subsequent practice variation remains large to the end of training. Substantial practice

variation exists across a whole range of decision types but is larger—both at baseline among junior trainees

and even more so after the discontinuity for senior trainees—in domains with fewer clear rules and more

discretion, such as diagnostic testing as opposed to medications.

The degree of practice variation within a selective and intensive training program is striking. I examine

1The strategy I employ is similar to that used in a number of papers starting with Abowd et al. (1999), which have studied
effects using switching between workers and firms (Card et al., 2013), workers and managers (Lazear et al., 2015), patients and
geographic locations (Finkelstein et al., 2016), and physicians and locations (Molitor, 2017), among others. A key difference is that
I estimate separate trainee effects at different points in their residency training, which is possible because of the frequency of the
patient observations and the rotations across teams.
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two potential mechanisms behind practice variation—intrinsic heterogeneity and learning by copying others

(“learning by osmosis”)—and find little evidence to support either in this setting.2 Regarding intrinsic

heterogeneity (e.g., time-invariant preferences or skills), I first exploit detailed characteristics about the

physician trainees and find that they predict only a small fraction of the overall practice variation, even

though they predict residency rank list position and future income very well. Second, trainee effects are

highly correlated only in adjacent tenure periods, but are very weakly correlated between more distant

periods. Regarding learning by osmosis, I exploit random assignment of trainees to supervisory teammates,

and in a wide range of specifications, show little impact of supervisory teammates on future trainees practice

styles.

In order to more directly study incomplete learning and information aggregation in teams, I adopt a

simple Bayesian model of decision-making, along the lines of DeGroot (2005). In this model, the optimal

influence of a trainee is equal to the precision of her information in proportion to the total information

used by the team to make decisions. In other words, the optimal team decision is a weighted average of

physician judgments, where the weights are proportional to the precision of each team member’s knowledge.

Against this benchmark of static efficiency, I also allow for departures in which junior trainees may exert less

than optimal influence (e.g., via herding around senior judgments, as in Prendergast, 1993) or, conversely,

more influence than is justified by their current knowledge. The latter possibility allows for a “supervised

learning” strategy (Lizzeri and Siniscalchi, 2008) which grants trainees a stake in decisions so that they may

gain experiential knowledge.

The structural model maps primitives of information and influence onto previously estimated moments

of practice variation at each tenure period in residency. Learning and influence are separately identified not

only by the practice-variation discontinuity at one year, but also by the shape of the practice-variation profile

in continuous regions, under the following intuition: While influence in team decisions always increases

with learning, practice variation widens on net only for trainees who have relatively low influence; for

trainees with higher influence, increasing agreement in judgments will eventually outweigh the effect of

increasing influence. Further, to assess deviations from static efficiency in the supervision of trainees, I

consider knowledge at the end of residency as a lower bound for information held by supervising physicians,

2In a seminal paper, Chandra and Staiger (2007) raise the possibility that, and show evidence for, variation across institutions
may be efficient due to heterogeneous capabilities across institutions. However, a large descriptive literature has mostly failed to
explain practice variation across physicians by their characteristics (e.g., Epstein and Nicholson, 2009). Learning by copying others
(or “schools of thought”) has also been invoked as an explanation for regional practice variation (Phelps and Mooney, 1993), but
little empirical evidence exists to assess this view.
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and thus the broader hospital supervisory structure that includes policies, technology, and other personnel.

Given that the estimates of practice variation are nonparametrically identified and estimated in a first step,

this approach to recovering model primitives can be viewed as semiparametric two-step estimation (see

Ackerberg et al., 2014).

Structural estimation reveals that trainees begin residency with essentially no useful knowledge. Yet

compared to their first year of training, in the second year—when they have influence as a senior trainee—they

learn about 30 times more quickly. Learning appears to cease (i.e., “full knowledge” is acquired) around the

beginning of the third year. The allocation of influence between junior and senior trainees is approximately

efficient. However, the entire supervisory hospital structure contributes decision-making information that

is less than 40% of the knowledge of a fresh residency graduate. The result is consistent with supervising

physicians (and the rest of the hospital) granting much more autonomy to trainees than is statically efficient

so that they may learn.3 In counterfactual analyses, I quantify the tradeoff between improving decisions with

supervisory information and encouraging trainees to learn: Increasing supervisory information significantly

increases the time needed for trainees to acquire full knowledge, reduces the knowledge trainees contribute

to decision-making, and as a result, diminishes the gain in total information by almost half.

This paper contributes to several literatures. First, it sheds new empirical light on the nature of learning

on the job. Philosophers, psychologists, and educational reformers have long articulated the idea that learn-

ing, from childhood to professional development, may be most effective when it involves active exploration,

participation, and experience.4 This concept is embodied in the widespread training arrangements that exist

beyond formal education in medicine, law, engineering, business, and academia. In medical training, the

model has long been summarized as “see one, do one, teach one.”5 My results suggest that, on its own,

seeing prompts relatively little learning, but that doing—specifically applying one’s own decisions—and

possibly teaching, are the crucial stages of training that establish knowledge.

3This last result is even more striking when considering that supervising physicians work with only one senior trainee and
therefore have the same span of control in terms of patients to attend to. The “supervisory hospital structure” includes not only the
supervising physician, but also nurses, pharmacists, consultants, the computer order entry system, and any information gathered
that is orthogonal to trainee knowledge.

4Notable contributions in this area include John Dewey’s (1938) thoughts on progressive education in Experience and Education;
Maria Montessori’s (1948) method of teaching children; Jean Piaget’s (1971) constructivist theory of knowing; and Kolb and Fry’s
(1975) experiential learning. Similar concepts also include problem-based learning (e.g., Wood, 2003), and “learning by teaching”
(Gartner et al., 1971). Economists have long been interested in job training (see, e.g., Mincer, 1962; Becker, 1965; Heckman
et al., 1997; Barron et al., 1989). However, the process of knowledge acquisition has mostly remained a black box. Further, with
the notable exception of Lizzeri and Siniscalchi (2008), which develops a theory of parental sheltering, experiential learning has
largely been overlooked.

5This dictum is attributed to William Halsted, the first Chief of Surgery at Johns Hopkins Hospital, where modern residency
training was first established in the US (Rodriguez-Paz et al., 2009).
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Second, this paper contributes to a general literature on decision-making in organizations (e.g., Marschak

and Radner, 1972; Van Zandt, 1998; Garicano, 2000). As noted by Hayek (1945, p. 519),

“The peculiar character of the problem of a rational economic order is determined precisely
by the fact that the knowledge of the circumstances of which we must make use never exists in
concentrated or integrated form, but solely as the dispersed bits of incomplete and frequently
contradictory knowledge which all the separate individuals possess.”

I show how knowledge is aggregated across agents in a team via influence. Unlike predictions in the canon-

ical team-theoretic models, notably Garicano (2000), I find that influence is non-monotonic in knowledge.

The least experienced agents contribute little to decision-making, in proportion to their knowledge. How-

ever, agents in training drive more decision-making than is statically efficient, plausibly because experiential

learning is an organizational priority.

Third, these results relate to a large literature documenting practice variation in health care.6 Academic

and policy discussions often refer to features of the health care marketplace that insulate providers from

competition, but this reasoning assumes that, absent incentives, providers mostly agree on the diagnosis and

treatment for any given patient (Cutler, 2010; Skinner, 2012). This view is incompatible with survey evi-

dence revealing that experts often and widely disagree (Cutler et al., 2018). This paper highlights informa-

tional mechanisms behind wide practice variation in a training environment designed to create homogeneity.

The experiential nature of learning, and the lack of intrinsic heterogeneity or “learning by osmosis,” may

explain why heterogeneous “practice styles” persist despite guidelines, are difficult to predict, and remain

even between physicians who work together.

The organization of this paper is as follows. Section 2 describes the institutional setting and data. Section

3 presents reduced-form results on practice variation as a function of trainee tenure and on mechanisms be-

hind practice variation. Section 4 introduces a model of learning, influence, and practice variation. Section 5

discusses structural estimates and counterfactual results. And finally, Section 6 discusses policy implications

for practice variation and offers concluding comments.

6In addition to the literature reviewed by Skinner (2012), recent contributions in the economics literature include Doyle et al.
(2015); Cooper et al. (2015); Chandra et al. (2016); Finkelstein et al. (2016); Molitor (2017). Much of this literature focuses on
differences among regions or hospitals. See Epstein and Nicholson (2009) as an example of physician-level variation that has
generally been difficult to explain. While this is mostly outside the focus of this paper, similar informational frictions can underlie
differences across organizations (e.g., Bloom and Van Reenen, 2010). Particularly relevant to the setting of residency training is
work by Doyle et al. (2010) comparing mean practices between two groups of trainees from different programs randomly assigned
patients in the same hospital.
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2 Institutional Setting

2.1 Residency Training

In the setting of new technologies and proliferating medical knowledge, residency programs came to dom-

inate the training of physicians during the period between the two world wars. Ethnographic and historical

accounts, as well as current policy statements, describe relatively consistent principles of residency train-

ing:7 First, trainees are to be gradually given independence and responsibility to make clinical decisions

on their own, to the extent that they possess the required knowledge. Second, training emphasizes the

deep exploration of relatively few cases, with close and immersive observation of each patient. Rather than

memorizing facts in an increasingly rich field of information, trainees are encouraged to relate their cases

to underlying principles, think critically about clinical observations and evidence, and engage in debate

about diagnosis and treatment. Finally, much of training is informal, with trainees emulating the unspoken

behaviors and values of senior physicians.

2.2 The Structure of Residency

I study trainees associated with the internal medicine residency program of a large teaching hospital. The

program is highly selective, and the hospital is a source of numerous clinical trials and guidelines. As is

standard across internal medicine programs, training takes place over three years in teams organized by

experience: Each patient is cared for by a first-year junior trainee (“intern”) and a second- or third-year

senior trainee (“resident”).

The team structure always assigns two interns to each resident, so that interns are assigned half the

number of patients as residents. This allows interns to devote more attention to each patient, and they are

usually the first to examine a patient and make judgments. Each trainee team is supervised by a supervising

“attending” physician, who has completed residency, and operates within a broad practice environment

that influences decision-making, including institutional rules, information systems, and other health care

workers such as consulting physicians, pharmacists, and nurses. Trainees on the same teams may come from

different predetermined career tracks, other programs (e.g., obstetrics-gynecology, emergency medicine), or

7See Ludmerer, 2014, for numerous historical details. For a current sense of how physician trainees in residency are eval-
uated, see http://www.acgme.org/Portals/0/PDFs/Milestones/InternalMedicineMilestones.pdf. Consistent with
these basic principles, many of the guidelines for evaluation emphasize the acquisition of general concepts, skills, and professional
norms.
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another hospital. A sizable number of interns plan only to spend one year in the internal medicine residency

(“preliminary” versus “categorical” interns), subsequently proceeding to another residency program such as

anesthesiology, radiology, or dermatology.

This study focuses on inpatient ward rotations, which comprise cardiology, oncology, and general

medicine services. Per residency administration, trainee rotation preferences are not collected and assign-

ment does not consider trainee characteristics. Scheduling is done a year in advance and does not consider

the teams of intern, resident, and attending physicians that will be formed as a result. Attending schedules

are created independently, with neither trainee nor attending aware of one another’s schedule in advance.

Patients admitted to ward services are assigned to interns and residents by a simple algorithm that dis-

tributes patients in a rotation among on-call trainees.8 Patients who remain admitted for more than one

day may be mechanically transferred to other trainees as they change rotations. When one trainee replaces

another, she assumes the entire patient list of the previous trainee. Because trainee blocks are generally two

weeks long and are staggered for interns and residents, patients frequently experience a change in either the

intern or the resident on the team.

2.3 Team Decisions

As in other team settings, formal decision rights are rarely invoked in patient care teams. While senior team-

mates may influence decisions by their general knowledge or status, junior teammates may acquire more

patient-specific knowledge and are usually charged with implementing decisions. A variety of protocols and

customs common in residency encourage trainees to function independently and to take responsibility for

clinical decisions. For example, junior trainees are listed as the first point of contact, so that information

generally flows through junior trainees before reaching senior trainees or supervising physicians. Similarly,

junior trainees are responsible for writing orders and for discussing the care plan with patients and other

staff. While trainees may consult with their seniors in real time, they often make and communicate de-

cisions without prior consultation. As a practice, supervising physicians will often delay discussing new

patients or new developments until after trainees have evaluated the patient and formulated a treatment plan.

Thus, teammates who are more senior will often learn about decisions after they are made.

8Depending on the reason for admission, patients may be matched to categories of attending physicians according to the admit-
ting service. Trainees who have reached their capacity may also be taken out of the algorithm for accepting new patients during the
remainder of a call day. Conditional on these constraints, patient types are not matched to trainees.
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2.4 Data

In this study, I collect data from several sources. First, I observe the identities of each physician on the

clinical team—intern, resident, and attending physician—for each patient on an internal medicine ward

service and for each day in the hospital. Over five years, I observe data for 46,091 admissions, equivalent

to 220,074 patient-day observations. Corresponding to these admissions are 799 unique trainees and 531

unique attendings; of the trainees, 516 are from the same internal medicine residency, with the remainder

visiting from another residency program within the same hospital or from another hospital.9 There is no

unplanned attrition across years of residency.10

Detailed residency application information for each trainee includes demographics, medical school, US

Medical Licensing Examination (USMLE) test scores, membership in the Alpha Omega Alpha (AOA) med-

ical honors society, other degrees, and position on the residency rank list. I also observe pre-committed

residency tracks for each trainee physician. In addition to trainee characteristics determined prior to resi-

dency, I observe physician specialty after training to impute expected yearly future income in the five years

immediately following this training based on industry-standard survey data from the Medical Group Man-

agement Association. The average above- and below-median future incomes for junior trainees are $424,000

and $269,000, respectively; the respective numbers for senior trainees are $409,000 and $249,000.11

I use scheduling data and past matches between trainees and with supervising attending physicians. As

described in Section 2, trainees do not choose most of their learning experiences, at least in terms of their

clinical rotations and the peers, supervising physicians, and patients seen on the wards. Table 1 shows that

interns and residents with high or low spending effects are exposed to similar types of patients and are

equally likely to be assigned to high- or low-spending coworkers and attendings. Appendix A-1 presents

more formal analyses on conditional random assignment of trainee physicians, including F-tests showing

joint insignificance.

Patient demographic information includes age, sex, race, and language. Clinical information derives

primarily from billing data, in which I observe International Classification of Diseases, Ninth Revision,

(ICD-9) codes and Diagnostic-related Group (DRG) weights. I use these codes to construct 29 Elixhauser

9Of the 799 unique trainees, 649 are observed as interns and 407 are observed as residents. Of the 516 trainees from the
same-hospital internal medicine residency, 401 are observed as interns, and 338 are observed as residents.

10In two cases, interns with hardship or illness in the family were allowed to redo intern year.
11The difference in future incomes between junior and senior trainees reflects that the career paths for preliminary interns (e.g.,

future anesthesiologists, dermatologists, and radiologists) are often more lucrative.
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comorbidity dummies and Charlson comorbidity indices (Charlson et al., 1987; Elixhauser et al., 1998). I

also observe the identity of the admitting service (e.g., “Heart Failure Team 1”), which categorizes patients

admitted for similar reasons. Patients are not randomly assigned to supervising physicians, since supervising

physicians within the same service may belong to different practice groups (e.g., HMO, private practice,

hospitalist) that I do not explicitly capture.

As my primary outcomes, I observe cost information for each patient-day aggregated within 30 billing

departments, which I further group into categories of diagnostic (laboratory and radiology), medication,

blood bank, and nursing spending. Because costs I observe are based on the hospital’s accounting of resource

utilization due to physician actions, and not the measures of Medicare reimbursement used in recent studies

(Doyle et al., 2015; Skinner and Staiger, 2015; Chandra et al., 2016), they provide new insight into welfare-

relevant resource use.12 Consistent with the prior literature on practice variation, I consider spending as a

summary statistic of the many actions involved in patient care. Laboratory costs are based on 3.1 million

physician laboratory orders; radiology costs on 268,065 tests ordered in CT, MRI, nuclear medicine, and

ultrasound; and medication costs on 3.4 million medication orders.13 Table 2 shows distributional statistics

of daily spending in each category and in the services of cardiology, oncology, and general medicine.

3 Reduced-form Results

3.1 Practice Variation over Trainee Tenure

As a baseline analysis, I examine trainee effects on team decisions as a function of trainee tenure. Given

the quasi-random assignment of patients to teams, and the frequent switching of trainees across teams,

trainee effects represent the causal effect of a given trainee (relative to other trainees in the same role) on

patient spending outcomes. While interesting in its own right, it is important to note that variation in trainee

effects, or practice variation, may reflect three conceptual objects: (i) disagreement in trainee judgments,

if they were allowed to make decisions on their own; (ii) influence on team decisions; and (iii) intrinsic

12In this prior research, a difficulty in connecting practice variation in health care to the productivity literature is that “spending”
input measures are actually government-set reimbursement rates that reflect hospital revenues rather than input costs. In large part,
the Medicare reimburses inpatient care prospectively based on diagnoses rather than social cost of actual utilization.

13In principle, given these micro-data, I could also study variation at the order level. However, the set of potential orders is large,
and many orders are very specific to certain clinical scenarios that may not be observed frequently. Restricting study to certain
types of clinical decisions, such as C-sections vs. vaginal deliveries or interventional treatment of heart attacks (e.g., Currie and
Gruber, 1996) vs. medical management (e.g., Chandra and Staiger, 2007), is an approach used by many influential studies in the
literature but does not capture the breadth or complementarity of physician decisions made on a daily basis.
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heterogeneity in ability or preferences that may result in different actions using the same information.

Before specifying a model of (i) and (ii) in Section 4, and considering (iii) in Section 3.3, I will assess

evidence of (ii) in reduced form by focusing on practice variation across the one-year tenure mark, when

trainees experience a discontinuity in relative experience: Immediately before the one-year mark, trainees

are junior, with at least a year less experience relative to their trainee teammate; immediately following

one year, they are senior relative to their trainee teammate. Assuming that judgments (i.e., knowledge)

and intrinsic heterogeneity are continuous across the one-year tenure mark, any discontinuity in practice

variation reflects the impact of influence via relative experience.

While I observe a large space of decisions that are recorded as orders, I reduce the dimensionality

of these decisions by aggregating the direct costs of the decisions in each patient-day, observed via the

hospital’s accounting system. I then model trainee effects on log costs at the patient-day level as

Yit = Xi β+Ttη + ξ
τ ( j (i, t ), t )
j (i, t ) + ξτ (k (i, t ), t )

k (i, t ) + ζ`(i, t ) + νi + εit, (1)

where i indexes the patient admission, and t indexes the day. j (i, t), k (i, t), and ` (i, t) refer to the junior

trainee, senior trainee, and attending (supervising) physician, respectively, assigned to the patient i on day t.

Trainee effects—ξτ ( ·)
j ( ·) and ξτ ( ·)

k ( ·) for the junior and senior trainees, respectively—depend on both the identity

of the trainee and the tenure period τ (h, t) that day t falls in for trainee h ∈ { j (i, t) , k (i, t) }. Equation (1)

also includes patient and admission characteristics Xi ; time categories Tt (i.e., month-year combination, day

of the week, and day of service relative to the admission day); and attending fixed effects ζ`(i, t ) . In some

specifications, I also allow for greater correlation in patient-day costs within the same patient admission, via

a patient variance component νi .

Conditional on service and time categories, the causal effects of trainee teams on patient outcomes

are identified by quasi-random assignment of patients to trainees (see Appendix A-1.1). Junior and senior

trainee effects are further separately identified by frequent and quasi-random reshuffling of trainees across

teams (see Appendix A-1.2). For example, I can identify the effect of a junior trainee of a given tenure

relative to another trainee of the same tenure by differences in outcomes for the two trainees while working

with the same senior trainee.14 Since patients are not randomly assigned to attending physicians, I consider

14This “mover-based” approach is similar to that in Abowd et al. (1999). As detailed in that paper and in Card et al. (2013),
identification of trainee effects may allow for systematic, time-invariant selection of trainees to other team members and only
require that changes in team composition are unrelated to time-varying characteristics of the trainees. Appendix A-1.2 demonstrates
a stronger condition—that trainees are quasi-randomly assigned to teams (i.e., no systematic or time-varying selection of trainees
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attending physician “effects” as fixed and treat these as nuisance parameters capturing both true effects and

unobserved patient selection to attending physicians.15

Because observations per trainee are finite, OLS estimates of trainee effects will include random noise,

and the variance of such estimates would be biased upward relative to the true variance of trainee effects. To

deal with this problem, I consider trainee effects as random and directly estimate practice variation as the

standard deviation of the tenure-specific distribution of trainee effects.16 In Appendix A-2, I detail a method

akin to restricted maximum likelihood (REML) that allows for a large number of fixed covariates, poten-

tially correlated with the random effects, outside of the maximum likelihood estimation. As is standard in

hierarchical modeling (Gelman and Hill, 2007), I assume that the random trainee and patient effects are nor-

mally distributed and uncorrelated with one another. The former assumption is an approximation; practice

variation estimates should still have an interpretation of minimizing prediction mean squared error, even if

effects are not normally distributed. The latter assumption that trainee and patient effects are uncorrelated is

supported by evidence of random assignment of trainees to each other and to patients (Table 1 and Appendix

A-1). I estimate Equation (1) separately within bins of observations according to trainee tenure. I impose no

assumption on the structure of correlation between effects of the same trainee in different periods, although

I directly estimate this in Appendix A-3.2.

Figure 1 presents results for the estimated standard deviations of the trainee effect distributions within

each tenure interval τ. In my baseline specification, I consider non-overlapping tenure intervals that are

60 days long for the first two years of residency and 120 days long for the third year, since third-year

trainees have fewer inpatient days.17 A standard-deviation increase in the effect of junior and senior trainees

increases daily total spending by about 5% and 24%, respectively. After the first year of training, any conver-

gence in practice variation is minor: The standard deviation of the trainee effect distribution remains above

20% throughout. Including or omitting admission-level random effects for the patient does not significantly

alter results.

The discontinuity at the one-year mark demonstrates the large role of senior influence on practice vari-

to teams).
15Physician practice patterns have been found to be quite stable in the existing literature, which motivates fixed effects that are

time-invariant (Epstein and Nicholson, 2009; Molitor, 2017).
16This approach is very much linked to Bayesian shrinkage (Morris, 1983; Chandra et al., 2016). Bayesian shrinkage requires

knowledge of the variance of the effects and is primarily concerned with the “shrunken” estimates of individual effects, known as
“best linear unbiased predictions” (BLUPs). In this paper, I primarily focus on estimates of the variance of the effects itself (i.e.,
“practice variation”), although in some analyses (e.g., in Appendix A-3.3), I will use these estimates to calculate BLUPs.

17I observe approximately half as many patient-days for trainees in the third year, because third-year trainees spend more time in
research and electives than in the first two years of training.
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ation. A natural potential source of senior influence is the greater knowledge that senior trainees possess

relative to junior trainees. Agents with more knowledge should naturally receive more weight in making

optimal team decisions. However, senior physicians may also have more influence than is warranted by

knowledge because of titles, hierarchy, or prestige. The discreteness of decision-making, or herding around

senior judgments due to strategic concerns (Scharfstein and Stein, 1990; Prendergast, 1993), may also in-

flate senior influence. On the other hand, trainees may be granted more influence by their supervisors than is

warranted by their current knowledge to encourage experiential learning. In Section 4, I explicitly account

for influence that is either greater or less than the level justified by knowledge.

3.2 Decision Types and Ward Services

In order to further exploit the richness of decisions and patient types, I also evaluate how practice variation

profiles, as a function of trainee tenure, may vary across these categories. In Figure 2, I show how practice

variation changes with trainee tenure for spending in different categories of decisions: diagnostic (radiology

and laboratory), medication, blood transfusion, and nursing. Table 2 also shows summary statistics of

spending in these categories.

In all decision categories, there is an increase in practice variation at the one-year mark. However,

practice variation and its discontinuous increase at the one-year mark do vary by the type of decision.

Diagnostic spending shows a large increase in practice variation, with a standard deviation of 16% to 74%

before and after the one-year tenure mark. In contrast, medication spending shows relatively small practice

variation, both overall and in the increase at the relative experience discontinuity. Although I am unaware

of prior evidence against which to benchmark these results, they are consistent with the idea that different

decisions use knowledge differently. For example, medication decisions are better described in publicly

accessible sources of knowledge, while diagnostic decisions draw more on clinical reasoning that would be

difficult to pre-specify and reference for trainees who have never before encountered a patient presentation.18

In Figure 3, I show that the practice variation profile is largely similar for patients with high and low

predicted mortality, and for days earlier or later in a patient’s stay. Practice variation profiles do not depend

on whether a patient’s diagnostic code is common (Figure A-5) or linked to an official guideline (Figure

A-6).

18An alternative view is that diagnostic decisions could be less costly to experiment with, since unlike treatment decisions, they
may not directly lead to differences in patient care. However, this interpretation is inconsistent with diagnostic practice variation
being significantly greater for senior trainees than for junior trainees and persistent throughout the end of training.
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3.3 Mechanisms: Intrinsic Heterogeneity and Learning by Osmosis

Before turning to a model of experiential learning in teams, I evaluate two alternative mechanisms that may

contribute to practice variation: intrinsic heterogeneity and learning by osmosis. In the first mechanism,

intrinsic physician heterogeneity in skills or preferences is at the root of practice variation. Persistent varia-

tion could result even under perfect information about patient care decisions if providers intrinsically prefer

or are best suited for different decisions. In the second mechanism, physicians primarily learn from copy-

ing others others rather than from their own experience. If physicians learn to practice different “schools

of thought,” practice variation may persist even if learning is perfect. Despite the intuitive appeal of these

mechanisms, there has been little evidence supporting them.19 They are also less likely to explain practice

variation in a single, elite residency program. But to the extent that they are general behavioral mechanisms,

this empirical setting provides new opportunities to test their existence.

I evaluate intrinsic heterogeneity in two ways. First, I assess whether trainee effects can be predicted

by detailed trainee characteristics, including demographics, prior formal degrees, place of medical school,

standardized examination scores, position on the rank list, and future income. I find that these characteristics

largely do not predict trainee effects. In Figure 4, I show the distribution of trainee effects in each tenure

period throughout residency for high- versus low-ranked trainees, and for trainees with high versus low

future income. I describe these analyses further in Appendix A-3.1 and present more exhaustive results in

Table A-2.

Although trainee characteristics cannot predict trainee effects, I show that ex ante trainee characteristics

nevertheless predict later outcomes quite well. Characteristics prior to the start of residency are highly pre-

dictive of position on the rank list (i.e., desirability to the residency program). Perhaps more impressively,

characteristics before the end of residency highly predict the probability of higher-than-median future in-

come, which is at least 50% greater than the future income below median.20

19Learning from others is related to an old idea that practice variation reflects “schools of thought” transmitted during training
(Phelps and Mooney, 1993). While physician selection and training may play still play a role for specific types of decisions, as
shown by Schnell and Currie (2017) for opioid prescribing, many papers (e.g., Epstein and Nicholson, 2009) have attempted to
explain practice variation based on physician characteristics and training history and have been unable to provide much support
for this idea. Regarding intrinsic heterogeneity, Doyle et al. (2010) show in a seminal case study differences in patient care due to
random assignment of patients to trainees in two residency programs in the same hospital; in Appendix A-3.3, I describe a similar
analysis and find that trainee effects predicted by training program are only moderate relative to overall practice variation.

20Trainees with a predictive score one standard-deviation above mean are two to three times more likely to be ranked in the
upper half of the rank list than those with a predictive score one standard-deviation below mean. Trainees with a predictive score
one standard-deviation above mean are more than three times as likely to obtain above-median future income than those with a
predictive score one-standard deviation below mean.
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Second, I test whether trainee effects are persistently correlated throughout residency. If time-invariant

intrinsic heterogeneity drives practice variation, then trainee effects should be correlated across periods by

the same degree regardless of how distant the periods are. Instead, I find that trainee effects are strongly

correlated between adjacent tenure periods but are only weakly correlated between distant tenure periods

(Appendix A-3.2 provides further details). This finding is consistent with the intuitive purpose of learning

in residency, in which practice styles are more likely to change the greater the time there is to learn.

I evaluate the mechanism of learning from others (“learning by osmosis”) by exploiting the random

assignment of trainees to teams and supervising physicians. On a patient level, this assignment may sub-

stantially influence the practice patterns a trainee is exposed to.21 I calculate several measures of prior

training experience and find that they are broadly unrelated to differences in current practice across trainees.

As an example, Figure 5 shows that, throughout the course of training, prior experience with supervising

physicians—defined as the average supervising physician spending effect for all prior patients and for pa-

tients in the prior two, four, and six months—does not predict current spending decisions. Appendix A-3.3

describes this analysis and presents others in further detail. This evidence argues against a strong role for

this type of learning (as opposed to experiential learning) in explaining the substantial practice variation I

observe and is instead consistent with the idea of “tacit” knowledge that is not easily transferred between

individuals (Polanyi, 1966).

4 Model of Learning and Influence

In this section, I specify a simple structural model to interpret practice variation in training through the

lens of learning and influence in team decisions. As in the team-theoretic literature (e.g., Marschak and

Radner, 1972; Radner, 1993; Garicano, 2000), I begin with the organizational problem of using information

dispersed across agents to make decisions. In this case, I consider the team as being comprised of (i)

a junior trainee j, (ii) a senior trainee k, and (iii) information from a single supervisory “agent” that in

practice includes the attending physician and other actors or rules in the hospital. Each decision d can be

summarized perfectly by an unknown parameter θd . If θd were known, then the optimal action would be

ad = θd . Each agent has only partial knowledge about the correct action, in the form of a Bayesian prior

21From the perspective of a junior trainee, practice patterns are driven by both the senior trainee and the supervising physician.
From the perspective of a senior trainee, practice patterns are still driven by the identity of the senior trainee. A standard-deviation
increase in the best linear unbiased prediction (BLUP) for senior trainees is 16.6% in overall spending. A standard-deviation
increase in the BLUP for supervising physicians is 7.3%.
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about θd . A team decision is made as follows:

1. Each agent h ∈ { j, k} has prior knowledge bearing on the decision; specifically, a Bayesian prior

distribution, θd,h . θd,h is a normal distribution and can be summarized by mean µd,h and precision

ρd,h . One may describe µd,h as the judgment (due to prior knowledge) that agent h has about d.

2. There may also be supervisory or public knowledge about d. Some of this knowledge is held by the

attending physician, but other sources derive from hospital nurses, consultants, and protocols. Each

agent may also collect information about the decision, which I assume to be independent of prior

knowledge. I consider all of this information as a public judgment with mean 0 and precision P∗
d

.

3. The team takes an action and derives utility u = − (θd − ad )2. As in the standard team-theoretic

environment, there is no conflict of interest between agents.

Proposition 1. The optimal action for decision d assigned to trainees j and k is

a∗d =
ρd, j µd, j + ρd,k µd,k

ρd, j + ρd,k +P∗
d

. (2)

This expression aggregates information as a weighted average of judgments in proportion to the preci-

sions of the respective judgments (DeGroot, 2005). Supervisory information, measured by precision P∗
d

,

reduces the effect of either trainee’s judgment on a∗
d

.

The optimal weights on judgments in Equation (2),

g∗d,h;−h ≡
ρd,h

ρd,h + ρd,−h +P∗
d

,

have a natural interpretation as the influence of trainee h on the action a∗
d

. The more precise the signal from

her prior knowledge relative to her teammate and any supervisory information, the greater her influence

will be. In the limit, if either her teammate or the supervisory structure contributed perfect information (i.e.,

ρd,−h =∞ or P∗
d
=∞), a trainee would have no influence. Conversely, at the one-year tenure mark, influence

discontinuously increases because the precision of a trainee’s teammate ρd,−h discontinuously decreases.

However, influence may not always be optimally allocated. For example, junior trainees may exercise

less than optimal influence if they are overly deferential to seniors, either for strategic reasons (Scharfstein

and Stein, 1990; Prendergast, 1993; Ottaviani and Sorensen, 2001) or due to the “prestige” of senior titles.
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Alternatively, trainees may be allowed more influence than is justified by their knowledge in a policy of

“supervised learning” (Lizzeri and Siniscalchi, 2008), to encourage experiential learning. Because the goal

of supervised learning is to improve the quality of future decisions, I consider influence defined by g∗
d,h;−h

as only statically efficient, in that it optimizes the decision at hand. In estimation, I allow for deviations from

static efficiency as

âd =
ρ̃d, j µd, j + ρ̃d,k µd,k

ρ̃d, j + ρ̃d,k +Pd
. (3)

ρ̃d,h = ρd,h + δ (τh ) as an effective “precision” that equals the true precision of h’s knowledge adjusted by

δ (τh ), depending on the tenure of h, τh . The influence of trainees with tenure τh relative to their peers may

receive less than statically efficient if δ (τh ) < 0 or more than statically efficient if δ (τh ) > 0. Similarly,

for supervisory information, Pd is an effective “precision.” That is, even though supervising physicians

and the broader supervisory structure may have access to information relevant for d with precision P∗
d

, this

information may be underweighted (Pd < P∗
d

) or overweighted (Pd > P∗
d

) in decision-making.

4.1 Practice Variation Moments

To map empirical moments of practice variation to a model with learning, I consider how knowledge and

decision-making for a single decision translates to empirical objects corresponding to a set of decisions

randomly assigned to trainees. While judgments naturally differ depending on the decision, I focus on a

precision that I assume to be equal across decisions in the same tenure period. The precision of knowledge

increasing with learning, which I specify as a weakly increasing function with tenure: ρd,h = ρ (τ (h, t (d) ) ).

Moments of practice variation in a given tenure period compare average decisions across trainees in the

same tenure period. Thus, it is natural to consider a measure of knowledge precision that is constant across

trainees of the same tenure. While trainees may in practice learn at different rates, evidence in Section

3.3 strongly argues against intrinsic heterogeneity—at least along observable characteristics—as playing a

major role in driving variation.22 Further, if P∗
d
= P∗, then we can state influence between a pair of trainees

in terms of the tenure-dependent precision of knowledge.23 For all d by any pair of trainees with tenures τh
22More importantly, while I make this assumption to make precise statements about statistical moments, similar statements can

be made qualitatively, viewing ρ (τ) as average knowledge across trainees at τ.
23In Appendix Figure A-4, I support for this assumption by showing that both the trainee-related variation and the residual

variation in spending are relatively constant across July, when old interns transition to residents and new interns begin training.
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and τ−h , statically efficient influence would be implied by the weights

g∗ (τh ;τ−h ) =
ρ (τh )

ρ (τh ) + ρ (τ−h ) +P∗
.

Similarly, if Pd = P, effective influence would be implied by the weights

g (τh ;τ−h ) =
ρ̃ (τh )

ρ̃ (τh ) + ρ̃ (τ−h ) +P
. (4)

Given tenure-specific influence weights, we can state trainee effects in terms of influence and expected

judgments averaged over decisions. Denote the set of decisions Dτ
h

involving trainee h in tenure block τ.

For intern j and resident k in respective tenure blocks τj and τk , the expected action in Equation (3) for

these decisions can be decomposed into two parts corresponding to their effects:

Ed

[
âd

���d ∈ D
τ j

j ∩D
τk
k

]
= Ed

[
âd | τj, τk

]

= g
(
τj ;τk

)
Ed

[
µd, j

���τj
]
+g

(
τk ;τj

)
Ed

[
µd,k |τk

]
.

The first equality holds because patients (and decisions) are randomly assigned; the second because influence

is constant conditional on the tenures of the junior and senior trainees, regardless of their identities. In the

second line, the first term corresponds to the intern trainee effect, or ξτ j

j , and the second term corresponds

to the resident trainee effect, or ξτk
k

, on an average decision as given in Equation (1).

The next step is to state practice variation in terms of the precision of trainee knowledge. Note that the

precision of knowledge for decision d, a function of tenure, implies variation in judgments across the popu-

lation of h for a given d: V arh
(
µd,h |τh = τ

)
= 1/ρ (τ).24 Since trainee effects only capture the component

of a trainee’s judgment that is common across decisions, the variance of trainee effects is naturally lower

than V arh
(
µd,h |τh = τ

)
. Based on a simple variance decomposition, we have V arh

(
Ed

[
µd,h |τh = τ

] )
=

κ/ρ (τ), for some κ ∈ (0,1).25 κ represents within-provider agreement across decisions, which could reflect

24To conceptualize this, consider a pool of experience that trainees may draw from to make decision d. Each “draw of experience”
x provides information about θd , and x ∼ N

(
θd,σ

2
d

)
. Now consider a pool of trainees h ∈ H , each with the same number of

draws N : x1,h, x2,h, . . ., xN,h . The knowledge of any trainee in this pool should be ρd = N/σ2
d

. The judgment of trainee h is

µh,d =
∑N

i=1 xi,h/N . The variance in judgments across trainees should be V arh
(
µh,d

)
= σ2

d
/N .

25For example, consider µd,h = ηd + µh + µ̃d,h in a given tenure period τ, where Ed

[
µ̃d,h

]
= 0 for all h. By

the law of total variance, V arh
(
µh |τh = τ

)
+ E

[
V arh

(
µ̃d,h |τh = τ

) ]
= V arh

(
µd,h |τh = τ

)
= 1/ρ (τ). Thus, κ =

V arh
(
µh |τh = τ

)
/V arh

(
µd,h |τh = τ

)
∈ (0,1). If learning occurs at the same rate for the trainee mean judgment (the trainee

effect) and deviations from the trainee mean judgment, then κ is a constant.
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the degree to which a provider extrapolates knowledge across related decisions.26 The observed standard

deviation of trainee effects for trainees with tenure τh , working with teammates with tenure τ−h , is then

σ (τh, τ−h ) = g (τh ;τ−h )
√
κ/ρ (τh ) . (5)

It is easy to see that the practice variation profile with respect to tenure is scaled by
√
κ. In the limit, if there

is no common component across decisions for a given trainee, then even if judgments differ across trainees

for a given decision, we will not be able to observe such variation from trainee effects in reduced form.

Similarly, the implied knowledge and rates of learning, measured in precision, will be scaled by 1/κ. As

shown in Section 3.2, the scale of practice variation varies substantially across decision types, and part of

this may be driven by κ. However, although levels of knowledge, learning, and practice variation are scaled

by 1/κ, corresponding ratios comparing different points in training will be unaffected by κ.

4.2 Interpretation and Identification

In the efficient benchmark, as the precision of knowledge increases for trainee h, holding fixed everything

else, the influence of the trainee, g∗ (τh ;τ−h ), will increase. On the other hand, increasing the precision

of knowledge also implies that the dispersion in average judgments,
√
κ/ρ (τh ), will decrease. In order to

understand how learning can be identified from a profile of practice variation over trainee tenure, one must

consider the relative importance of increases in influence versus decreases in dispersion in judgments across

trainees, as knowledge increases through learning.

Influence depends on the relative size of ρ (τh ) compared to the total information used in the decision,

or ρ (τh ) + ρ (τ−h ) + P. Increases in influence will be large when ρ (τh ) is relatively small compared to

ρ (τh ) + ρ (τ−h ) + P. In contrast, dispersion in judgments depends only on ρ (τh ). Thus, increases in in-

fluence will outweigh decreases in judgment dispersion when trainees have little influence, or when the

total information is large relative to their knowledge. In this case, learning will cause practice variation to

increase. Conversely, when trainees have much influence, decreases in judgment dispersion will outweigh

increases in influence, and practice variation will decrease with learning. In the limit, of course, when

a single agent is responsible for making decisions, learning unambiguously decreases practice variation.

Appendix A-4 shows this formally in Proposition A-2 and provides numerical examples.
26Another interpretation of κ is that it could reflect intrinsic heterogeneity (i.e., heterogeneous skills or preferences). However,

as discussed in Section 3.3, I find little evidence of intrinsic heterogeneity as a major factor in practice variation.
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Because teams in this setting have a clear structure (i.e., senior trainees with tenure τk work with junior

trainees having tenure τj = τk − bτk c ), the relative importance of pre-training knowledge, learning on the

job, and outside information is identified (up to a scale) by the shape of the practice variation profile with

respect to tenure.27 This shape includes (i) the discontinuity in practice variation at the one-year tenure

mark, (ii) the smaller potential discontinuity at the two-year tenure mark (Proposition A-1 in Appendix

A-4), and (iii) the shape of practice variation in continuous portions with respect to tenure. In each of the

continuous segments, the curvature (second derivative) of practice variation with respect to tenure should

be negative. That is, practice variation may be increasing, decreasing, or increasing and then decreasing

with respect to tenure. But according to the model, it should never be decreasing then increasing within a

continuous segment (Proposition A-2 in Appendix A-4).

Given identification of knowledge via the shape of practice variation, I also allow for deviations of in-

fluence from the efficient benchmark. Specifically, I assume that knowledge is continuous, while deviations

from efficient influence come from a step function with respect to years of training. That is, the “effective”

trainee precision relevant for influence is

ρ̃ (τ) = ρ (τ) + δ (τ)

= ρ (τ) + δ11 (τ ≥ 1) + δ21 (τ ≥ 2) . (6)

δ1 represents the deviation in effective precision based on the title of “senior trainee” alone, and δ2 repre-

sents a potentially additional deviation in effective precision when trainees enter the third year of training.

As illustrated in Appendix A-4 (Figure A-9), under the efficient benchmark, a continuous ρ (τ) implies a

practice variation along the entire profile of training, both in the continuous portions and at the year disconti-

nuities. Thus, for a given shape in the continuous (within-year) portions, deviations in the practice-variation

changes at the year discontinuities imply δ1 and δ2, which represent deviations from efficient allocation

of influence between trainees. In results below, I use this machinery to compare models of learning and

possible deviations from efficient influence with restricted models in which changes in practice variation is

27Greater precision of information in both ρ (τ) and P will result in smaller practice variation, holding constant the shape of the
practice variation profile. However, as noted above, smaller commonality in judgments across decisions for the same trainee, κ,
would also reduce the scale of practice variation. Because I cannot separately identify κ and precision in ρ (τ) and P, I normalize
κ = 1 and attribute smaller scale to larger ρ (τ) and P. In principle, one could separately identify κ by estimating a joint model of
different types of decisions. Because this is not the focus of my analysis, I instead consider different types of decisions in separate
estimations, so that I might allow more flexibility in learning and influence parameters in each type of decision.
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purely driven by differences in effective influence (i.e., status) associated with seniority on the team.

Finally, I consider deviations from efficient influence between the trainee team and the hospital super-

visory structure. Such deviations are implicitly captured by P. It is also worth noting that trainee effects

only capture the prior knowledge trainees bring to the decision, independent of any information they may

gather in the process. Thus, P is an omnibus measure of precision from any information outside of trainee

prior knowledge, including supervising physician knowledge, informational inputs from outside staff (e.g.,

nursing, consultants), or any information gathered by the trainees themselves.28 Under the very weak as-

sumption that the precision of outside information must be at least as large as that of trainee knowledge

at the end of training, or P∗ ≥ ρ (τ = 3), I identify a lower bound on this deviation between trainees and

supervisors of ρ (3) − P, if P < ρ (3). In results below, I will also use this conservative benchmark as a

restricted model of efficient influence between trainees and their supervisors.

5 Structural Parameters and Counterfactual Results

5.1 Estimation Approach

I approach estimation of learning and influence parameters as a two-step process. The first step recovers

moments of practice variation, specifically the standard deviation of the distribution of trainee effects, for

trainees of tenure τh working with teammates of tenure τ−h . These empirical moments, σ̂ (τh, τ−h ), are

estimated from the random effects model in Equation (1) and were previously discussed in Sections 3.1 and

3.2. The second step takes these moments of practice variation and, from the model in Section 4, recovers

underlying primitives of knowledge and influence using minimum distance estimation.

I specify the precision of knowledge as a piecewise-linear function of trainee tenure:

ρ (τ) =




ρ0+ ρ1τ, τ ∈ [0,1] ;

ρ0+ ρ1+ ρ2 (τ−1) , τ ∈ [1,2] ;

ρ0+ ρ1+ ρ2+ ρ3 (τ−2) , τ ∈ [2,3],

(7)

where ρ0 represents the precision of knowledge before starting residency, ρ1 is the yearly rate of learning

28While I consider the distribution of this “supervisory” information as having mean 0 in the simple model, this assumption
is inconsequential, as it is by definition orthogonal to trainee knowledge. The “judgment” of the supervisory information can be
viewed as captured by all terms other than the trainee effects in the regression Equation (1), including the error term.
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in the first year of residency as a junior trainee, and ρ2 and ρ3 are analogous rates of learning as a senior

trainee in the second and third years, respectively.

The model primitives θ = (ρ0, ρ1, ρ2, ρ3, δ1, δ2,P) can estimated by minimum distance:

θ̂ = argmin
θ∈Θ

(σ̂−σ (θ) ) ′W (σ̂−σ (θ) ) ,

where σ̂ is the vector of empirical estimates of practice variation from the first step, with elements cor-

responding to (τh, τ−h ) ∈ T ; σ (θ) is the corresponding vector of model-implied practice variation from

Equation (5) given θ; and W is a weighting matrix.

Consistent with previous reduced-form estimation, I fit the model on ‖T ‖ = 18 moments of practice

variation: I divide observations with residents in the second year of training into resident tenure blocks of 60

days, resulting in 6 resident moments and 6 intern moments of practice variation; I also divide observations

with residents in the third year of training into resident tenure blocks of 120 days, resulting in 3 resident

moments and 3 intern moments of practice variation. If
√

n (σ̂−σ (θ) )
d
→ N (0,Ω), then the asymtotic

variance of θ̂ is given by

Asy. Var θ̂ =
1
n

(
Γ (θ0) ′WΓ (θ0)

) −1 (
Γ (θ0) ′WΩWΓ (θ0)

) (
Γ (θ0) ′WΓ (θ0)

) −1 ,

where θ0 is the true parameter vector, and Γ (θ0) = plim ∂σ
(
θ̂
)
/∂θ̂ is an 18×7 matrix of analytical deriva-

tives of Equation (5) with respect to θ, evaluated at θ̂. The optimal weighting matrix is W = Ω̂−1
, which I

obtain from the first-step estimation of practice variation. This yields for inference

V̂ar θ̂ =
1
n

(
Γ

(
θ̂
) ′
Ω̂
−1
Γ

(
θ̂
) ) −1

.

I also calculate likelihood ratio tests for the joint-significance of learning and influence parameters against

a restricted model with no learning but potentially inefficient senior influence via “status” (i.e., only ρ0, δ1,

and P are non-zero).

5.2 Parameter Estimates

In Column 1 of Table 3, I show baseline parameter estimates based on practice variation in overall spending.

In Figure 6, I show the implied path of practice variation according to the model and estimated parameters,
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overlaid on reduced-form estimates of practice variation shown earlier in Figure 1. Several of the parameter

estimates can be understood by the shape and scale of the figure.

First, the large discontinuous increase in practice variation at the one-year tenure mark implies that

trainees with no experience must have relatively small knowledge compared to trainees with one year of ex-

perience. The model estimates trainees at the beginning of residency with only ρ0 = 0.04 units of precision

compared to ρ1 = 0.20 units of precision gained in the first year. In the second year of training, practice

variation increases, then begins to decrease around halfway through the year. This implies a pace of learning

that is rapid enough so that the senior trainee starts the year with relatively little influence but has enough

influence by the middle of the year to enable practice variation to decrease with learning. I estimate that

ρ2 = 7.5, or 30 times the rate of learning in the second year than in the first year. As a related implica-

tion, supervisory information P must be small enough to allow senior trainees to overtake the majority of

influence; the size of P also determines the size of trainee practice variation. I estimate that P = 3.7.

Finally, practice variation is relatively flat in the third year despite having begun to converge in the

second year. This implies essentially no learning in the third year (ρ3 = 0), which I interpret as trainees

having reached “full knowledge” prior to the start of the third year. Relevant for counterfactual analyses

below, in Appendix A-5 I estimate a more flexible version of Equation (7) for trainee learning:

ρ (τ) =




ρ0+ ρ1τ, τ ∈ [0,1] ;

ρ0+ ρ1+ ρ2 (τ−1) , τ ∈ [1, τc] ;

ρ0+ ρ1+ ρ2 (τc −1) + ρ3 (τ− τc ) , τ ∈ [τc,3] .

(8)

where τc ∈ (1,3) is a kink point around which ρ (τ) changes slope. I estimate that τc = 1.87, or less than

two months short of the two-year tenure mark. Other parameter estimates remain similar to the baseline

model with Equation (7), particularly with ρ2 = 8.0 and ρ3 = 0.

For trainee influence relative to static efficiency, I first estimate that δ1 = 0.23. Although this deviation

from static efficiency for senior trainees is large relative to knowledge at the end of the first year (ρ0+ ρ1 =

0.24), it is relatively small compared to learning that occurs in the second year (δ1/ρ2 · 365 days = 11 days

worth of second-year learning). Thus, a reasonable view is that influence is close to statically efficient

between junior and senior trainees. I also estimate that δ2 = −1.4, which implies that third-year trainees

have less influence than is statically efficient, although this parameter is imprecisely estimated and small
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relative to ρ2. Finally, to consider the static efficiency of trainees relative to supervisors, I consider a

lower bound for statically efficient supervisory information to be the full knowledge as a graduating trainee

(e.g., P ≡ ρ (3) ≈ 7.74 under Equation (7)). The rationale for this lower bound is that, at a minimum, the

hospital supervisory structure includes the supervising physician, who has completed residency training.

Thus, P = 3.7 represents a strikingly low contribution of information—less than half of the lower bound P.

I also estimate model parameters based on practice variation in spending specific to decision types

(Table 3) and by types of patient-days (Table 4). Learning is often greatest in the second year of training,

regardless of the set of decisions. Decisions broken into components of diagnostic testing, prescriptions,

blood transfusions, and nursing orders show somewhat less pronounced learning in the second year, which

suggests potential interactions between components that are important for learning. In this sense, focusing

on specific decisions (e.g., whether to catheterize a heart attack patient) may reveal less about learning and

practice styles than examining more aggregate measures of decision-making.

5.3 Robustness

To assess robustness, I estimate restricted versions of the model of learning and team decisions and compare

these restrictions against the baseline model. Perhaps most importantly, I assess whether patterns of practice

variation over residency can be more parsimoniously explained by prestige as a senior resident alone. In this

restriction, I rule out any learning (i.e., ρ1 = ρ2 = ρ3 = 0) and therefore any greater knowledge that senior

trainees may possess over junior trainees. While I cannot reject this model (shown in Panel A of Figure

7) with an over-identification test in isolation, I can reject this model relative to the baseline model with a

likelihood ratio test for the main outcome of overall spending (Column 1 of Table 3) and for the majority of

other outcomes or subsets of the data (Tables 3 and 4).

On the other hand, if I allow for learning but impose statically efficient influence between trainees (i.e.,

δ1 = δ2 = 0), the restricted model (Panel B of Figure 7) fits the data quite well, arguably better than the

model with prestige but no learning. I also cannot reject this model compared to the baseline model with a

likelihood ratio test. However, I can strongly reject a model with additional static efficiency between trainees

and supervisors (i.e., δ1 = δ2 = 0, P ≥ ρ0+ ρ1+ ρ2+ ρ3). The graphical fit of this model (Panel C of Figure

7) is obviously problematic, and the over-identification test fails.
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5.4 Counterfactual Results

The consistently dramatic increase in learning when trainees have influence provides empirical support for

experiential learning. This implies a tradeoff in the use of information to make team decisions: While

supervisory information improves decision-making in the static sense, it may constrain experiential learning

by trainees. This tradeoff is in fact deeply ingrained in the philosophy of training physicians in residency.

To quantify the implications of this tradeoff, I perform two sets of counterfactual analyses. First, I alter

the level of supervisory information used in decision-making, which amounts to altering the influence of

trainees relative to their supervisors. Second, I alter the relative influence between junior and senior trainees

while holding fixed supervisory information. Under both sets of counterfactual scenarios, I characterize (i)

the time required for trainees to attain “full knowledge,” (ii) the amount of information contributed by the

junior and senior trainee team, averaged across patients, and (iii) the total amount of information used in

decision-making, which includes both (ii) and the supervisory information. Details of the counterfactual

analyses are given in Appendix A-5.

In Panel A of Figure 8, I illustrate results under counterfactual scenarios of supervisory information.

Increasing supervisory information to the lower bound of static efficiency, P, would increase the time for

trainees to attain full knowledge from 1.87 years to 2.36 years. Increasing supervisory information to a

very plausible 1.5P would increase this time to 3.59 years, greater than the current three years of residency

training in internal medicine. I also show that the average information from trainee knowledge decreases

as supervisory information increases. A gain of 10 precision units in supervisory information reduces the

average information from trainee knowledge by about 4 precision units, which implies a net gain of only

6 precision units in total average information. In Panel B of Figure 8, I show results under counterfactual

scenarios of allocating influence between junior and senior trainees. While δ1 = 0.23 is large relative to

ρ (1) = ρ0+ ρ1, it is small relative to ρ (3). The range of counterfactual values of δ1 is thus relatively small,

and implications for counterfactual learning and decision-making information are similarly limited.29

29It is noteworthy, however, that increasing the influence of senior trainees relative to junior trainees increases learning and
information. Appendix A-5 discusses the intuition for this result, which is briefly that the rate of learning is convex with respect
to influence. In this appendix, I also consider counterfactual values of δ2 and find similarly limited effects, with results shown in
Appendix Figure A-10.
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6 Discussion and Conclusion

I follow physicians in residency training as they acquire professional knowledge and make decisions in

teams. I find wide practice variation attributable to providers as measured by spending aggregated from a

large number of randomly assigned decisions. The richness of the data and the quasi-experimental variation

of this institutional setting allow me to bring new evidence to assess several potential mechanisms behind

practice variation. First, I find little evidence to support either intrinsic heterogeneity or learning by copying

others. Second, exploiting a discontinuity in relative experience, I find reduced-form evidence for the role

of senior influence in explaining practice variation in team decisions.

I then specify and estimate a simple model of Bayesian information aggregation to study more directly

learning and influence in teams. The results of the structural model suggest an interesting pattern of learning

in teams among medical trainees. As junior trainees, physicians both have little influence and learn slowly.

Then as senior trainees, their influence not only increases, but their rate of learning increases by at least

an order of magnitude. Finally, I find evidence that learning ceases, well before residency is completed.30

Although the allocation of influence between senior and junior trainees is approximately efficient, in that the

relative weight that they have in decisions is approximately proportional to their knowledge, I find a strik-

ing overweighting of trainee judgments relative to information by supervisors, consistent with “supervised

learning” (Lizzeri and Siniscalchi, 2008). Together, these results provide new empirical evidence consistent

with a literature, mostly outside of economics, that argues that learning is experiential; specifically, that

agents must have a stake in their decisions in order to learn.

The possibility of experiential learning has important implications for policy, particularly in health care,

where practice variation has received a large amount of policy attention but remains poorly understood. If

the knowledge required for decision-making is complex, then previously proposed policy levers of financial

incentives, reporting, and patient cost-sharing (see Skinner, 2012, for a summary) will have little impact.

Targeting decision-making rather than aggregate measures is likely to be more important and more effec-

tive (Institute of Medicine, 2013).31 Similarly, if learning requires experience, then this may explain why

30There exists a large theoretical literature on why learning may stop. For example, when learning is costly, then it may be
efficient to stop learning. This intuition is related to a large literature on search theory and learning by doing (see e.g., Rogerson
et al. 2005, for a review). See Caplin and Dean (2015) for a broader discussion of rational decision-making under knowledge
constraints and information cost functions. An alternative formulation by Acemoglu et al. (2006) allows for a lack of asymptotic
agreement if there is sufficient uncertainty in the subjective distributions that map signals onto underlying parameters. Also, Ellison
and Fudenberg (1993) show that, under social learning, there will be less convergence if agents observe greater diversity in choices
made. However, empirical evidence has been scarce.

31A recent literature in economics has begun to directly consider skill in diagnosis, decision-making, and treatment. Abaluck
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the usual forms of spreading information, such as clinical guidelines or formal instruction in “continuing

medical education,” have done little to change practice (Shaneyfelt et al., 1999).

Instead, effective policies may identify and disseminate organizational practices associated with both

productivity and consistent decision-making. These process innovations—alternatively termed “continuous

quality improvement,” “lean management,” and even “learning health care”—appear to elicit, codify, and

disseminate information to workers at the local level while crucially engaging them in the process (Institute

of Medicine, 2012; Bohmer et al., 2013). Consistent with learning via experience, experimentation and tin-

kering are often explicitly encouraged, even when the answer may be publicly known from another setting.

There are predictable frictions in instilling these practices across organizations (Nelson and Winter, 1982),

but the returns may be great enough to justify policy efforts in this direction (Bloom et al., 2013, 2014).
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Figure 1: Profile of Practice Variation by Tenure
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Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified in
Equation (1), in log daily total costs at each non-overlapping tenure period. Point estimates are shown as connected
dots; 95% confidence intervals are shown as dashed lines. Trainees prior to one year in tenure are junior trainees and
become senior trainees after one year in tenure; a vertical line denotes the one-year tenure mark. The model con-
trols for patient and admission observable characteristics, time dummies (month-year interactions, day of the week),
and attending identities (as fixed effects). Patient characteristics include demographics, Elixhauser indices, Charlson
comorbidity scores, and DRG weights. Admission characteristics include the admitting service (e.g., “Heart Failure
Team 1”). Estimates for junior trainees are done separately for second-year senior trainees and for third-year senior
trainees, then subsequently averaged for purposes of presentation. An alternative approach estimating junior-trainee
practice variation by pooling observations by junior-trainee tenure yields qualitatively similar results.
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Figure 2: Practice Variation Profile by Spending Category
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D: Nursing

Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified in
Equation (1), in log daily costs at each non-overlapping tenure period. Each panel shows a different spending category.
Point estimates are shown as connected dots; 95% confidence intervals are shown as dashed lines. The model controls
are as stated for Figure 1. Trainees prior to one year in tenure are junior trainees and become senior trainees after one
year in tenure; a vertical line denotes the one-year tenure mark.
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Figure 3: Practice Variation Profile by Patient Severity and Day of Stay
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Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified in
Equation (1), in log daily total costs at each non-overlapping tenure period. Panel A estimates the model separately in
two samples of patients with above- (solid dots) versus below-median (hollow dots) expected 30-day mortality. Panel
B estimates the model separately in two samples of days before (solid dots) versus after (hollow dots) the middle of
each patient’s stay (with the middle day, if it exists, randomized between the two groups). Point estimates are shown
as connected dots; 95% confidence intervals are shown as dashed lines. The model controls are as stated for Figure 1.
Trainees prior to one year in tenure are junior trainees and become senior trainees after one year in tenure; a vertical
line denotes the one-year tenure mark.
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Figure 4: Practice Style Distribution by Trainee Type
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Note: This figure shows the patient-day-weighted 90th percentile, mean, and 10th percentile of the practice style
(trainee effect) distribution according to trainee type. The unconditional distribution in each tenure period is normal-
ized to have mean 0. Panel A shows the distribution for high-skill trainees (solid lines) relative to low-skill trainees
(dashed lines), where “skill” is defined as position on the rank list more favorable than median when defined, and
above-median USMLE test score when position on the rank list is missing. Panel B shows the distribution for trainees
with above-median expected future income relative (solid lines) to those with below-median future income (dashed
lines), where future income is based on known subsequent subspecialty training (if any) and imputed with national
average yearly income in the first five years of practice after training. The average yearly future incomes of above-
and below-median junior trainees are
424,000 and $268,000, respectively; the respective yearly future incomes for senior trainees are $409,000 and
$249,000 (junior trainees include “preliminary interns,” described in Section 2, who generally move on to more lucra-
tive specialties). Practice styles are calculated as the Best Linear Unbiased Predictor (BLUP) posterior mean from the
random effects model specified in Equation (1), of log daily total costs at each non-overlapping tenure period. The
parameter of this regression is the standard deviation of trainee effects in each tenure period and is shown in Figure
1. The model controls are as stated for Figure 1. Trainees prior to one year in tenure are junior trainees and become
senior trainees after one year in tenure; a vertical line denotes the one-year tenure mark.
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Figure 5: Effect of High Prior Exposure to Spending
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Note: This figure shows the effect of high prior exposure to supervising-physician spending. This exposure measure is
discussed in further detail in Appendix A-3.3 and in Table A-3 and reflects the average spending effects of supervising
physicians that a given trainee was matched to in the past. The tenure-specific effect of having high prior exposure
to spending is estimated as in Equation (A-14). Panel A uses an exposure measure that includes all prior matches,
regardless of service (corresponding to Column 1, Panel A of Table A-3). Panels B and D use an exposure measure
that includes matches within the last three months with supervising physicians (corresponding to Columns 2 and 4,
Panel A of Table A-3). Panels C and D use an exposure measure that is restricted to prior matches on the same service
(corresponding to Columns 3 and 4, Panel A of Table A-3). The vertical line indicates the one-year mark of training;
trainees are junior prior to this and senior after this. The model controls are as stated for Figure 1. The effect of high
prior exposure to senior-trainee spending is shown in Figure A-8.
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Figure 6: Model Fit to Practice Variation Profile
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Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified in
Equation (1), in log daily total costs at each non-overlapping tenure period. Trainee prior to one year in tenure are
junior trainees and become senior trainees after one year in tenure. Reduced-form estimates of practice variation are
shown in dots and are the same as shown in Figure 1. Practice variation implied by the model of learning and influence,
specifically Equation (5), is shown as a dashed line. Estimation of parameters of this model is described in Section 5.
The Sargan-Hansen over-identification J-test statistic of the model is J = 8.60, which is less than the 95th percentile
value of 19.7 the χ2

18−7 distribution (the p-value corresponding to J = 8.60 is 0.67)

38



Figure 7: Model Restrictions
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B: Inter−Trainee Efficient
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C: Fully Efficient

0

.1

.2

.3

S
td

. 
d
e
v
. 
(l
o
g
 d

o
lla

r 
c
o
s
ts

)

0 1 2 3
Years tenure

D: Baseline

Note: This figure shows the fit of restricted models of learning and influence, with parameters described in Table 3.
Each panel shows the same reduced-form moments of practice variation for each tenure period, which are also the same
as those shown in Figure 6, reproduced in Panel D. Panel A restricts the model to no learning (i.e., ρ1 = ρ2 = ρ3 = 0).
Panel B restricts the model to no inter-trainee static inefficiencies in the allocation of influence (i.e., δ1 = δ2 = 0). Panel
C additionally restricts the model so that supervisors receive as much influence as warranted by the lower bound of
their knowledge (i.e., δ1 = δ2 = 0, P ≥ ρ0 + ρ1 + ρ2 + ρ3). The likelihood ratio test comparing a no-learning model
(Panel A) with the baseline model (Panel D) rejects the restricted model with a p-value less than 0.01. Likelihood ratio
tests for other outcomes or for subsets of the data are also given in Tables 3 and 4. Sargan-Hansen over-identification
J-test statistics are 15.66 (p-value = 0.405 under χ2

18−3 distribution) for Panel A, 13.42 (p-value = 0.416 under χ2
18−5

distribution) for Panel B, and 65.97 (p-value < 0.01 under χ2
18−4 distribution).
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Figure 8: Counterfactual Training Time and Team Information
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Note: This figure shows counterfactual results on time for trainees to acquire “full knowledge” and on information
used in decision-making. I consider two types of counterfactual scenarios: In subpanels in Panel A, I alter on the x-axes
the amount of supervisory information used in decision-making, or P in the model, while holding fixed the relative
influence between junior and senior trainees. In subpanels in Panel B, I alter on the x-axes the relative influence
between junior and senior trainees, or δ1 in the model, while holding fixed the amount of supervisory information.
Appendix Figure A-10 shows results for varying δ2 in the model. The time for trainees to acquire full knowledge
(or “years to train”) is measured on the y-axes of the left subpanels, and the information used in decision-making is
measured on the y-axes of the right subpanels. The right subpanels show both information from trainee knowledge
(dashed lines) and total information (solid lines) used in decision-making. On each line, I plot a solid dot indicating
actual results and a hollow dot indicating counterfactual results under static efficiency; static efficiency in Panel A is a
lower bound for supervisory information that equals full trainee knowledge, or P = ρ0+ ρ1+ ρ2 (τc −1). Lines in Panel
A are plotted for counterfactual P∆ ∈

[
0,2P

]
; lines in Panel B are plotted for counterfactual δ∆1 /

(
ρ∆0 + ρ

∆
1

)
∈ [−1,1].

Further details are given in Appendix A-5.
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Table 2: Summary Statistics of Spending in Categories and Services

Log daily total costs
(1) (2) (3) (4) (5)

Radiology Laboratory Medication Transfusion Nursing
Cardiology

5th percentile 0 11 4 0 189
10th percentile 0 16 14 0 244
Median 0 34 67 16 658
Mean 54 51 113 32 661
90th percentile 125 103 233 56 1,075
95th percentile 375 145 417 87 1,212

Oncology
5th percentile 0 3 0 0 192
10th percentile 0 13 13 0 256
Median 0 34 94 12 673
Mean 66 58 155 77 681
90th percentile 248 124 350 204 1,033
95th percentile 423 212 542 411 1,270

General Medicine
5th percentile 0 8 2 0 160
10th percentile 0 12 10 0 205
Median 0 35 69 14 561
Mean 66 62 99 38 577
90th percentile 234 139 210 48 959
95th percentile 385 222 286 95 1,130

Note: This table reports summary statistics of patient-daily spending in categories across columns, and in ward ser-
vices of cardiology, oncology, and general medicine. The statistics are calculated based on 56,780, 66,662, and 96,632
patient-day observations on the cardiology, oncology, and general medicine services, respectively.
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Table 4: Model Parameter Estimates by Day of Stay and Patient Severity

Day of Stay Patient Severity
(1) (2) (3) (4)

Early Late
High

Severity
Low

Severity

Knowledge parameters

Prior to training (ρ0)
0.076

(0.056)
0.006

(0.000)
0.091

(0.078)
0.060

(0.059)

First year (ρ1)
0.346

(0.223)
0.294

(0.087)
0.371

(0.299)
0.207

(0.253)

Second year (ρ2)
6.681

(2.528)
6.655

(1.414)
6.242

(2.719)
7.644

(3.572)

Third year (ρ3)
0.000

(0.000)
0.845

(0.007)
0.000

(0.000)
0.000

(2.000)
Influence parameters

Deviation after first year (δ1)
0.271

(0.288)
0.192

(0.198)
0.294

(0.315)
0.204

(0.300)

Deviation after second year (δ2)
−0.912
(0.719)

−1.554
(0.082)

−1.347
(0.780)

−0.367
(1.597)

Supervisory information (P)
3.850

(0.545)
3.495

(0.419)
3.725

(0.608)
3.759

(0.622)

Likelihood ratio test p-value 0.151 0.000 0.020 0.182

Note: This table shows parameter estimates of the model of learning and influence described in Section 4 and specified
in Section 5.1. Columns correspond to models estimated on observations by patient-day: Columns 1 and 2 are for days
respectively before or after the middle of each patient’s stay; Columns 3 and 4 are for patients with above- or below-
median expected 30-day mortality, respectively. Parameters are as described in the note for Table 3 and are estimated
from reduced-form practice variation moments, as shown in Figure 3 for type of patient-day. The likelihood ratio test
p-value compares the estimated model against a restricted model of no learning (i.e., only ρ0, δ1, and P are non-zero).
Standard errors are displayed in parentheses.
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Appendix (for Online Publication per Referees / Editor)

A-1 Random Assignment

This appendix presents two sets of randomization tests for exogenous assignment, complementing evidence

in Table 1. Section A-1.1 presents results regarding the assignment of patients to trainees. Section A-1.2

presents the assignment of trainees to supervising physicians.

A-1.1 Assignment of Patients to Trainees

First, I test for the joint significance of trainee identities in regressions of this form:

Xa = Tt (a)η + µs(a) + ζ
τ<T
j (a) + ζ

τ>T
k (a) + ζ`(a) + εa, (A-1)

where a is a patient admission and Xa is some patient characteristic or linear combination of patient char-

acteristics for the patient in admission a, described in Section 2.4. t (a) refers to the day of admission, s (a)

is the service of admission, j (a) is the junior trainee, k (a) is the senior trainee, and ` (a) is the supervising

physician. Tt (a) is a set of time categories for the admission day, including the day of the week and the

month-year interaction; µs is a fixed effect that corresponds to the admitting service s (e.g., “heart failure

service” or “oncology service”). ζτ<Ti , ζτ>Tj , and ζk are fixed effects for the intern i, resident j, and at-

tending k, respectively. I do not impose any relationship between the fixed effect of a trainee as an intern

and the fixed effect of the same trainee as a resident. I then test for the joint significance of the fixed effects(
ζτ<Tj , ζτ>T

k

)
j ∈J ,k ∈K

.

In Column 1 of Table A-1, I show F-statistics and the corresponding p-values for the null hypothesis that(
ζτ<Tj , ζτ>T

k

)
j ∈J ,k ∈K

= 0. I perform the regression (A-1) separately each of the following patient charac-

teristics Xa as a dependent variable: patient age, a dummy for male gender, and a dummy for white race.32 I

also perform (A-1) using as dependent variables the linear prediction of log admission total spending based

on patient age, race, and gender. I fail to find joint statistical significance for any of these tests.

Second, I test for the significance of trainee characteristics in regressions of this form:

Xa = Tt (a)η + µs(a) +γ1 Z j (a) +γ2 Zk (a) + ζ`(a) + εa . (A-2)

Equation (A-2) is similar to Equation (A-1), except for the use of a vector of trainee characteristics Z j (a)

and Zk (a) for the junior and senior trainee, respectively, on day of admission to test whether certain types

of residents are more likely to be assigned certain types of patients. Trainee characteristics include the

following: position on the rank list; USMLE Step 1 score; sex; age at the start of training; and dummies

for foreign medical school, rare medical school, AOA honor society membership, PhD or another graduate

degree, and racial minority.

Columns 2 and 3 of Table A-1 show F-statistics and the corresponding p-values for the null hypothesis

32I do not test for balance in patient diagnoses, because these are discovered and coded by physicians potentially endogenous.
Including or excluding them in the baseline specification of Equation (1) does not qualitatively affect results.
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that (γ1, γ2) = 0. Column 2 includes all trainee characteristics in Zh ; column 3 excludes position on the

rank list, since this information is missing for a sizable proportion of trainees. Patient characteristics for

dependent variables in (A-2) are the same as in (A-1). Again, I fail to find joint significance for any of these

tests.

Third, I compare the distributions of patient age and of predicted total costs across patients admitted to

interns and residents with high or low spending. I consider trainee spending effects that are fixed within

junior or senior role using this regression:

Ya = Xa β+Tt (a)η + ζ
τ<T
j (a) + ζ

τ>T
k (a) + ζ`(a) + εa, (A-3)

where Ya is log total spending for admission a, and other variables are defined similarly as in Equation

(A-1). Figure A-1 shows kernel density plots of the age distributions for patients assigned to interns and

residents, respectively, each of which compare trainees with practice styles above and below the mean.

Figure A-2 plots the distribution of predicted spending for patients assigned to trainees with above- or

below-mean spending practice styles. There is essentially no difference across the distribution of age or

predicted spending for patients assigned to trainees with high or low spending practice styles. Kolmogorov-

Smirnov statistics cannot reject the null that the underlying distributions are different.

A-1.2 Assignment of Trainees to Other Providers

To test whether certain types of trainees are more likely to be assigned to certain types of other trainees and

attending physicians, I perform the following regression to examine the correlation between two trainees

and between a trainee and the supervising physician assigned to the same patient:

ζ̂ rh(a) = γh ζ̂
1−r
−h(a) +γ` ζ̂`(a) + εa, (A-4)

where r ≡ 1 (τ > T ) is an indicator for whether the fixed effect for trainee h was calculated while h was a

junior trainee (r = 0) or a senior trainee (r = 1). As in Equation (A-1), I assume no relationship between

ζ̂τ<T
h

and ζ̂τ>T
h
. Each observation in Equation (A-4) corresponds to an admission a, but where error terms

are clustered at the level of the intern-resident-attending team, since there are multiple observations for a

given team. ζ̂` is the estimated fixed effect for attending k.33 Estimates for γh and γ` are small, insignificant,

and even slightly negative.

Second, I perform a similar exercise as in the previous subsection, in which I plot the distribution of

estimated attending fixed effects working with trainees with above- or below-mean spending practice styles.

In Figure A-3, the practice-style distribution for attendings is similar for those assigned to high- versus

low-spending trainees. As for distributions of patient characteristics in Appendix A-1.1, differences in the

distributions are not qualitatively significant, and Kolmogorov-Smirnov statistics cannot reject the null that

33I use two approaches to get around the reflection problem due to the first-stage joint estimation of ζ0
j
, ζ1

k
, and ζ` (Manski,

1993). First, I perform (A-4) using “jack-knife” estimates of fixed effects, in which I exclude observations with −h and ` to
compute the ζ̂h

r estimate that I use with ζ̂1−r
−h

and ζ̂k . Second, I use the approach by Mas and Moretti (2009), in which I include
nuisance parameters in the first stage to absorb team fixed effects for

(
j, k, `

)
.
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these distributions are different, at least when clustering at the level of the intern-resident-attending team.

A-2 Statistical Model of Trainee Effects

In this appendix I introduce a statistical model to estimate the standard deviation σ (τ) of trainee effects ξτ
h

in discrete tenure period τ and the correlation ρ (τ1, τ2) between trainee effects ξτ1
h

and ξτ2
h

in two discrete

periods, τ1 and τ2. Random assignment of patients to trainee, conditional on time categories, allows me to

estimate trainee effects.34 Finite observations per trainee-period means that effects will be estimated with

error, which implies that standard deviations of unshrunken effects will overstate the true σ (τ). Further,

correlations of fixed effect estimates of ξτ1
h

and ξτ2
h

will generally understate true correlations, and comparing

the relative magnitudes of correlations between two pairs of periods will be invalid.

I adopt a random effects approach in which I simultaneously estimate both distributions of intern and

resident effects by maximum likelihood. First, similar in spirit to Chetty et al. (2014) and closely related to

the idea of restricted maximum likelihood (REML) (Patterson and Thompson, 1971), I create the differenced

outcome Ỹit = Yit −
(
Xi β̂+Tt η̂ + ζ̂`(i, t )

)
. Importantly, β̂, η̂, and ζ̂` are estimated using variation within

trainee pairs and discrete tenure periods, so that Ỹit can be thought of as including the trainee effects of

interest. This differencing procedure allows the trainee effects to be correlated with Xi , Tt , and ζ`.35 Note

that E
[
Ỹit

]
= 0. In practice, given random assignment of attending physicians and patients to trainees

conditional on schedules, I am concerned only with correlations between trainee effects and Tt . However,

differencing out projections due to Xi and ζ` simplifies computation and avoids the incidental parameters

problem in the later maximum-likelihood stage. In the next two subsections I will describe how I calculate

σ (τ) and ρ (τ1, τ2).

A-2.1 Standard Deviation of Trainee Effects

To estimate σ (τ), I specify a crossed random effects model for each set of days comprising a trainee tenure

period τ,

Ỹit = ξ
τ ( j (i, t ), t )
j (i, t ) + ξτ (k (i, t ), t )

k (i, t ) + εit, (A-5)

using observations for which τ (h, t) = τ. In other specifications, I consider a random effect model that

allows for unobserved heterogeneity in patients:

Ỹit = ξ
τ ( j (i, t ), t )
j (i, t ) + ξτ (k (i, t ), t )

k (i, t ) + νi + εit, (A-6)

34I do not strictly require conditional random assignment of patients to trainees if I use patients that are shared by multiple interns
or residents due to lengths of stay spanning scheduling shifts. However, I do not rely on this in my baseline specification, in order
to use more of the data.

35An alternative albeit slightly more involved approach involves estimating “correlated random effects,” as described by Cham-
berlain (1984) and Abowd et al. (2008).
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where νi is a random effect for the patient admission.36 Because trainees are assigned conditionally ran-

domly to each other and to patients, ξτ ( j (i, t ), t )
j (i, t ) , ξτ (k (i, t ), t )

k (i, t ) , and νi are uncorrelated with one another. Assum-

ing ξτj , ξτ
′

k
, and νi are normally distributed, their standard deviations σξ,τ , σξ,τ′, and σν are the parameters

of interest in the following maximum-likelihood estimation, done in separate samples selected on τ.

Equations (A-5) and (A-6) can be stated in vector form:

Ỹ = Zu+ ε, (A-7)

where Ỹ is the n× 1 vector of differenced outcomes, Z is a selection matrix, and u is a stacked vector of

random effects.

Let Nτ be the number of trainees with some tenure interval τ (e.g., 1 to 60 days) and Nτ
−h

be the

corresponding teammates observed in the sample. Then, in the case that (A-7) represents (A-5), Z is an

n×
(
Nτ +N−τ

)
selection matrix for trainees with tenure τ and their peers, and u is an

(
Nτ +N−τ

)
×1 stacked

vector of trainees and peer random effects. The variance-covariance matrix of u is diagonal:

Var u =G =


σ2
ξ,τINτ 0

0 σ2
ξ,τ′IN−τ


.

Similarly, in the case that (A-7) represents (A-6), Z is an n×
(
Nτ +N−τ +Ni

)
selection matrix for trainees

of tenure τ, teammates, and patient admissions, and u is an
(
Nτ +N−τ +Ni

)
× 1 stacked vector of intern,

resident, and admission random effects, where Ni is additionally the number of admissions in the sample.

The diagonal variance-covariance matrix of u is

Var u =G =



σ2
ξ,τINτ 0 0

0 σ2
ξ,τ+∆IN−τ 0

0 0 σ2
νINi



.

Using the definition V = ZGZ′+σ2
εIit , the log likelihood function under either of the above specifica-

tions is

L = −
1
2

{
n log (2π) + log |V| + Ỹ′V−1Ỹ

}
. (A-8)

I estimate (A-5) or (A-6) by maximum likelihood, for each τ separately. Holding the tenure of h fixed at τ,

the tenure of the other teammate will possibly be a mixture if τ is less than one year (i.e., corresponds to

junior trainees). I thus focus on σ (τ) ≡ σξ,τ and not σξ,τ′, although results do not qualitatively depend on

this.
36This specification requires the use of sparse matrices for estimation. In specifications without the use of sparse matrices, I nest

this effect within interns, i.e., I include νai as an intern-admission effect. While it is easier to estimate a specification with νai , I
will describe this specification for ease of explication. In practice, results are materially unaffected by whether I use νa or νai , or
in fact whether I include an admission-related effect at all.
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A-2.2 Correlation of Trainee Effects

To estimate ρ (τ1, τ2), I augment models in (A-5) and (A-6) to account for two separate tenure periods, τ1
and τ2, across which trainee effects may be correlated. Although I observe each trainee across her entire

training, I only observe a subset of these trainees in each 60-day or 120-day tenure period. The number

of trainees observed in two different tenure periods is even smaller. Because trainees that I do not observe

in both τ1 and τ2 do not contribute to the estimate of ρ (τ1, τ2), I include in the estimation sample only

observations associated with a trainee observed in both tenure periods.

Specifically, in place of Equation (A-5), I consider

Ỹit = ξ
p(i, t )
h(i, t ) + ξ−h(i, t ) + εit, (A-9)

which features the function p (i, t) ∈ {τ1, τ2}. This specifies that effects of trainees in the tenure periods

of interest (τ1 and τ2) may be drawn from two separate distributions depending on the tenure period τ1 or

τ2 corresponding to observation t, while effects of the teammates are pooled into a single distribution not

dependent on tenure. The analog for Equation (A-6) is

Ỹit = ξ
p(i, t )
h(i, t ) + ξ−h(i, t ) + νi + εit . (A-10)

As above, both (A-9) and (A-10) can be written in the vector form of (A-7). When representing (A-9)

as (A-7), the selection matrix Z is of size n×
(
2Nτ +N−τ

)
, since it now maps observations onto one of two

random effects, depending on whether p (i, t) = τ1 or p (i, t) = τ2, for each trainee h observed in both τ1
and τ2 tenure periods. The stacked vector of random effects u is similarly of size

(
2Nτ +N−τ

)
× 1. The

variance-covariance matrix of u is

Var u =G =


Gτ 0
0 σ2

ξ,τ′IN−τ


,

where Gτ is a 2Nτ ×2Nτ block-diagonal matrix of the form

Gτ =



A 0 · · · 0

0 A
...

...
. . . 0

0 · · · 0 A



,

with each block being the 2× 2 variance-covariance matrix A of random effects within trainee and across

tenure periods:

Var


ξτ1
h

ξτ2
h


= A, for all h.

Representing (A-10) as (A-7) is a similar exercise. The selection matrix Z is of size n×
(
2Nτ +N−τ +Ni

)
,
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and the vector of random effects u is of size
(
2Nτ +N−τ +Ni

)
×1. The variance-covariance matrix of u is

Var u =G =



Gτ 0 0
0 σ2

ξ,τ′IN−τ 0
0 0 σ2

vINi



,

where Gτ is the same as before. The log likelihood is the same as in Equation (A-8), but using revised

definitions of G that allow for covariance between random effects of the same trainees across tenure periods.

The correlation parameter of interest ρ (τ1, τ2) is estimated from Â and is constrained to be between −1 and

1.

A-3 Alternative Mechanisms

A-3.1 Intrinsic Heterogeneity: Trainee Characteristics

The key alternative explanation for persistent variation that I explore in this section is that physicians may in-

trinsically differ for reasons unrelated to knowledge and learning, such as preferences or ability (e.g., Doyle

et al., 2010; Fox and Smeets, 2011; Bartel et al., 2014). To assess the possibility of intrinsic heterogeneity,

I first exploit detailed trainee characteristics that should be highly correlated with preferences and ability.

For example, USMLE scores measure medical knowledge as a medical student; position on the residency

rank lists reflects overall desirability; and specialty tracks, mostly predetermined relative to the beginning

of residency, reflect important career decisions and lifestyle preferences, such as a decision to become a

radiologist rather than a primary care physician. To capture the variety of future career paths across internal

medicine trainees, I impute future yearly incomes after specialty training based on the final specialty choices

of trainees. As cited in Section 2.4, trainees with above-median future incomes will earn substantially more

than their peers with below-median future incomes.

I assess the relationship between each of these characteristics and daily spending totals for either the

junior or senior trainee:

Yit = αmCharacteristicmh(i, t ) +Xi β+Ttη + ζ−h(i, t ) + ζ`(i, t ) + εai jk t, (A-11)

where Characteristicm
h

is an indicator for whether the junior (or senior) trainee h has the characteristic m,

ζ−h is a fixed effect for the other senior (or junior) trainee −h, and ζ` is a fixed effect for attending `.37

The coefficient of interest, αm , quantifies the predictive effect of a trainee with characteristic m on patient

spending decisions. I also evaluate the combined predictive effect of trainee characteristics in two steps.

First, I regress outcomes on all direct trainee characteristics, with continuous characteristics like position on

37In principle, I could include trainee characteristics as mean shifters in the baseline random effects model in Equation (1).
However, since characteristics are generally insignificant predictors of variation, results of (residual) variation attributable to trainees
are unchanged.

A-6



rank list entered linearly, along with the other admission and time regressors in Equation (A-11):

Yit =
∑
m

αmCharacteristicmh(i, t ) +Xi β+Ttη + ζ−h(i, t ) + ζ`(i, t ) + εit . (A-12)

This yields a predicted score Zh for each trainee h, Zh =
∑

m α̂mCharacteristicm
h

, which I normalize to

Z̃h = Zh/
√

Var (Zh ) with standard deviation 1. Second, I regress daily total spending on this normalized

score:

Yit = α Z̃h(i, t ) +Xi β+Ttη + ζ−h(i, t ) + ζ`(i, t ) + εit . (A-13)

In addition, I evaluate the predictive power of trainee characteristics more flexibly by allowing splines

of continuous characteristics and two-way interactions between characteristics, while assuming an “approx-

imately sparse” model and using LASSO to select for significant characteristics (e.g., Belloni et al., 2014).

This approach guards against overfitting in finite data when the number of potential characteristics becomes

large. In total, excluding collinear characteristics, I consider 36 and 32 direct characteristics for interns and

residents, respectively, and 285 and 308 two-way interactions, as potential regressors in Equation (A-11).

Table A-2 shows results for Equation (A-13) and a subset of results for Equation (A-11). Considering

characteristics individually in Equation (A-11), only two characteristics (gender and high USMLE test score)

are statistically significant at the 5% level, and no characteristic approaches the one-standard deviation

benchmark effect in the trainee effect distribution. Likewise, a standard-deviation change in the overall

predictive score has no economically significant effect on spending for either interns or residents. LASSO

selected no intern characteristic as significant and selected only resident gender as significant. Although it

is possible that there are other unmeasured and orthogonal characteristics that are more relevant for practice

variation, this seems a priori unlikely given that these are the characteristics on which the residency program

bases acceptance decisions,38 and that they are also highly predictive of future career paths and incomes.

Finally, I investigate the distribution of trainee effects as a function of tenure for trainees in different

groups. As shown in Figure 4, the distributions of trainee effects throughout training are not meaningfully

different between groups of trainees separated by their test scores, rank list positions, or future earnings. This

finding implies that trainees who differ significantly along meaningful dimensions still practice similarly not

only on average, but also in terms of variation over time. That is, trainees evaluated with higher test scores,

more desirable rankings, or higher future earnings do not exhibit lower variation or higher convergence over

training.

A-3.2 Intrinsic Heterogeneity: Serial Correlation

As a second method to evaluate intrinsic heterogeneity, I examine serial correlation in trainee effects. In

the case of unchanging heterogeneity, physician practice styles should be constantly and highly correlated

across time periods, regardless of the time between the periods. However, if patients are incorporating new

knowledge and evolving in their practice styles, then adjacent time periods should exhibit higher correla-

38Using the same characteristics to predict whether a trainee was ranked in the upper half on the residency program’s rank list
(excluding rank as a characteristic) yields a predictive score that with one standard deviation changes the probability of being highly
ranked by about 20%.
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tion in trainee effects than do distant time periods. Appendix A-2.2 describes details of estimating serial

correlation across tenure periods in my random-effects framework.

In Figure A-7, I show correlation estimates between each pair of tenure periods. Serial correlation in

trainee effects across two adjacent periods are generally very high and above 0.9, while the correlation

decreases with more distance between the two periods. Interestingly, correlation is uniformly high between

any two periods within the first year of training, when trainees are junior. However, correlation diminishes

at a quicker pace when trainees are senior, in the second and third years of training. This implies that

practice styles change more rapidly when trainees are senior. There also appears to be a uniform drop

in correlation across the one-year mark, and to a lesser extent across the two-year mark, which could be

consistent with changes in practice style that are induced by changes in relative seniority or changes in the

cohort of teammates. This block-autocorrelation structure, with greater correlation within yeras but less

correlation across years, is robust to including a number of fixed effects in the REML procedure.

A-3.3 Learning by Osmosis: Predictable Learning

Finally, I assess whether trainee practice styles can be predicted by the sequence of observable learning

experiences. This evaluation tests two concepts. First, practice styles may predictably change if they reflect

acquired skill that may grow with greater experience. Second, trainees may absorb spending patterns from

supervising physicians or from a broader practice environment.39

To explore the potential effect of learning from others in greater detail, I estimate supervising physician

“effects” by shrinking their observed fixed effects, and I similarly calculate best linear unbiased predictions

(BLUPs) of senior trainee effects. The standard deviation of shrunken supervising physician effects is 7.3%,

and the standard deviation of the senior trainee BLUPs is 16.6% in terms of overall spending. I then form

measures of prior exposure to spending due to supervising physicians by averaging spending effects of

supervising physicians who have previously worked with a given trainee, weighted by patient-days, at a

given point in time. This exposure measure may or may not be restricted to patient-days on the same ward

service (e.g., cardiology, oncology, or general medicine). Similarly, the measure may be calculated for all

prior patient-days or only for patient-days in the last three months. I also calculate similar measures of

exposure to senior trainees for trainees based on their previous team matches when they were junior.

For a given prior exposure measure, I define trainees with above-median measures in a given tenure

period as having “high exposure” to spending and trainees with below-median measures as having “low ex-

posure” to spending. Compared to other trainees with the same tenure, these trainees have worked with at-

tending physicians or residents trainees (while they were interns) with higher average spending effects. Table

A-3 shows the difference between high-exposure and low-exposure trainees for various spending-exposure

measures at different trainee tenure periods. Differences between high and low exposure to supervising-

physician spending range from 1.9% to 6.7%. Differences between high and low exposure to senior-trainee

spending range from 17.5% to 23.4%.

39The related concept of “schools of thought,” in which physicians may have systematically different training experiences, has
been proposed as a mechanism for geographic variation (e.g., Phelps and Mooney, 1993). This hypothesis is not inconsistent with
tacit knowledge and in fact relies partly on it, but it does not by itself explain large variation within the same training program.
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I then estimate the effect of high exposure to spending over each tenure period of training with a regres-

sion of the form

Yit =
∑
τ:τ<1

ατ1 (τ ( j (i, t) , t) = τ) ·HighSpendingExposuremj (i, t ), t + (A-14)∑
τ:τ≥1

ατ1 (τ (k (i, t) , t) = τ) ·HighSpendingExposuremk (i, t ), t +

Xi β+Ttη + ζ`(i, t ) + εit,

where, as in Equation (1), j (i, t) is the junior trainee, k (i, t) is the senior trainee, and τ ( j (i, t) , t) and

τ (k (i, t) , t) are the relevant tenure periods of the junior and senior trainees at t. HighSpendingExposuremj, t
and HighSpendingExposuremk, t are indicators for high exposure to spending under measure m for the junior

and senior trainee, respectively. The effect of this exposure can vary by τ. Figure 5 shows results for expo-

sure to spending by supervising physicians, and Figure A-8 shows similar results for exposure to spending

by senior trainees. Results among the wide range of exposure measures are broadly insignificant.

More broadly, I also consider several measures of prior experience—including days on ward service,

patients seen, and supervising physicians for a given trainee prior to a patient encounter—for either the

junior or senior trainee. For each of these experience measures, I estimate a regression of the form

Yit = αmExperiencemh(i, t ), t +Xi β+Ttη + ζ−h(i, t ) + ζ`(i, t ) + εit, (A-15)

where Experiencemh, t is an indicator for whether trainee h at time t has experienced a measure (e.g., number

of days on service, average supervising physician spending effect) above median for the relevant tenure pe-

riod, where both the measure and the median are calculated using observations prior to the relevant tenure

period. In my baseline specification, I control for the other trainee and supervising physician identities,

although this does not qualitatively affect results. Results are shown in Table A-4 and are broadly insignifi-

cant. A LASSO implementation that jointly considers a larger number of summary experience measures in

early or more recent months relative to the patient encounter, as well as two-way interactions between these

measures (112 and 288 variables for interns and residents, respectively), also fails to select any measure as

significant.

In addition to trainees in the main residency program, I observe visiting trainees based in a hospital with

20% lower Medicare spending according to the Dartmouth Atlas. I evaluate the effect of these trainees on

teams, as interns and as residents, using Equation (A-11). This effect includes both differences in selection

(i.e., intrinsic heterogeneity) into the different program and in training experiences across the programs.

Table A-2 shows that visiting trainees do not have significantly different spending effects, either as interns

or as residents.40

Overall, these results indicate that summary measures of trainee experience are poor predictors of prac-

tice and outcomes, especially relative to the large variation across trainees. The results fail to support
40This result of course does not rule out that training programs can matter. Doyle et al. (2010) studies the effect of trainee teams

from two different programs and find that trainees from the higher-prestige program spend less. However, this result does suggest
that even when trainees come from significantly different hospitals, differences in their mean practice styles can be dwarfed by
variation within training program.
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“learning by osmosis” as a major source of practice variation, at least within an organization with ex ante

uniform training experiences but nonetheless large practice variation.

A-4 Identification from Practice Variation Profiles

A-4.1 Analytical Evaluation

I first make analytical observations on the shape of practice variation profiles as a function of underlying

learning and influence. Consider practice variation—or the standard deviation of trainee effects—under

statically efficient influence:

σ (τh, τ−h ) =
g∗ (τh ;τ−h )√
ρ (τh )

=

√
ρ (τh )

ρ (τh ) + ρ (τ−h ) +P
, (A-16)

where I assume that κ = 1 in (5) without loss of generality.

As a first observation, note that the discontinuity in practice variation is greater across the one-year

tenure mark than it is across the two-year tenure mark.

Proposition A-1. Defineσ
(
1−

)
≡ limτ→1− E−h [σ (τh, τ−h ) | τh], andσ

(
1+

)
≡ limτ→1+ E−h [σ (τh, τ−h ) | τh];

similarly define σ
(
2−

)
≡ limτ→2− E−h [σ (τh, τ−h ) | τh], and σ

(
T+

)
≡ limτ→2+ E−h [σ (τh, τ−h ) | τh]. Then

σ
(
1+

)
σ (1−)

>
σ

(
2+

)
σ (2−)

> 1.

Proof. Assume that interns work with second-year residents in λ proportion of the time and work with

third-year residents in the remaining 1− λ proportion of the time. At the first-year discontinuity,

σ
(
1+

)
σ (1−)

=
ρ (1) + λρ (2) + (1− λ) ρ (3) +P

ρ (1) + ρ (0) +P
.

At the second-year discontinuity,

σ
(
2+

)
σ (2−)

=
ρ (2) + ρ (1) +P
ρ (2) + ρ (0) +P

.

Since ρ (·) is increasing in τ, ρ (0) ≤ ρ (1) ≤ ρ (2) ≤ ρ (3), which yields our result. �

Because there is a change in the tenure of the other trainees as new interns arrive at the beginning of each

academic year, there is in principle a discontinuous increase in influence (and therefore practice variation)

at the beginning of each year. However, the increase at τh = 1 is always larger than the increase at τh = 2 for

two reasons, both related to the monotonic increase in precision with tenure: First, trainees at τh = 1 have

less precise subjective priors than those at τh = 2, so any decrease in the relative tenure of their peer trainee

increases their influence by more. Second, the decrease in the relative tenure of the peer is greater at τh = 1

(from τ−h = 2 to τ−h = 0) than at τh = 2 (from τ−h = 1 to τ−h = 0). I show below in the numerical examples
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that, within this framework, this difference in the discontinuous increases at τh = 1 and at τh = 2 can be quite

large, and that the discontinuity at τh = 2 can be quite trivial.

Second, I consider whether practice variation is likely to increase or decrease with tenure. Since trainees

and their teammates gain tenure together, I consider τ−h = τh +∆, where ∆ is fixed in a continuous por-

tion of practice variation (i.e., not at the one- or two-year discontinuities). Applying the quotient rule to

σ (τh, τ−h ) = σ (τh, τh +∆),

σ′ (τh ) ≡
∂σ (τh, τh +∆)

δτh

=

1
2 ρ (τh )−1/2 ρ′ (τh ) (ρ (τh ) + ρ (τ−h ) +P) − ρ (τ)1/2 (ρ′ (τ) + ρ′ (τ−h ) )

(ρ (τ) + ρ (τ−h ) +P)2 .

Focusing on the numerator to determine the sign of σ′ (τ), I arrive at the following necessary and sufficient

condition for convergence (i.e., decreasing practice variation with tenure, or σ′ (τh ) < 0):

Proposition A-2. Practice variation decreases if and only if

ρ′ (τh )
ρ′ (τh ) + ρ′ (τ−h )

< 2g∗ (τh ;τ−h ) . (A-17)

Learning (i.e., ρ′ (τh ) > 0) does not guarantee convergence. Instead, convergence requires that the “share

of learning,” defined as ρ′ (τh ) / (ρ′ (τh ) + ρ′ (τ−h ) ), is smaller than twice the influence. Since this “share”

is always less than 1, convergence is guaranteed whenever the trainee has full influence, or g∗ (τh ;τ−h ) = 1,

as is the case in a single decision-maker. The larger the trainee’s influence, the more likely convergence

will occur. Since influence grows with tenure, this also implies that practice variation generally increases

and then decreases. Special cases may involve practice variation only increasing or only decreasing, but not

decreasing and then increasing with tenure.

A-4.2 Numerical Examples

Figure A-9 presents a few numerical examples of variation profiles under various learning profiles described

by functions of the piecewise linear form in Equation (7). The three parameters of interest are ρ0, or initial

knowledge; ρ1, or the rate of increase in the precision during the first year as a junior trainee; and ρ2 = ρ3,

or the rate of increase during the subsequent two years as a senior trainee. The precision of judgments at

the end of training is ρ (3) = ρ0+ ρ1+2ρ2. I also normalize P = 1, so that whether precisions of beliefs are

greater than the precision of the supervisory prior simply depends on whether they are greater or less than 1.

I consider this normalization as only relevant for the scale of the variation profile, since any scale keeping

the same shape over the overall variation profile σ (τ) can be implemented by multiplying ρ0, ρ1, ρ2, and

P by some constant.

I discuss each panel of Figure A-9 in turn:

• Panel A considers equal ρ0 = ρ1 = ρ2 = 0.2, which are relatively small compared to P = 1. The

result is broadly non-convergence, as greater experience primarily results in greater influence against
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a relatively strong supervisory practice environment. The discontinuity in variation is significantly

larger at τ = 1 than at τ = 2. Variation increases in intern year and decreases but only slightly in the

next two years as resident.

• Panel B imposes no resident learning (ρ2 = 0) and presents the limiting case in which discontinuous

increases in variation at τ = 1 and τ = 2 are the same. Variation is still at least as big during the two

years as resident as during the year as intern, driven by influence. Variation seems relatively constant

over training.

• Panel C generates a similar variation profile as in Panel B with a non-zero ρ2 by increasing the ratios

of ρ0 and ρ1 to ρ2. The scale of variation is smaller than in Panel B, which reflects that precision

in trainee beliefs are now larger. A rescaled version with smaller precisions (and smaller P) would

reveal larger relative increases in variation at the discontinuities.

• Panel D examines increasing ρ1 relative to ρ0, so that more learning occurs in the first year of training

compared with knowledge possessed before starting training. Influence more obviously increases

in the first year, and increases in variation are sharper at the discontinuities, since intern experience

matters more. Note that working with a resident is equivalent to working with an end-of-year intern,

and increases in variation at τ = 1 and τ = 2 are the same (as in Panel B).

• Panel E asserts that most of the learning occurs during the role as resident. There is much greater

variation across residents than across interns, and the discontinuous increase in variation is much

larger at τ = 1, while the increase is negligible at τ = 2. There is significant convergence during the

two years as resident.

• Panel F is similar to panel E but shows less convergence during role as resident. The ratio of learning

as intern to learning as resident (ρ1/ρ2) is similar, but learning during training is reduced relative to

knowledge from prior to training (ρ0) and to supervisory information (P).

A-5 Counterfactual Analyses

A-5.1 Model of Learning

As discussed in Section 5.2, under my baseline model of knowledge, with constant rates of learning within

each training year specified in Equation (7), I find that learning is low as a junior trainee in the first year,

high as a senior trainee in the second year, and null in the third year. I interpret the first switch in the rate

of learning—from low learning in the first year to high in the second—as due to the effect of influence on

learning. τ = 1 serves as an intuitive kink point for this switch.

I interpret the second switch in learning—from high learning in the second year to none in the third—as

an indication that trainees have reached “full knowledge,” after which learning stops, due to the relative

benefits and costs of learning, for example, as discussed in footnote 30. It is not obvious why this kink in

the rate of learning should occur at τ = 2. Thus, the first step in my approach for counterfactual analyses is
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to specify a more flexible model of trainee learning, in which this kink point occurs at any τ = τc ∈ (1,3)

during the two years of the senior trainee role. In this model, trainee knowledge takes the form of Equation

(8), which I reproduce here:

ρ (τ) =




ρ0+ ρ1τ, τ ∈ [0,1] ;

ρ0+ ρ1+ ρ2 (τ−1) , τ ∈ [1, τc] ;

ρ0+ ρ1+ ρ2 (τc −1) + ρ3 (τ− τc ) , τ ∈ [τc,3] .

Estimation of this more flexible model yields similar results to those from the baseline model: ρ̂0 = 0.04,

ρ̂1 = 0.20, ρ̂2 = 8.01, ρ̂3 = 0, τ̂c = 1.87, δ̂1 = 0.21, δ̂2 = −1.42, and P̂ = 3.65.

In counterfactual scenarios of learning, I assume that the rate of learning depends on influence, but

that learning continues until full knowledge has been reached. Parameters in Equation (8) imply that full

knowledge is ρ = ρ̂0+ ρ̂1+ ρ̂2 (τ̂c −1) ≈ 7.17, which I consider as fixed in counterfactual scenarios. For the

key relationship that drives learning from influence, I assume that the rates of learning during training, ρ1

and ρ2, are piecewise linear functions of the average influence of the trainee during the respective tenure

intervals, T1 ≡ [0,1] and T2 ≡ [1, τc].

In notation, first define average influence over tenures uniformly distributed in interval T as

g (T ;θ) ≡ Eτh

[
g (τh ;τ−h ) | θ

]
, (A-18)

where influence g (τh ;τ−h ) is given in Equation (4) and depends on θ = (ρ0, ρ1, ρ2, ρ3, δ1, δ2,P). Consider

a counterfactual scenario as defined by key parameters of supervisory information or influence, and denote

the corresponding set of counterfactual parameters as θ∆. Then a counterfactual rate of learning takes the

following form: For t ∈ {1,2},

ρ∆t =




ρ̂1g
(
Tt ;θ∆

)
, g

(
Tt ;θ∆

)
≤ g

(
T1; θ̂

)
,

ρ̂1+
ρ̂2−ρ̂1

g
(
T2;θ̂

)
−g

(
T1;θ̂

) (
g
(
Tt ;θ∆

)
−g

(
T1; θ̂

) )
, g

(
Tt ;θ∆

)
> g

(
T1; θ̂

)
.

(A-19)

Under estimated parameters θ̂, the implied rates of learning are similar for g
(
Tt ;θ∆

)
above and below

g
(
T1; θ̂

)
: ρ̂1/g

(
T1; θ̂

)
≈ 13.2, and ( ρ̂2− ρ̂1) /

(
g
(
T2; θ̂

)
−g

(
T1; θ̂

) )
≈ 14.6.

A-5.2 Counterfactual Scenarios and Outcomes

I consider counterfactual scenarios defined by counterfactual supervisory information (P∆) or influence

between trainees (δ∆1 and δ∆2 ). A counterfactual scenario implies varying levels of influence along the entire

course of training, as given by Equations (4) and (6). Influence also depends on knowledge, as given by

Equation (8), which in turn depends on learning via influence, as given by (A-19).

Thus, I must find an internally consistent set of parameters θ∆ that contains P∆. In all counterfactual

scenarios, I hold fixed ρ∆0 = ρ̂0 and ρ∆3 = ρ̂3 = 0. In counterfactual scenarios involving P∆, I also hold fixed

δ̃∆1 ≡ δ
∆
1 /

(
ρ∆0 + ρ

∆
1

)
= δ1/ (ρ0+ ρ1), since it is not possible to have δ∆1 −

(
ρ∆1 + ρ

∆
0

)
< 0; I similarly hold
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fixed δ̃∆2 ≡ δ
∆
2 /min

(
ρ, ρ∆0 + ρ

∆
1 + ρ

∆
2

)
= δ2/min

(
ρ, ρ0+ ρ1+ ρ2

)
. Conversely, for counterfactual scenarios

involving influence between trainees, I vary δ̃∆1 or δ̃∆2 while holding fixed P∆ = P. Given these constraints,

I identify an internally consistent θ∆ by solving for ρ∆1 and ρ∆2 in the nonlinear system of two equations

implied by Equations (4), (6), (8), (A-18), and (A-19), for t ∈ {1,2}.

For each of the counterfactual scenarios, I consider the following outcomes of learning and decision-

making information:

1. Time for trainees to acquire full knowledge:

τ∆ = 1+
ρ−

(
ρ0+ ρ

∆
1

)
ρ∆2

.

This calculated time summarizes the counterfactual rates of learning, ρ∆1 and ρ∆2 . Since learning is

always incomplete in the first year of training under all counterfactual scenarios (i.e., ρ∆1 < ρ), this

time is always greater than one year.

2. Average information from trainee knowledge: A trainee can contribute no more information than her

knowledge, but she can contribute less if decision-making is statically inefficient between trainees. In

other words, when working with peers of tenure τ−h , trainees of tenure τh contribute precision equal

to

ρ∆ (τh ;τ−h ) =min
(
1,

g (τh ;τ−h )
g∗ (τh ;τ−h )

)
ρ∆ (τh ) .

Counterfactual knowledge, ρ∆ (τh ), is given by Equation (8) using the counterfactual parameters ρ∆1
and ρ∆2 ; ρ̃∆ (τ), as given by Equation (6), may differ from ρ∆ (τ) if δ∆1 , 0 or δ∆2 , 0. For patients

uniformly distributed over the course of an academic year, the average information from trainee teams

is then

Q∆ =
∫ 1

0

(
λ

(
ρ∆ (τ;τ+1) + ρ∆ (τ+1;τ)

)
+ (1− λ)

(
ρ∆ (τ;τ+2) + ρ∆ (τ+2;τ)

) )
dτ,

where λ = 0.7 is the approximate fraction of patients seen by teams with second-year trainees, and 1−

λ is the remaining fraction of patients seen by teams with third-year trainees. The three terms inside

the integral represent levels of information contributed by first-, second-, and third-year trainees,

respectively.

3. Average total information in decision-making: P∆ +Q∆, or the sum of supervisory information and

average information from trainee knowledge.

A-5.3 Discussion of Results

In Figure 8, I show outcomes under counterfactual scenarios varying P∆ and δ̃∆1 . As expected, increasing

P∆ slows the rate of learning and increases the time for trainees to acquire full knowledge. There are direct

effects of P∆ in decreasing trainee influence as well as indirect effects, as trainees with less influence acquire
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less knowledge to contribute to decision-making. Thus, increasing supervisory information decreases the

information from trainee knowledge used in decision-making. The gain in total decision-making information

is reduced by about 40% by this mechanism of diminishing trainee knowledge. In contrast, there is only

limited impact of varying δ̃∆1 on learning and trainee knowledge over the course of residency, at least in the

range of δ̃∆1 ∈ [−1,1]. By decreasing δ̃∆1 , trainees gain more knowledge when they are junior but less when

they are senior. The effect of influence on learning is slightly steeper for senior trainees, which explains

why there are some slight returns to increasing δ̃∆1 in terms of decreasing years to acquire full knowledge

and increasing information from trainee knowledge in the average team decision.

In Figure A-10, I show outcomes under counterfactual scenarios varying δ̃∆2 . The effects of increasing

δ̃∆2 on learning and decision-making information are similar to those of increasing δ̃∆1 : Increasing senior

influence speeds up training and increases overall trainee knowledge. The effect range of counterfactual

values of δ∆2 is larger, since the denominator in δ̃∆2 (i.e., ρ∆ (2)) is larger. Interestingly, around δ̃∆2 = 0,

decreasing δ̃∆2 has a larger effect on Q∆ than does increasing δ̃∆2 , due to the following intuition: Near baseline

parameters, much of the third year involves no learning. Therefore, increasing the influence of third-year

trainees does not aid learning for those trainees, and learning among junior trainees will suffer. However,

learning indirectly increases for second-year trainees who then work with less knowledgeable junior trainees.

Nonetheless, the effects on learning are generally small relative to those for varying P∆.
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Figure A-1: Patients Age by Housestaff Spending Effect
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B: Distribution by Resident Spending Effect

Note: This figure shows the distribution of the age of patients assigned to interns with above- or below-average
spending effects (Panel A) and residents with above- or below-average spending effects (Panel B). Trainee spending
effects, not conditioning by tenure, are estimated by Equation (A-3) as fixed effects by a regression of log spending on
patient characteristics and physician (intern, resident, and attending) identities. Kolmogorov-Smirnov statistics testing
for the difference in distributions yield p-values of 0.496 and 0.875 for interns (Panel A) and residents (Panel B),
respectively.
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Figure A-2: Demographics-predicted Spending by Trainee Spending Effect
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B: Distribution by Resident Spending Effect

Note: This figure shows the distribution of predicted log costs (based on patient age, race, and gender) for patients
assigned interns with above- or below-average spending effects (Panel A) and residents with above- or below-average
spending effects (Panel B). Trainee spending effects, not conditioning by tenure, are estimated by Equation (A-3) as
fixed effects by a regression of log spending on patient characteristics and physician (intern, resident, and attending)
identities. Kolmogorov-Smirnov statistics testing for the difference in distributions yield p-values of 0.683 and 0.745
for interns (Panel A) and residents (Panel B), respectively.
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Figure A-3: Attendings Spending Effects by Trainee Spending Effect
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B: Distribution by Resident Spending Effect

Note: This figure shows the distribution of spending fixed effects for attendings assigned to interns with above- or
below-average spending effects (Panel A) and residents with above- or below-average spending effects (Panel B).
Trainee and attending spending effects, not conditioning by tenure, are estimated by Equation (A-3) as fixed effects
by a regression of log spending on patient characteristics and physician (intern, resident, and attending) identities.
Kolmogorov-Smirnov statistics testing for the difference in distributions yield p-values of 0.059 and 0080 for interns
(Panel A) and residents (Panel B), respectively.
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Figure A-4: Trainee-associated and Residual Variation by Day of Year
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Note: This figure shows the standard deviation of random effects due to junior and senior trainee teams (solid dots)
and the standard deviation of the residual (hollow dots) in 30-day periods by day of the year. Residual variation can be
interpreted as variation due to independent observation. The two vertical gray lines indicate when new junior trainees
begin residency on July 19 and when senior trainees advance a year on July 28 (i.e., becoming a new second-year
senior trainee, becoming a third-year trainee, or completing residency). The model is similar to Equation (1), except
that a single random effect is modeled for the junior and senior trainee combination, instead of two additively separable
random effects for the respective trainees. Controls are given in the note for Figure 1.
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Figure A-5: Practice Variation Profile by ICD-9 Code Frequency
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Note: This figure shows the standard deviation in a random effects model, as in Equation (1), of log daily total
costs at each non-overlapping tenure interval estimated separately using observations with relatively common ICD-9
diagnostic codes (within service) (solid dots) and those with uncommon diagnoses (hollow dots). Controls are the
same as those listed in the caption for Figure 1. Trainees prior to one year in tenure are interns and become residents
after one year in tenure; vertical lines denote the one-year tenure mark.
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Figure A-6: Practice Variation Profile by Guideline Existence
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Note: This figure shows the standard deviation in a random effects model, as in Equation (1), of log daily total costs at
each non-overlapping tenure interval estimated separately using diagnoses with (solid dots) and those without (hollow
dots) published cataloged by the US Agency for Healthcare Research and Quality (guidelines.gov). Controls are
the same as those listed in the caption for Figure 1. Trainees prior to one year in tenure are interns and become
residents after one year in tenure; vertical lines denote the one-year tenure mark.
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Figure A-7: Serial Correlation of Trainee Random Effects
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Note: This figure shows the serial correlation between random effects within trainee between two tenure periods.
Details of the estimation routine are given in Appendix A-2.2. The random effect model of log daily total costs is
given in Equation (1). The model controls are as stated for Figure 1. Trainees prior to one year in tenure are junior
trainees and become senior trainees after one year in tenure
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Figure A-8: Effect of High Exposure to Senior-trainee Spending
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Note: This figure shows the effect of high prior exposure to senior-trainee spending. This exposure measure is
discussed in further detail in Appendix A-3.3 and in Table A-3 and reflects the average spending effects of senior
trainees that a given trainee was matched to in the past as a junior trainee. The tenure-specific effect of having high
prior exposure to spending is estimated as in Equation (A-14). Panel A uses an exposure measure that includes all
prior matches with senior trainees, regardless of the ward service (corresponding to Column 1, Panel B of Table A-3);
Panel B uses an exposure measure that is restricted to prior matches on the same service (corresponding to Column 3,
Panel B of Table A-3). For tenure periods after the one-year mark (shown as the vertical line), the trainee of interest
is senior, and matches with senior trainees all date back to the trainee’s first year of training as a junior trainee. The
model controls are as stated for Figure 1. The effect of high prior exposure to supervising-physician spending is shown
in Figure 5.
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Figure A-9: Numerical Examples of Variation Profiles

.1

.2

.3

.4

.5
St

d.
 d

ev
. o

f e
ffe

ct
s

0 1 2 3
Years tenure

A: k0 = .2, k1 = .2, k2 = .2

.1

.2

.3

.4

.5

St
d.

 d
ev

. o
f e

ffe
ct

s

0 1 2 3
Years tenure

B: k0 = .2, k1 = .2, k2 = 0

.1

.2

.3

.4

.5

St
d.

 d
ev

. o
f e

ffe
ct

s

0 1 2 3
Years tenure

C: k0 = 5, k1 = 5, k2 = 1

.1

.2

.3

.4

.5
St

d.
 d

ev
. o

f e
ffe

ct
s

0 1 2 3
Years tenure

D: k0 = .2, k1 = 5, k2 = 0
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F: k0 = .1, k1 = .2, k2 = 1

Note: This figure shows variation profiles of the expected standard deviation of trainee effects over tenure, σ (τ),
differing by the underlying profile of learning over tenure. Learning is parameterized as a piecewise linear function
g (τ) that describes how the precision of subjective priors increases over tenure. In particular, this figure considers
piecewise linear functions of the form (7), parameterized by ρ0, ρ1, and ρ2 = ρ3. Each panel considers a different set
of parameters of ρ (τ). Given ρ (τ), I calculate the expected standard deviation of trainee effects over tenure using
Equation (A-16). I assume that interns are equally likely to work with second-year residents and third-year residents.
These profiles are discussed further in Appendix A-4.
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Figure A-10: Counterfactual Results, Varying δ2
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Note: This figure shows results for counterfactual scenarios in which I vary the additional deviation in effective
precision for third-year trainees, or δ2 in the model and shown in the x-axes of both panels. The y-axis of Panel A
plots the time for trainees to acquire “full knowledge” (or “years to train”). The y-axis of Panel B plots information
from trainee knowledge (dashed lines) and total information (solid lines) used in decision-making. On each line, I plot
a solid dot indicating actual results and a hollow dot indicating counterfactual results under static efficiency. Lines are
plotted for counterfactual δ∆2 /ρ

∆ (2) ∈ [−1,1]. Further details are given in Appendix A-5.
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Table A-3: Differences in Prior Exposure to Spending

Differences Between High and Low Exposure
(1) (2) (3) (4)

All services Within service
Tenure period
(days)

All prior
Prior 3
months

All prior
Prior 3
months

Panel A: Exposure to Spending by Supervising Physicians
0-60 5.73% 6.11% 4.90% 5.16%
61-120 5.54% 5.94% 4.98% 5.23%
121-180 4.95% 5.81% 4.53% 5.11%
181-240 4.82% 5.85% 3.81% 4.55%
241-300 4.34% 5.61% 3.87% 4.86%
301-365 4.05% 5.33% 3.47% 4.56%
366-425 3.90% 6.34% 4.15% 5.94%
426-485 4.05% 6.66% 4.27% 6.41%
486-545 3.59% 6.21% 3.65% 5.21%
546-605 3.43% 5.69% 3.89% 5.95%
606-665 3.65% 6.60% 4.33% 6.63%
666-730 3.76% 6.43% 3.75% 5.61%
731-850 3.81% 5.35% 2.41% 3.99%
851-970 3.85% 6.33% 2.68% 4.36%
971-1095 3.35% 4.23% 1.94% 3.22%

Panel B: Exposure to Spending by Senior Trainees
0-60 18.73% 19.15% 20.61% 20.70%
61-120 19.73% 20.19% 22.74% 22.92%
121-180 19.39% 20.93% 21.40% 23.22%
181-240 19.44% 20.38% 21.97% 23.36%
241-300 18.78% 19.87% 21.79% 23.42%

301-365 17.52% 17.93% 19.84% 20.24%

Note: This table presents differences in average spending effects of supervising physicians (Panel A) and of senior
trainees (Panel B) who worked with trainees in the past at each tenure period for the trainees. Columns 1 and 2
include prior team pairings in all services, while Columns 3 and 4 only include prior team pairings within the same
service. For example, for an observation in the cardiology service, Columns 3 and 4 only include prior team pairings
for a trainee while working in the cardiology service. Columns 2 and 4 further restrict prior team pairings to those
within the last three months. The spending effect of the relevant supervising physician or senior trainee is the best
linear unbiased prediction (BLUP) in a random effects model of log daily overall spending. Of the set of eligible
prior team pairings, the exposure to spending measure is a weighted average (by patient-day) of the spending effects
of the relevant matched physician (i.e., either the supervising physician or the senior trainee). Trainees in a given
tenure period are categorized as having “high exposure” to spending if this measure is above the median measure for
trainees in the same tenure period. The difference in exposure to spending between high and low exposure is simply
the average measure for high-exposure trainees subtracted by the average measure for low-exposure trainees in a given
tenure period.
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Table A-4: Effect of Trainee Experience on Spending

Log daily total costs
(1) (2) (3) (4) (5)

Number of
days

Number of
patients

Number of
attendings

Attending
spending

Attending
spending

Panel A: Interns
Effect of trainee with
measure above median

0.001
(0.004)

0.000
(0.004)

-0.002
(0.004)

-0.006
(0.005)

0.001
(0.005)

Observations 181,874 181,874 181,874 155,523 129,636
Adjusted R2 0.088 0.088 0.088 0.089 0.090

Panel B: Residents
Effect of trainee with
measure above median

0.003
(0.008)

0.003
(0.007)

-0.005
(0.007)

0.008
(0.005)

0.013**
(0.005)

Observations 199,934 199,934 199,934 182,017 174,534
Adjusted R2 0.090 0.090 0.090 0.087 0.087

Measure and median
within service

Y Y Y N Y

Note: This table reports results for some regressions of the effect of indicators of trainee experience. Panel A shows
results for interns; Panel B shows results for residents. Regressions are of the form in Equation (A-11), where the
coefficient of interest is on an indicator for a group of trainees identified whether their measure (e.g., number of days)
is above the median within a 60-day tenure interval (across all trainees). The relevant tenure interval is the tenure
interval before the one related to the day of the index admission. All columns except for (4) represent measures and
medians that are calculated within service (e.g., number of days is calculated separately for a trainee within cardiology,
oncology, and general medicine and compared to medians similarly calculated within service). Columns 4 and 5
feature a measure of attending spending, which is the average cumulative effect of attending physicians who worked
with the trainee of interest up to the last prior tenure interval. Attending “effects” are calculated by a random effects
method that adjusts for finite-sample bias; since patients are not as good as randomly assigned to attending physicians,
these effects do not have a strict causal interpretation at the level of the attending physician. Other specifications
(e.g., calculating all measures across services, or not conditioning on trainee identity) were similarly estimated as
insignificant and omitted from this table for brevity. All models control for patient and admission characteristics, time
dummies, and fixed effects for attending and the other trainees on the team (e.g., the resident is controlled for if the
group is specific to the intern). Standard errors are clustered by admission.
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