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1 Introduction

Scholars have long conceptualized how teams may restructure decision-making. Teams may combine

information across individuals, in order to address more complex problems (Hayek, 1945). Teams

may also handle time-sensitive problems arriving at uncertain times by routing decision-making

through an organizational structure (Marschak and Radner, 1972). Despite the important implica-

tions of teams on economic activity, empirical analysis of how teams and organizations may impact

decision-making remains scarce.

In health care, a large body of evidence documents wide variation across organizational bound-

aries in decisions driven by physicians (McCarthy and Blumenthal, 2006; Institute of Medicine,

2013). Without an understanding of how teams alter decision-making, the scale of practice varia-

tion across organizations seems difficult to reconcile with a similar magnitude of variation across

individual providers (e.g., Skinner, 2012; Van Parys and Skinner, 2016). Large numbers of providers

practicing independently at each institution should mute any systematic variation across organiza-

tions.1 But if decision-making is concentrated in the hands of fewer providers, then they may drive

surprisingly large variation across organizations. Policy implications would then depend on the orga-

nizational and informational frictions leading to such concentration.

I address this empirical question in the setting of medical residency, which is well-suited for

studying team decision-making and the roots of practice variation for several reasons. Each patient

is assigned to a well-defined physician trainee team comprising a junior trainee in the first year of

training and a senior trainee past the first year of training. Teams are reshuffled weekly, so that each

physician trainee works with many co-workers throughout training. A large number of patient cases

are quasi-randomly assigned to trainees over the course of residency, and trainees take part in dozens

of medical decisions per patient-day that are captured in the electronic medical record. Finally, as a

separate point of interest, residency training provides a unique window into the evolution of practice

variation among providers in health care. By design, residency is an intensive program to impart

knowledge to physicians beyond facts, “developing habits, behaviors, attitudes, and values that will

last a professional lifetime” (Ludmerer, 2014).

1For example, (Molitor, 2017) finds a lack of any systematic sorting of individual providers to locations by their prac-
tices. Perhaps more intriguingly, he also finds that, upon changing locations, providers immediately change their decision-
making to match a local practice style, which suggests that physician decision-making is not independent of the local
environment.
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Specifically, I follow a group of 799 physician trainees in a large academic hospital and exploit

detailed administrative data of physician trainees to teams caring for patients. Team decisions are

measured over a five-year period as detailed orders for 3.4 million medications, 3.1 million laboratory

tests, and 268,065 radiology tests. I aggregate dozens of physician orders by their costs to form

spending summary statistics of team decisions for each of 220,117 patient-days, in categories of

laboratory testing, radiology testing, medication, blood transfusion, and nursing.

Using random assignment of patients to physician teams and frequent rotation of trainees across

teams, I identify the causal trainee effects on team decisions measured by spending at various points

in the trainees’ tenure. Specifically, I employ a strategy similar to that used in a number of papers

starting with Abowd et al. (1999), which have decomposed joint outcomes into contributions due

to workers and firms (Card et al., 2013), workers and managers (Lazear et al., 2015), patients and

geographic locations (Finkelstein et al., 2016), and physicians and locations (Molitor, 2017), among

others. A key difference is that I estimate separate trainee effects at different points in their residency

training, which is possible because of the frequency of the patient observations and of the rotations

across teams. As a central object of interest, I define tenure-specific practice variation as the standard

deviation of the distribution of these trainee effects across trainees in a given tenure period. Given the

finite number of observations per trainee in a tenure period, I develop an estimation approach based

on random effects in a hierarchical model (Searle et al., 1992; Gelman and Hill, 2007).

Next, I use the team structure in medical residency to decompose trainee effects into two compo-

nents relevant for team decision-making: a trainee’s judgment (what she would have decided on her

own as a single agent) and her influence (the extent to which her judgment sways the team decision). I

isolate the effect of influence by assessing trainee effects across a discontinuity at the one-year tenure

mark: Before one year, trainees have relatively less experience than their teammate, while they have

relatively more experience than their teammate immediately after their first year. Teams may also

induce greater influence due to roles and responsibilities within the team. If trainee judgments (and

other individual characteristics) are plausibly continuous across the one-year mark, then a discontin-

uous change in practice variation across one year reflects the contribution of influence due to any of

these team-induced mechanisms.

I find a significant and discontinuous increase in practice variation across the one-year mark of

training. Junior trainees before this mark show variation in total spending effects with a standard
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deviation of 5%, while senior trainees beginning their second year show variation in total spending

effects with a standard deviation of 24%. Subsequent practice variation remains large to the end of

training, and there is remarkably little convergence in trainee effects. When I consider two-agent

teams (i.e., one junior trainee and one senior trainee is responsible for each patient-day), the senior

trainee is responsible for 0.242

0.052+0.242 ≈ 96% of the variance in team-level decisions.2

The discontinuous change in practice variation at the one-year mark provides strong evidence

that teams matter for decision-making. I consider how such a change in influence across roles might

reflect three types of “team concerns.” First, in classical team theory, teams may address an issue of

bandwidth limits among agents by distributing problems to agents. Since senior trainees split their

time working with two junior trainees, they have time to attend to fewer problems per patient and

should on average have less influence on any given case, an idea known as “management by excep-

tion” (Marschak and Radner, 1972; Garicano, 2000). Second, teams may introduce a principal-agent

problems by their hierarchical nature, inducing herding around senior trainees’ beliefs, effectively

increasing the influence of senior trainees (Prendergast, 1993). Third, teams may aggregate informa-

tion (DeGroot, 2005), by allowing agents to confer with each other before making joint decisions. If

senior trainees have more knowledge than junior trainees, they should have more influence. Addition-

ally, unlike other team concerns, information aggregation may blunt convergence in trainee effects,

since influence continuously increases with knowledge (unlike discrete hierarchical roles and titles).

In the later half of the paper, I shed some empirical light on potential mechanisms that might

explain the combination of (i) a discontinuous increase in practice variation at the one-year tenure

mark, and (ii) a lack of significant convergence in practice variation even as trainees near completion

of residency. First, senior trainees may have greater influence independent of their knowledge, for

example due to institutionalized differences in their job duties or by herding around their beleifs. Re-

latedly, they may simply hold decision rights over important decisions. Second, influence may reflect

systematic differences in knowledge across tenure, acquired by learning during residency. Under the

first mechanism, asymmetric influence arises from frictions in the efficient application of knowledge.

Under the second mechanism, asymmetric influence may represent an efficient application of greater

knowledge held by senior trainees; in contrast, this greater knowledge arises from frictions in the

2Other members of the care team outside of trainees include supervising physicians, nurses, pharmacists, and specialty
consultants. I focus on trainee teams because they are the most clearly quasi-randomly assigned.
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acquisition of knowledge.

While these mechanisms may coexist, I consider two scenarios representing extreme versions of

the two mechanisms. Isolating the first mechanism, I consider the possibility of fixed trainee judg-

ments (i.e., knowledge) across residency. In this scenario, physicians possess all their knowledge from

the beginning, and no learning occurs in residency. The increase in influence is thus due only to titles

and decision rights unrelated to knowledge. Contradicting the decision-rights hypothesis—based on

a team-theoretic Garicano (2000) model that routes decisions to different team members, with more

important decisions going to senior trainees—I find that senior trainees have much greater influence

over all types of decisions, both great and small, and particularly over diagnostic decisions that may

be more uncertain (though not particularly expensive). I further rule out the extreme hypothesis of

no-learning by showing that trainee practice styles vary over time. Detailed and seemingly important

time-invariant trainee characteristics predict only a small portion of practice variation. In addition,

the serial correlation between trainee judgments grows weaker time. In contrast to prior literature

that seemingly suggests relatively stable practice styles, this evidence suggests strong learning in the

sense that physician practice styles are highly mutable, at least during physicians’ early careers.3

To isolate the second mechanism, I assume an alternatively extreme scenario that influence is

optimally allocated according to knowledge, as specified by a simple structural model of Bayesian

information aggregation in decision-making, but that knowledge must accrue with training. In this

model, as trainees learn, their increasing influence on team decisions may dampen or reverse any con-

vergence in their practice styles in teams. This stands in contrast with independent decision-making,

in which increasing knowledge will necessarily lead to convergence. Results from this structural

model imply substantial learning in the first year of training, relative to any pre-residency knowledge.

Interestingly, the results also suggest much greater learning when trainees become senior and have

a larger stake in decision-making, which is consistent with large literatures on experiential learning,

positing that learning requires active participation and experience.4 Between trainees, I find that de-

3For example, Epstein and Nicholson (2009) examines practice styles of obstetricians and projects changes of other
obstetricians practicing in the same hospital on the practice style of each index obstetrician. Molitor (2017) examines
practice styles of cardiologist movers and similarly projects changes in the local practice style induced by the move onto
the average practice style of moving cardiologists. In both studies these projections are remarkably stable over time, but they
may mask significant evolution of practice styles unrelated to these projections. Doyle et al. (2010) study physician trainees
from two different residency programs and find systematic differences between trainees of the two programs. However,
they abstract from any variation within program or changes within trainee.

4Notable contributions in this area include John Dewey’s (1938) thoughts on progressive education in Experience and
Education; Maria Montessori’s (1948) method of teaching children; Jean Piaget’s (1971) constructivist theory of knowing;
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viations from optimal influence are small. However, I also find that, relative to their supervisors, the

trainee team receives much more influence than justified by the trainees’ knowledge.

This paper contributes to several literatures. First, it contributes to a general literature on decision-

making in organizations (e.g., Marschak and Radner, 1972; Van Zandt, 1998; Garicano, 2000). As

noted by Hayek (1945, p. 519),

“The peculiar character of the problem of a rational economic order is determined
precisely by the fact that the knowledge of the circumstances of which we must make
use never exists in concentrated or integrated form, but solely as the dispersed bits of
incomplete and frequently contradictory knowledge which all the separate individuals
possess.”

Despite seminal theoretical contributions in this literature, empirical evidence remains scarce. The

evidence in this paper highlights the important team function of aggregating information for a given

decision, because the optimal decision may not be known perfectly by any single agent. This stands

in contrast to canonical team-theoretic models, notably Garicano (2000), that view the function of

organizations as routing problems with known solutions.

Second, this paper sheds new empirical light on the nature of learning, as defined by forming

judgments to make decisions. In economics, a large empirical literature on “learning on the job”

(Mincer, 1962) has mostly relied on wages as a marker of learning, while another empirical literature

studying “learning by doing” (Arrow, 1962) has measured task performance (e.g., speed or accuracy)

attributable to agents or firms gaining experience.5 Neither approach seems appropriate in this setting:

Physician trainees are paid fixed salaries, and complicated and potentially high-stakes decisions are

made in teams with layers of experience.6 This paper makes some progress on this problem by

developing a notion of learning with empirical implications for team decisions.

Third, as noted above, these results relate to a large literature documenting practice variation in

health care (Fisher et al., 2003a,b).7 Academic and policy discussions on this topic often refer to

and Kolb and Fry’s (1975) experiential learning. Similar concepts also include problem-based learning (e.g., Wood, 2003),
and “learning by teaching” (Gartner et al., 1971).

5Examples in the empirical literature of on-the-job training that focuses on wages include Topel (1991) and Kahn and
Lange (2014). Examples in the empirical literature on learning by doing include Benkard (2000), Levitt et al. (2013), and
Hendel and Spiegel (2014).

6Indeed, team-based decision-making may be a key reason why teaching hospitals show no significant decline in patient
outcomes in July, when a sudden (but scheduled) influx of fresh physician trainees arrives (Young et al., 2011; Song and
Huckman, 2018).

7In addition to the literature reviewed by Skinner (2012), recent contributions in the economics literature include Doyle
et al. (2015), Cooper et al. (2015), Chandra et al. (2016), Finkelstein et al. (2016), and Molitor (2017). Much of this
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features of the health care marketplace that insulate providers from competition, but this reasoning

assumes that, absent incentives, providers mostly agree on the diagnosis and treatment for any given

patient (Cutler, 2010; Skinner, 2012). This view is incompatible both with survey evidence revealing

that experts often widely disagree (Cutler et al., 2018). It is also inconsistent with growing evidence

of simultaneous errors of commission and omission among providers in both diagnostic and treatment

decisions (Abaluck et al., 2016; Chan et al., 2019). This paper highlights informational mechanisms

behind wide practice variation in an intense and highly selective training environment designed to

create homogeneity. Interestingly, team decision-making and knowledge frictions may concentrate

influence behind practice variation into the hands of fewer providers who nonetheless disagree with

each other. If so, appropriate policy responses to practice variation should focus on organizational

and informational levers.

The organization of this paper is as follows. Section 2 describes the institutional setting and data.

Section 3 introduces the empirical approach. Section 4 presents main results and discusses how they

relate to team concerns. Section 5 investigates mechanisms in greater detail. Section 6 discusses

policy implications for practice variation and concludes.

2 Setting and Data

2.1 The Structure of Residency

I study trainees associated with the internal medicine residency program of a large teaching hospital.

The program is highly selective, and the hospital is a source of numerous clinical trials and guidelines.

As is standard across internal medicine programs, training takes place over three years in teams

organized by experience: Each patient is cared for by a first-year junior trainee (“intern”) and a

second- or third-year senior trainee (“resident”).

While each patient is assigned to a team of one intern and one resident, residents split their time

between two interns. Thus, interns are assigned half the number of patients as residents. This allows

interns to devote more attention to each patient, and they are usually the first to examine a patient

literature focuses on differences among regions or hospitals. See Epstein and Nicholson (2009) as an example of physician-
level variation that has generally been difficult to explain. Similar informational frictions can underlie differences across
organizations (e.g., Bloom and Van Reenen, 2010). Particularly relevant to the setting of residency training is work by
Doyle et al. (2010) comparing mean practices between two groups of trainees from different programs randomly assigned
patients in the same hospital.
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and make judgments. Each senior trainee (along with the two junior trainees working with her) is

supervised by an “attending” physician, who has completed residency. Teams also operate within a

broad practice environment that influences decision-making, including institutional rules, informa-

tion systems, and other health care workers such as consulting physicians, pharmacists, and nurses.

Trainees on the same teams may come from different predetermined career tracks, other programs

(e.g., obstetrics-gynecology, emergency medicine), or another hospital. A sizable minority of interns

plan only to spend one year in the internal medicine residency (“preliminary” versus “categorical”

interns), subsequently proceeding to another residency program such as anesthesiology, radiology, or

dermatology.

This study focuses on inpatient ward rotations, which comprise cardiology, oncology, and general

medicine services. According to interviews with residency administration, trainee rotation prefer-

ences are not collected and assignment does not consider trainee characteristics. Scheduling is done a

year in advance and does not consider matches among intern, resident, and attending physicians that

will be formed as a result. Supervising physician schedules are created independently, with neither

trainee nor supervising physician aware of one another’s schedule in advance. Therefore, trainees and

supervising physicians are as good as randomly assigned to each other.

Patients admitted to ward services are assigned to interns and residents by a simple algorithm that

distributes patients in a rotation among on-call trainees.8 Patients who remain admitted for more than

one day may be mechanically transferred to other trainees as they change rotations. When one trainee

replaces another, she assumes the entire patient list of the previous trainee. Because trainee blocks are

generally two weeks long and are staggered for interns and residents, patients frequently experience

a change in either the intern or the resident on the team.

2.2 Team Decisions

As in other small-team settings, formal decision rights are rarely invoked in patient care teams. While

senior teammates may influence decisions by their general knowledge or status, junior teammates may

acquire more patient-specific knowledge and are usually charged with implementing decisions. A

variety of protocols and customs common in residency encourage trainees to function independently

8Depending on the reason for admission, patients may be matched to categories of attending physicians according to
the admitting service. Trainees who have reached their capacity may also be taken out of the algorithm for accepting new
patients during the remainder of a call day. Conditional on these constraints, patient types are not matched to trainees.
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and to take responsibility for clinical decisions. For example, junior trainees are listed as the first

point of contact, so that information from patients, nurses, and consultants generally flows through

junior trainees before reaching senior trainees or supervising physicians. Similarly, junior trainees

are expected to write orders and for discussing the care plan with patients and other staff, so that

they are abreast of all decisions made for their patients. While trainees may consult with supervising

physicians in real time, they often make and communicate decisions without prior consultation. As a

practice, supervising physicians will often delay discussing new patients or new developments until

after trainees have evaluated the patient and formulated a treatment plan. Thus, supervisors will often

learn about decisions after they are made.

2.3 Data

I collect data from several sources. First, I observe the identities of each physician on the clinical

team—intern, resident, and attending physician—for each patient on a ward service on each day that

the patient is in the hospital. Over five years, I observe data for 46,091 admissions, equivalent to

220,074 patient-day observations. Corresponding to these admissions are 799 unique trainees and

531 unique attendings. of the trainees, 516 are from the same internal medicine residency, with

the remainder visiting from another residency program within the same hospital or from another

hospital.9 There is no unplanned attrition across years of residency.10

I collect detailed information for each trainee, including demographics, medical school, US Med-

ical Licensing Examination (USMLE) Step 1 test scores, membership in the Alpha Omega Alpha

(AOA) medical honor society, other degrees, and position on the residency rank list. Summary statis-

tics of trainees characteristics are given in Appendix Tables A-2 and A-3 and are consistent with an

elite group of trainees.11 I also observe pre-committed residency tracks for each trainee physician.

In addition to trainee characteristics determined prior to residency, I observe each trainees realized

specialty after her training to impute expected yearly future income in the five years immediately

following this training based on industry-standard survey data from the Medical Group Management

9Of the 799 unique trainees, 649 are observed as interns and 407 are observed as residents. Of the 516 trainees from the
same-hospital internal medicine residency, 401 are observed as interns, and 338 are observed as residents.

10In two cases, interns with hardship or illness in the family were allowed to redo intern year.
11For example, trainees in the data are almost three times more likely to be AOA inductees than the national average,

a trait that predicts a 6-10 greater odds of matching to a first-choice residency program (Rinard and Mahabir, 2010). The
mean USMLE Step 1 score is 244, or approximately the 76th percentile of the national distribution.

8



Association. The average above- and below-median future incomes for junior trainees are $424,000

and $269,000, respectively; the respective numbers for senior trainees are $409,000 and $249,000.12

I use scheduling data and past matches between trainees and with supervising attending physi-

cians. Consistent with Section 2.1, Table 1 shows that interns and residents with high or low spending

effects are exposed to similar types of patients and are equally likely to be assigned to high- or low-

spending coworkers and attendings. Appendix A-1 presents more formal analyses on conditional

random assignment of trainee physicians, including F-tests showing joint insignificance.

Patient demographic information includes age, sex, race, and language. Clinical information de-

rives primarily from billing data, in which I observe International Classification of Diseases, Ninth

Revision, (ICD-9) codes and Diagnostic-related Group (DRG) weights. I use these codes to construct

Charlson comorbidity indices and 29 Elixhauser comorbidity dummies (Charlson et al., 1987; Elix-

hauser et al., 1998). I also observe the identity of the admitting service (e.g., “Heart Failure Team

1”), which categorizes patients admitted for similar reasons. Patients are not randomly assigned to

supervising physicians, since supervising physicians within the same service may belong to different

practice groups (e.g., HMO, private practice, hospitalist) that I do not explicitly capture and condition

on.

I observe cost information for each patient-day aggregated within 30 cost departments used by the

hospital for accounting purposes. I further group these departments into four categories: diagnostic

(laboratory and radiology) testing, medication, blood bank, and nursing. Because costs are based on

the hospital’s accounting of resource utilization due to physician actions, not the measures of Medi-

care reimbursement used in recent studies (Doyle et al., 2015; Skinner and Staiger, 2015; Chandra

et al., 2016), they provide more direct insight into welfare-relevant resource use.13 Consistent with

prior literature on practice variation, I consider spending as a summary statistic of the many actions

involved in patient care. Laboratory costs are based on 3.1 million physician laboratory orders; radi-

ology costs on 268,065 tests ordered in CT, MRI, nuclear medicine, and ultrasound; and medication

costs on 3.4 million medication orders. Table 2 shows distributional statistics of daily spending in

12The difference in future incomes between junior and senior trainees reflects that the career paths for preliminary interns
(e.g., future anesthesiologists, dermatologists, and radiologists) are often more lucrative.

13In this prior research, a difficulty in connecting practice variation in health care to the productivity literature is that
“spending” input measures are actually government-set reimbursement rates that reflect hospital revenues rather than input
costs. In large part, the Medicare reimburses inpatient care prospectively based on diagnoses rather than social cost of
actual utilization.
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each category and in the services of cardiology, oncology, and general medicine.

3 Analysis of Team Decisions

3.1 Potential Decisions

I observe a large set of decisions and the identities of agents on the team responsible for each decision.

However, I do not observe an agent’s contribution to the team decision, which is a key object of inter-

est. The goal of the empirical approach is thus to decompose a team decision into such contributions

made by each agent on the decision, and to allow this decomposition to depend on circumstances that

may shed light on organizational considerations in team decision-making.

To characterize decision-making on a tractable and continuous scale, I reduce the dimensionality

of decisions by aggregating the direct costs of the decisions, observed via the hospital’s accounting

system, for a given patient-day.14 Thus, a patient-day, or the combination (i, t) for patient admission i

and day t, constitutes a “case” for which a team decision is observed. I denote potential team decisions

for patient-day (i, t) assigned to a two-agent team composed of agents j ∈ Jit and k ∈ Kit as Yit ( j, k).

The realized decision is

Yit =
∑
j∈Jit

∑
k∈Kit

Di jtDiktYit ( j, k) . (1)

Di jt ∈ {0,1} and Dikt ∈ {0,1} are indicator variables for assignment. Equivalently, since each case

is assigned to one pair ( j, k), define an assignment function j (i, t) and k (i, t) such that Di jt =

1 ( j = j (i, t) ) and Dikt = 1 (k = k (i, t) ). In this setting, Jit and Kit are disjoint sets for any (i, t)

since j is a junior trainee, and k is a senior trainee.

3.2 Trainee Effects

Given the potential outcome notation in Equation (1), I define trainee effects on team decision-

making. For example, the effect of assignment to trainee j instead of j ′, holding k fixed, is Yit ( j, k) −

Yit ( j ′, k). Similarly, the effect of assignment to trainee k instead of k ′, holding j fixed, is Yit ( j, k) −

14In principle, given these micro-data, I could also study variation at the order level. However, the set of potential orders
is large, and many orders are very specific to certain clinical scenarios that may not be observed frequently. Restricting
study to certain types of clinical decisions, such as C-sections vs. vaginal deliveries (e.g., Currie and Gruber, 1996) or
interventional treatment of heart attacks vs. medical management (e.g., Chandra and Staiger, 2007), is an approach used by
many influential studies in the literature but does not capture the breadth or complementarity of physician decisions made
on a daily basis. Section 5.1 provides some interesting evidence of such complementarity.
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Yit ( j, k ′). Because I only observe Yit = Yit ( j (i, t) , k (i, t) ), effects for a particular case (i, t) are unob-

servable.

My goal is to recover expectations of trainee effects, by making use of quasi-random assignment

of cases to trainees and of trainees to each other, as described in Section 2. Specifically, I consider

the following conditional independence assumption:

Assumption 1 (Quasi-Random Team Assignment). Potential team decisions are independent of

team assignments, conditional on clinical service s (i, t) and indicators of time Tt (e.g., day of the

week, month-year combinations):

{Yit ( j, k) } ( j,k)∈Jit×Kit
⊥⊥

(
Di jt,Dikt

) ��� s (i, t) ,Tt .

If case potential outcomes are conditionally independent of team assignments, then trainee treatment

effects are also conditionally independent of the team assignments. Appendix A-1.1 presents evidence

of quasi-random assignment of patients to trainees, and Appendix A-1.2 presents evidence of quasi-

random assignment of trainees to each other.

In the main analysis, I wish to capture a trainee’s average treatment effect on team decisions,

depending on her tenure and on the tenure of teammates she could be working with. The timing of

residency implies a mechanical relationship between the tenures of the junior and senior trainees.

Since trainees all begin residency at the same time of the year, a junior trainee with tenure τj will

work with senior trainees with one or two more years of tenure, or τk ∈
{
τj +1, τj +2

}
. I consider

a population of cases defined by a feasible combination of junior and senior trainee tenure periods,

or C =
{
(i, t) : τ ( j (i, t) , t) = τj, τ (k (i, t) , t) = τk

}
, where τ (h, t) is a function that maps trainee h at

time t to a tenure period.

I then define

ATE ( j |C ) ≡ E(i,t)∈C
[
Ek∈Kit

[
Yit ( j, k)

]
−E( j,k)∈Jit×Kit

[
Yit ( j, k)

] ]
;

ATE ( k |C ) ≡ E(i,t)∈C
[
Ej∈Jit

[
Yit ( j, k)

]
−E( j,k)∈Jit×Kit

[
Yit ( j, k)

] ]
.

ATE ( j |C ) is junior trainee j’s average effect on team decisions, working with in an “average” senior

trainee, relative to “average” counterfactual teams of junior and senior trainees. ATE ( k |C ) considers
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a similar object for senior trainee k. In both cases, the “average” teammate and the “average” team is

defined by the set of cases, C , that specifies the tenures of the junior and senior trainees.

In these definitions, I exploit the fact that trainee assignment is independent of potential team

decisions; this implies that expectations of Yit ( j, k), holding j or k fixed, are the same regardless of

whether we condition on actual assignment to j or k. Note that ATE ( j |C ) and ATE ( k |C ) depend

not only on the indentity of the trainee j or k, but also on the set of potential teammates implied by C .

The same trainee may have different effects on team decisions in different environments, particularly

depending on whether they are more or less senior to their teammate.

Assumption 1 implies that I can recover consistent estimates of ATE ( j |C ) and ATE ( k |C ) by

the following regression, performed over a sample of observations (i, t) drawn from the population

set C :

Yit = ξCj (i,t) + ξ
C
k (i,t) +γs(i,t) +Ttη + εit, (2)

where ξCj and ξC
k

are trainee effects for the junior and senior trainees, γs(i,t) is a fixed effect for the

clinical service s (i, t), and εit is an error term. By construction, E [εit |s (i, t) ,Tt,Dit ] = 0, where

Dit is a design vector indicating junior trainee and senior trainee identities. Under Assumption 1, we

also have E [εit |s (i, t) ,Tt,Dit ] = E [εit |s (i, t) ,Tt ] = 0. Thus, regression estimates of ξCj and ξC
k

are

consistent estimators of ATE ( j |C ) and ATE ( k |C ), respectively.

Because C is defined by trainee periods τj and τk for the junior and senior trainees, respectively,

I rewrite these effects as ξτj ;τkj and ξτk ;τj
k

to be more explicit about the tenure-dependence of the

estimated trainee effects. In practice, I perform the following regression with additional controls:

Yit = Xit β+ ξ
τj ;τk
j + ξ

τk ;τj
k
+Ttη +γs(i,t) + ζ`(i,t) + εit . (3)

The objects of interest in Equation (3) are tenure-specific trainee effects—ξτj ;τk
j ( ·) and ξτk ;τj

k ( ·) for the

junior and senior trainees, respectively—that depend on the identity of the trainee and the tenure peri-

ods of both trainees. To improve efficiency, I also include fixed effects for the supervising physician,

` (i, t), and a rich set of patient and admission characteristics, Xit .15 These controls are unnecessary

for identification under Assumption 1, and in Section 4.2, I show robustness of results to including

15Specifically, I control for patient race dummies, male gender, linear and quadratic age, the Charlson comorbidity score
(Charlson et al., 1987), 29 Elixhauser comorbidity dummies (Elixhauser et al., 1998), Diagnostic Related Group (DRG)
weights, and day of the patient’s length of stay dummies.
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none of these controls.

3.3 Random-Effects vs. Fixed-Effects Estimation

As described in Abowd et al. (2008), two approaches to estimating Equation (3) are to treat the trainee

effects of interest as “fixed” or as “random.” In this subsection, I adopt the random-effects approach

for three reasons. First, I am interested in measures of practice variation, which are moments of a

distribution of trainee effects, specifically the standard deviation of trainee effects across trainees in

a given tenure period. Random effect estimation directly focuses on this measure, while fixed effect

estimation focuses on individual trainee effects.

Second, relatedly, I observe a finite number of observations for each trainee and in each tenure

period. Importantly, this number of observations may vary for different trainees and in different tenure

periods. Random-effects estimation directly accounts for this by estimating a “prior distribution” of

trainee effects by maximum likelihood. Empirical Bayes posteriors may then be obtained for each

tenure-specific trainee effect, using the estimated prior and the data for each trainee and in each tenure

period. This procedure will “shrink” information from the data toward the prior mean, in a way that

minimizes prediction errors of trainee effects (Morris, 1983; Searle et al., 1992). In contrast, OLS

estimates of a given trainee (fixed) effect make no use of information on other trainee effects, and

naive (unshrunken) fixed-effect estimates of trainee effects will overstate practice variation relative to

the truth.16

Finally, under Assumption 1, the random-effects approach is free of any notion of “connected

sets” that is required under the fixed-effects setup of Abowd et al. (1999). In fixed-effects estimation,

one junior trainee effect and one senior trainee effect must be dropped within each connected set

in order to satisfy a rank condition. Trainees belonging to different connected sets thus cannot be

compared. In finite samples, when I consider trainee effects that are tenure-specific, connections

between trainees will become increasingly sparse.17 In Appendix A-2, I compare Assumption 1 with

16For example, consider the simple model Yi = ξ j (i) + εi , where ξ j ∼ N (0,1), εi ∼ N (0,1), and E
[
εi
���ξ j (i)

]
= 0.

Consider n observations for each agent. The estimated fixed effect for j will be ξ̂ j = n−1 ∑
i:j (i)=j Yi , which will be

measured with error. The standard deviation of estimated agent fixed effects will be
√

1+1/n, which is an overestimate
of the true practice variation of 1. Similarly, the difference between the fixed effect for any two agents is on average
Ej, j′

[
ξ̂ j − ξ̂ j′

]
=

√
4π−1 (1+1/n), while the difference between true effects should be

√
4π−1 (Geary, 1935). Card et al.

(2013) acknowledge this point in Section V.B but abstract away from this finite-sample bias using the argument that n is
roughly fixed across variances they wish to compare; this is not the case in our empirical setting.

17Trainees switch services every week. So, in the limit, if I were to estimate a fixed effects model using only a week of
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a related fixed-effects assumption in Abowd et al. (1999).

3.4 Baseline Implementation

In the random-effects approach, I estimate by maximum likelihood underlying population moments

of trainee effects that would be consistent with the observed data. In the baseline estimation, I focus

on the standard deviation of trainee effects, conditional on the trainee’s tenure τ and on the teammates

tenure τ−, or σ
(
τ;τ−

)
. I specify discrete tenure periods of 60 days for trainees in their first or second

year of residency, or periods of 120 days for trainees in their third year of residency, since training in

the third year involves fewer days spent on clinical activities.18

To improve the robustness of the maximum likelihood estimation, I first form a risk-adjusted

measure of log spending, Ỹit = Yit −
(
Xit β̂+Tt η̂ + γ̂s(i,t) + ζ̂`(i,t)

)
, where the vector of parameters(

β̂, η̂, γ̂s, ζ̂`
)

is estimated by OLS. This approach is a version of restricted maximum likelihood

(REML), which avoids the incidental parameters problem in the later maximum-likelihood stage

(Patterson and Thompson, 1971). Importantly, as in Chetty et al. (2014), I estimate these OLS param-

eters using variation within interactions of trainee pairs and discrete tenure periods, which allows the

remaining trainee effects in Ỹit to be correlated with the predicted portion of log spending due to Xit ,

Tt , s (i, t), and ` (i, t).

I then specify a crossed random effects model,

Ỹit = ξ
τj ;τk
j (i,t) + ξ

τk ;τj
k (i,t) + εit . (4)

Fixing τj and τk , I aim to simultaneously estimate σ
(
τj ;τk

)
and σ

(
τk ;τj

)
by restricting estimation

of Equation (4) to the set of observations C
(
τj, τk

)
=
{
(i, t) : τ ( j (i, t) , t) = τj, τ (k (i, t) , t) = τk

}
. I

can recover the full set of possible standard deviations,
{
σ

(
τ;τ−

) }
(τ,τ−) , by considering different

sets of observations corresponding to combinations of τj and τk . In this way, I impose no functional

form on the shape of practice variation over time, since practice variation in each pair of junior-senior

tenure periods is estimated on a separate sample of observations.

data in which no trainees switch, then in fact no week-specific trainee effects would be identifiable.
18I observe approximately half as many patient-days for trainees in the third year, because third-year trainees spend more

time in research and electives than in the first two years of training.
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Equation (4) can be stated in matrix form:

Ỹ = Du+ ε, (5)

where Ỹ is the vector of differenced outcomes, D is a selection matrix, and u is a stacked vector of

trainee random effects. Let N be the number of observations, NJ be the number of junior trainees,

and NK be the number of senior trainees in the sample C
(
τj, τk

)
. Then the selection matrix D is

N × (NJ +NK ) and assigns each observation (i, t) to a junior trainees with tenure τj and a senior

trainee of tenure τk . The vector u is (NJ +NK ) ×1 and contains the stacked effects of the NJ junior

trainees and NK senior trainees.

Assumption 1 implies that junior and senior trainee effects are independent of each other. So the

variance-covariance matrix of u is diagonal:

Var u =G =



σ2
(
τj ;τk

)
INJ 0

0 σ2
(
τk ;τj

)
INK


.

Further assuming that trainee random effects and the error term are normally distributed, the log

likelihood function is

L = −
1
2
{

N log (2π) + log |V| + Ỹ′V−1Ỹ
}
, (6)

where V = DGD′+σ2
εIN . In each sample of data C

(
τj, τk

)
, I estimate σ

(
τj ;τk

)
and σ

(
τk ;τj

)
by

maximizing Equation (6).

The estimated variance components can be treated as empirical Bayes prior distributions. Treating

Ỹ as data, I can obtain empirical Bayes posterior means as

ũ = G̃D′Ṽ−1Ỹ,

where G̃ and Ṽ are G and V with random-effects estimates of σ2
(
τj ;τk

)
, σ2

(
τk ;τj

)
, and σ2

ε plugged

in. These posterior means are also known as “best linear unbiased predictions” or BLUPs (Searle

et al., 1992).

In Appendix A-3, I detail two extensions of the baseline model. First, I allow for patient admission

random effects, since most patients are admitted for multiple days and may be cared for by multiple
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trainees. Results are qualitatively unchanged when including patient random effects. Second, I allow

for estimation of the correlation between trainee effects of the same trainee in different tenure periods,

which I employ in Section 5.2.

4 Results

4.1 Baseline Results

Figure 1 presents results for practice variation from the baseline implementation described in Section

3.4. For each tenure interval τh, the figure displays an estimate of practice variation, or the estimated

standard deviation of trainee effects among trainees with in the given tenure period.19 A standard-

deviation increase in the effect of junior and senior trainees increases daily total spending by about

5% and 24%, respectively. The difference in practice variation between junior and senior trainees

occurs entirely and discontinuously at the one-year tenure mark. Changes in practice variation are

otherwise muted. In particular, there exists little convergence in practice styles within either the junior

role or the senior role. After the one-year discontinuity, the standard deviation of the trainee effect

distribution remains above 20% throughout. Including or omitting admission-level random effects for

the patient does not qualitatively alter results.

These results suggest that team decision-making is highly concentrated among much fewer agents

than would be the case with independent physician practice. One way to quantify this concentration

is to consider two-agent teams of one junior trainee and one senior trainee for each case. In this

construction, the senior trainee is responsible for 0.242

0.052+0.242 ≈ 96% of the variance in team-level

decisions across cases. This degree of concentration is even higher when accounting for the fact

that a single senior trainee works with two junior trainees: In this case, the practice variation due to

each of the two junior trainees are orthogonal to each other, but the common single senior trainee

will drive practice variation for all patients under her span of control. Senior agents explain 99% of

decision-making variance given this construction.

19As described in Section 3.2, senior trainees of tenure τk only work with junior trainees of a given tenure τj = τk − bτkc ,
where τj and τk are stated in continuous years. Junior trainees of tenure τj may work with senior trainees of tenure τj +1
or τj +2. Differences between σ

(
τj ;τj +1

)
and σ

(
τj ;τj +2

)
are small and statistically insignificant. I therefore average

these two estimates to plot practice variation for tenure τj .
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4.2 Robustness

I perform two robustness exercises to evaluate the validity of the baseline results. In the first robust-

ness exercise, I address the institutional fact that a group of junior trainees known as “preliminary

interns” who are not scheduled to continue in the same internal medicine residency but instead will

switch to other specialties (e.g., anesthesiology, dermatology, anesthesiology) after their first year of

training. While these trainees make up a minority of the overall sample of trainees, if they as a group

have lower practice variation than the remaining group, then their inclusion in the analysis could bias

downward an estimate of the practice-variation discontinuity at the one-year tenure mark for a fixed

group of trainees. Since the identities of preliminary interns are known in advance, I exclude prelim-

inary interns and re-estimate the practice variation profile. Results of this robustness exercise, shown

in Panel A of Figure 2, are qualitatively unchanged.

Second, I consider the possibility that patients may not be quasi-randomly assigned to trainee

teams. In particular, although Appendix A-1 supports Assumption 1 in terms of observable patient

characteristics, patients may differ along unobservable characteristics across different trainee teams.

Since there is only one senior trainee on each team, compared to two junior trainees, systematic sort-

ing of patients across teams would not only bias estimates of trainee effects but would also spuriously

induce greater practice variation among senior trainees. To assess this possibility, I re-estimate the

practice variation profile with no patient controls. As shown in Panel B of Figure 2, the practice

variation profile from this exercise also remains qualitatively unchanged from the baseline implemen-

tation. This shows that including or removing rich patient controls has no qualitative effect on the

key moments of practice variation and is consistent with the causal interpretation of trainee effects

implied by Assumption 1.

4.3 Team Concerns

Variation in trainee effects may reflect two conceptual objects: (i) differences in trainee judgments, if

they were allowed to make decisions on their own, and (ii) influence on team decisions, or the extent

to which trainees may sway team decisions. Judgments may reflect prior knowledge, beliefs, or

preferences, and exist outside of a team setting. In contrast, if agents make decisions independently,

then they will have full and invariant influence. In other words, for influence to matter for practice
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variation, teams must alter the process of decision-making.

I consider three types of “team concerns.” First, in team theory, organizations allocate decisions

to individuals under bandwidth constraints (Marschak and Radner, 1972; Garicano, 2000). Organiza-

tions are naturally hierarchical, and higher levels in this hierarchy, where agents have a greater “span

of control,” handle fewer decisions. Second, in principal-agent models, teams may induce “herding”

of decisions around the beliefs of senior agents, simply based on the prestige, rank, or power of se-

nior agents (Scharfstein and Stein, 1990; Prendergast, 1993). Junior agents may act as “yes men” to

further their careers, at the cost of worse team decisions. Third, teams may aggregate information,

as agents may confer with each other before making team decisions. Joint decisions cannot be fully

separated and distributed to individual agents but instead pool input across agents.

What do team concerns imply for the empirical pattern of practice variation with respect to tenure

in medical residency? I consider two features of medical residency to answer this question and sum-

marize informal implications in Table 3. The first feature concerns the structure of residency teams

relative to the one-year tenure mark. When trainees pass the one-year mark, their span of control,

rank, and relative experience all discontinuously increase. Assuming that judgments and preferences

are continuous across the one-year tenure mark, any discontinuity in practice variation reflects the

impact of influence via team concerns. Limited bandwidth would imply a decrease in practice varia-

tion at the one-year discontinuity, since senior trainees have greater span of control. However, either

career concerns or information aggregation would imply an increase in practice variation at this dis-

continuity. If no team concerns are at play (i.e., physicians practice independently), then there should

be no discontinuity in practice variation at the one-year mark.

The second feature concerns implications for practice convergence under learning, since an im-

mense amount of learning occurs in medical residency, at least according to qualitative reports (Lud-

merer, 2014). If physicians practice independently or if decisions are separable across trainees, learn-

ing would imply convergence in practices over time (i.e., practice variation should decrease with

tenure).20 But if teams aggregate information across agents in joint decisions, then influence may

grow endogenously as judgments become more precise, and there may be no practice convergence

despite dramatic learning in residency.

20In classical team theory, an agent knows how to solve a problem completely or not at all, problems are fully separable
across agents, and the organization is structured so that problems are distributed efficiently to the proper agents.
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5 Mechanisms

In this section, I delve further into mechanisms that may underlie the basic empirical results that (i)

influence jumps discontinuously when trainees assume the senior role, and that (ii) convergence in

practice variation is generally muted even as trainees progress in residency. I consider two types of

mechanisms introduced in Section 4.3. First, senior trainees may arbitrarily exercise greater influence,

regardless of their knowledge. For example, they may hold prestige, rank, or power that is unrelated to

knowledge, or they may simply have decision rights in their jobs for “important” decisions. Second,

influence in teams may depend on systematic differences in knowledge between teammates with

different tenures. This mechanism might allow for differences in knowledge that are simply correlated

across tenure groups, as opposed to within tenure groups. Thus, this mechanism may arise even in the

case that knowledge in individual cases is not directly observable, if general relationships between

tenure and knowledge are known.

The analyses in this section proceed in three parts under the following reasoning. First, if junior

and senior trainees simply have different jobs with different decisions rights, then in the Garicano

(2000) model, junior trainees could have greater control over some types of decisions. On the other

hand, if all decisions require knowledge gained with experience, then we should find the same prac-

tice variation profile over all types of decisions. I will thus first explore heterogeneity across different

types of decisions. Second, in order for the first category of mechanisms to fully explain the practice

variation pattern in Figure 1, there must be close to no learning, since there is almost no conver-

gence in practice variation. I will therefore examine the extreme proposition of no learning. Third, I

will examine the opposite proposition that influence is optimally allocated according to knowledge.

While the two mechanisms are not mutually exclusive, these analyses may shed light on the relative

importance of each mechanism.

5.1 Decision Types

I re-estimate practice variation profiles, using the same approach described in Section 3, by subset-

ting decisions in several ways. First, I consider decisions in the four main clinical cost departments of

diagnosis (radiology and laboratory), medication, blood transfusion, and nursing. Rather than aggre-

gating the direct costs of all orders for a given patient-day case (i, t), I only aggregate the direct costs
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of the subset of orders in a given clinical category. Second, I consider how practice variation profiles

may differ by patient severity or whether decisions are early vs. late in a patient’s stay. Finally, I sub-

set cases (i, t) ∈ C according to formal diagnostic codes, grouped by the frequency of the diagnostic

code or by whether there exists a formal guideline for the diagnostic code in guidelines.gov.

In all of these cases, the practice variation profile is qualitatively similar: Variation increases dis-

continuously at the one-year tenure mark and remains stable to the end of training. Figure 3 shows

practice variation profiles across different clinical cost categories. Figures 4 and 5 show virtually

identical practice variation profiles across patient severity, patient-days that earlier or later in a pa-

tient’s stay, and patients with different formal diagnoses.21

Despite qualitative similarities in Figure 3, the magnitudes of practice variation and its discontin-

uous increase at the one-year mark do vary meaningfully across clinical cost categories. Diagnostic

spending shows the largest increase in practice variation, with a standard deviation of 16% to 74% be-

fore and after the one-year tenure mark. In contrast, medication and nursing spending shows relatively

small practice variation, both overall and in the increase at the relative experience discontinuity. These

differences may be consistent with greater uncertainty and greater control by trainees of diagnostic

and transfusion decisions.22 On the other hand, decisions types with greater proportional increases in

influence at the one-year tenure mark do not account for a larger share of total spending (see Table 2

for summary statistics by clinical cost department). Given the magnitudes of trainee effects on overall

spending (Figure 1), this suggests spillovers across clinical cost categories, driven by interconnected

decisions.
21Interestingly, practice variation is remarkably similar between formal diagnoses with and without formal guidelines.

This possibly reflects the coarseness of formal diagnoses and formal guidelines. For example, “Chest pain, not otherwise
specified” is the most common formal diagnostic code both for patients admitted to general medicine and for patients
admitted to the subspecialty cardiology service. The coarseness of formal diagnostic codes and a review of the guidelines
strongly suggest that very little meaningful clinical information can be formally encoded (Shaneyfelt et al., 1999). Another
explanation is that, while guidelines may decrease practice uncertainty, diagnoses with more uncertainty may warrant
guidelines.

22Medication decisions are better described in publicly accessible sources of knowledge, while diagnostic decisions
draw more on clinical reasoning that would be difficult to pre-specify and reference for trainees who have never before
encountered a patient presentation. Similarly, blood transfusion reflects an important decision with large variation across
providers and surprisingly little guidance for how to tailor the transfusion decision to individual cases (Carson et al., 2016).
On the other hand, nursing decisions are intuitively outside the scope of most physician decision-making, and it seems
intuitive that physician trainees will have little influence on these decisions.
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5.2 No-Learning Scenario

I next evaluate the extreme case in which the influence differential between senior and junior trainees

is unrelated to any differential in knowledge. This case is tantamount to no learning in residency.

Instead, physicians may differ in their judgments, due for example to heterogeneous preferences or

beliefs, in ways that predate residency and are time-invariant during residency. Given the intensity of

residency training, this scenario seems unlikely on its face. However, a general version of intrinsic

heterogeneity that is relatively stable over time has been invoked in many settings, several of them in

health care (e.g., Doyle et al., 2010; Fox and Smeets, 2011; Bartel et al., 2014; Currie and MacLeod,

2017). I therefore evaluate the relative importance of time-invariant heterogeneity in explaining prac-

tice variation using two complementary approaches.

In the first approach, I exploit detailed trainee characteristics that should be highly correlated

with preferences and ability, including demographics, prior formal degrees, place of medical school,

standardized examination scores, position on the rank list, and future income. Indeed, these character-

istics are the key summary statistics considered by residency programs in accepting future physicians

and may represent important differences in ability and future careers. Empirically, I show that ex

ante trainee characteristics strongly predict position on the rank list (i.e., desirability to the residency

program) and the probability of higher-than-median future income, which is at least 50% greater than

the future income below median.23 However, despite these important relationships between trainee

characteristics and career-changing outcomes, I strikingly find that these trainee characteristics are

broadly uncorrelated with trainee effects on clinical decisions. In Figure 6, I show the distribution of

trainee effects in each tenure period throughout residency is also unchanged regardless of condition-

ing on trainees rank or future income. I describe these analyses further in Appendix A-4 and present

more exhaustive results in Table 4.24

In the second approach, I measure the serial correlation between random trainee effects in two

different tenure periods and provide further details of the statistical approach in Appendix A-3.2. The

23Trainees with a predictive score one standard-deviation above mean are two to three times more likely to be ranked
in the upper half of the rank list than those with a predictive score one standard-deviation below mean. Trainees with
a predictive score one standard-deviation above mean are more than three times as likely to obtain above-median future
income than those with a predictive score one-standard deviation below mean.

24In Appendix A-5, I also explore whether trainee practice styles can be predicted by supervising physicians and senior
trainees whom they have worked with in the past. Interestingly, practice variation is orthogonal to the practice styles of
these past teammates. This suggestive evidence is consistent with tacit knowledge and experiential learning.
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conceptual reason for examining serial correlation is as follows: If practice variation reflects intrinsic

heterogeneity and no learned beliefs, then effects in different time periods within the same trainee

should be constantly and highly correlated, regardless of the time between the time periods. However,

if trainees are learning, then adjacent time periods should exhibit higher correlation in trainee effects

than do distant time periods. Figure 7 presents averages of serial correlation estimates between trainee

effects as a function of the distance between the tenure periods.25 Serial correlation in trainee effects

across two adjacent periods is moderately positive, while the correlation quickly decreases to zero

with more distance between the two periods. Interestingly, correlation eventually becomes negative,

though statistically indistinguishable from 0, between trainee effects in distant periods. These results

strongly suggest that judgments during residency are quite dynamic. In other words, consistent with

numerous qualitative accounts, trainees are engaging in active learning during residency.

5.3 Optimal Influence

In the other extreme, I consider a simple model of optimal influence by Bayesian information aggre-

gation. In order to optimize the decision at hand, teams allocate influence in proportion to the knowl-

edge of each team member (DeGroot, 2005). The more precise the signal from her prior knowledge

relative to other sources of information, the greater her influence will be. At the one-year tenure mark,

influence discontinuously increases because the knowledge of a trainee’s teammate discontinuously

decreases.

In this model, as trainees gain knowledge, their judgments will converge, but their influence will

increase. These two factors have opposing implications for practice variation, so that practice vari-

ation may not always decrease with learning. In contrast, agents who practice independently have

constant (full) influence and should always exhibit convergence in their practice styles as they learn.

In this way, I use tenure-specific knowledge and Bayesian aggregation in teams to imply tenure-

specific practice variation. An assumption of continuous knowledge places restrictions on patterns of

influence—and therefore practice variation—over trainees’ tenure. A further assumption that super-

vising physicians possess at least as much knowledge as a senior trainee imposes another restriction

on the scale of practice variation. The actual pattern and scale of practice variation therefore allow

identification of deviations from optimal influence.

25Appendix Table A-4 and Appendix Figure A-4 show results for individual pairs of tenure periods.
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In Appendix A-6, I provide details of the model setup, identification, estimation procedure, and

results. In brief, the model uses tenure-specific moments of practice variation from the random effects

model in Equation (3) to recover underlying primitives of learning (i.e., the rate at which knowledge

increases with tenure), as well as potential deviations from optimal influence capturing other team

concerns in Section 4.3. I specify influence as divided between the junior trainee, the senior trainee,

and “external information,” which may be drawn from the supervising physician, any other personnel,

or guidelines and protocols.

In results, I find very little knowledge at the beginning of residency compared to learning in the

first year. Learning in the second year occurs at a much faster than in the first year but appears to

cease by the third year.26 Between junior and senior trainees, influence approximates the Bayesian

benchmark. In likelihood ratio tests, I cannot reject a model with learning and optimal influence be-

tween trainees, compared to a less-restrictive model that allows for deviations from optimal influence.

However, I find that external information (including the supervising physician) influences decisions

by less than half of the influence of a graduating trainee. This suggests that trainees, as a group, are

given much more influence than warranted under the Bayesian benchmark. Many of these patterns

persist when re-estimating the model with practice variation profiles in specific spending categories

and types of cases.

Although the model is highly stylized and is based on relatively few empirical moments, the idea

that learning increases when trainees become senior and have a greater stake in decision-making is

consistent with experiential learning (Dewey, 1938). Experiential learning implies a tradeoff in the

use of information to make team decisions. While supervisory information improves the quality of

decision-making at hand, it may constrain experiential learning by trainees. Perhaps for this reason,

external information receives much less weight than it should in a Bayesian framework that optimizes

only decisions at hand. Appendix A-6 undertakes counterfactual analyses to quantify the welfare

consequences of this tradeoff.

26There exists a large theoretical literatures on why learning may stop, related to learning costs or knowledge constraints
(e.g., Rogerson et al., 2005; Caplin and Dean, 2015), uncertainty in the mapping between beliefs and data (Acemoglu et al.,
2006), and social learning (Ellison and Fudenberg, 1993).
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6 Discussion and Conclusion

In this paper, I study decision-making in teams, in the setting of physician trainees in medical resi-

dency. As in other settings involving teams, I observe decisions attributable to teams and the team

members at the time of each decision, but I do not directly observe the agents’ contributions to the

decisions. Building on a “movers literature” starting with Abowd et al. (1999), I develop and apply

a method to extract each team member’s average contribution to decisions over time, using quasi-

experimental variation in the assignment of cases and physician trainees to teams, as well as frequent

switches of trainees across teams. By tracking the effects of trainees on team decisions over their

tenure, I also shed light on how teams may alter decision-making relative to agents who make deci-

sions “on their own.”

In my primary finding, I show that senior trainees explain the vast majority of practice variation

across teams. This suggests that differences across organizations in health care and in other settings

may be driven by a few individuals. Furthermore, by exploiting a discontinuity in team roles at the

one-year tenure mark, I show that team dynamics are responsible for this outsize influence of senior

trainees. From multiple analytical lenses, I find evidence suggestive of an intriguing interplay between

experiential learning during residency training and the allocation of influence in teams. While this

evidence on its own may be suggestive, it is consistent with a large body of work, much of it outside

of economics, suggesting “tacit knowledge” that is difficult to pass on to others (Polanyi, 1966) and

“experiential learning” that accrues only through experience (Dewey, 1938).

At a minimum, these results suggest the importance of team concerns in analyzing decisions

made within organizations. In health care, a large and influential literature has focused primarily

on variation across regions or institutions. If decision-making is concentrated in the hands of a few

individuals, then understanding micro-level foundations of decision-making will be essential for char-

acterizing variation that has long been noted at more aggregate levels.

Moreover, if an important task for teams is to aggregate information, particularly for complex and

consequential decisions, then policy-makers may need to focus more on the informational frictions

that underlie the skewed concentration of knowledge and the remaining practice variation even among

experts with the most knowledge. Such informational levers could be more effective at reducing

practice variation (Institute of Medicine, 2013), compared to previously proposed policy levers of
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financial incentives, simple reporting of variation, and patient cost-sharing (see Skinner, 2012, for a

summary). This idea is consistent with a growing literature that suggests that skill, or productivity,

plays an important role in practice variation in both diagnostic and treatment decisions.27 If providers

simultaneously under- and over-treat patients, then instituting policy levers to encourage providers

to treat either uniformly more or uniformly less will be ineffective. Similarly, imposing a uniform

treatment rate can be counterproductive if under-treatment is costlier and if providers who treat more

do so because they are less skilled at targeting (Chan et al., 2019). Instead, policy levers need to

accomplish better targeting of resources by improving the use of information in decision-making.

Further, if learning requires experience and feedback, then the usual forms of spreading informa-

tion, such as clinical guidelines, formal instruction (e.g., “continuing medical education”), or formal

testing (e.g., board recertification), may do little to change practice or generate consensus (Shaneyfelt

et al., 1999). While effective policies are beyond the scope of this paper, such policies will likely

need to improve the use of existing information within an organization and to encourage its spread

across team members and organizations. For example, process innovations might invite feedback

from peers, or they might explicitly use consensus-building to specify nuanced “clinical pathways.”

These approaches aim to promote learning among “experts”—well beyond residency training—and

by organizations themselves (Institute of Medicine, 2012; Bohmer et al., 2013).
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Figure 1: Profile of Practice Variation by Tenure
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Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified
in Equation (3), in log daily total costs at each non-overlapping tenure period. Point estimates are shown as
connected dots; 95% confidence intervals are shown as dashed lines. Trainees prior to one year in tenure
are junior trainees and become senior trainees after one year in tenure; a vertical line denotes the one-year
tenure mark. The model controls for patient and admission observable characteristics, time dummies (month-
year interactions, day of the week), and attending identities (as fixed effects). Patient characteristics include
demographics, Elixhauser indices, Charlson comorbidity scores, and DRG weights. Admission characteristics
include the admitting service (e.g., “Heart Failure Team 1”). Estimates for junior trainees are done separately
for second-year senior trainees and for third-year senior trainees, then subsequently averaged for purposes of
presentation. An alternative approach estimating junior-trainee practice variation by pooling observations by
junior-trainee tenure yields qualitatively similar results.
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Figure 2: Robustness of Baseline Results
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Note: This figure shows robustness of baseline results shown in Figure 1 along two dimensions. In Panel A,
I drop “preliminary interns,” or junior trainees who are not scheduled to continue as senior trainees in internal
medicine. This leaves only trainees that will continue on as senior trainees in internal medicine. In Panel B, I
estimate the model with no patient characteristics as covariates. The estimation approach is otherwise the same
as for Figure 1. The model estimates practice variation, defined as the standard deviation of random trainee
effects specified in Equation (3), in log daily total costs at each non-overlapping tenure period. The model
controls are as stated for Figure 1. Point estimates are shown as connected dots; 95% confidence intervals are
shown as dashed lines. Trainees prior to one year in tenure are junior trainees and become senior trainees after
one year in tenure; a vertical line denotes the one-year tenure mark.
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Figure 3: Practice Variation Profile by Spending Category
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D: Nursing

Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified
in Equation (3), in log daily costs at each non-overlapping tenure period. Each panel shows a different spending
category. The model controls are as stated for Figure 1. Point estimates are shown as connected dots; 95%
confidence intervals are shown as dashed lines. Trainees prior to one year in tenure are junior trainees and
become senior trainees after one year in tenure; a vertical line denotes the one-year tenure mark.
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Figure 4: Practice Variation Profile by Patient Severity and Day of Stay
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Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified
in Equation (3), in log daily total costs at each non-overlapping tenure period. Panel A estimates the model
separately in two samples of patients with above- (solid dots) versus below-median (hollow dots) expected 30-
day mortality. Panel B estimates the model separately in two samples of days before (solid dots) versus after
(hollow dots) the middle of each patient’s stay (with the middle day, if it exists, randomized between the two
groups). The model controls are as stated for Figure 1. Trainees prior to one year in tenure are junior trainees
and become senior trainees after one year in tenure; a vertical line denotes the one-year tenure mark.
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Figure 5: Practice Variation Profile by Diagnosis Type
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B: Diagnosis Guideline

Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified
in Equation (3), in log daily total costs at each non-overlapping tenure period. Panel A estimates the model
separately in two samples of patients with diagnosis (ICD-9) codes with above- (solid dots) versus below-
median (hollow dots) frequency in the data. Panel B estimates the model separately in two samples of patients
with diagnosis codes with (solid dots) and those without (hollow dots) published guidelines cataloged by the
US Agency for Healthcare Research and Quality (guidelines.gov). The model controls are as stated for
Figure 1. Trainees prior to one year in tenure are junior trainees and become senior trainees after one year in
tenure; a vertical line denotes the one-year tenure mark.
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Figure 6: Practice Style Distribution by Trainee Type
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Note: This figure shows the patient-day-weighted 90th percentile, mean, and 10th percentile of the practice
style (trainee effect) distribution according to trainee type. The unconditional distribution in each tenure pe-
riod is normalized to have mean 0. Panel A shows the distribution for high-skill trainees (solid lines) relative
to low-skill trainees (dashed lines), where “skill” is defined as position on the rank list more favorable than
median when defined, and above-median USMLE test score when position on the rank list is missing. Panel
B shows the distribution for trainees with above-median expected future income relative (solid lines) to those
with below-median future income (dashed lines), where future income is based on known subsequent sub-
specialty training (if any) and imputed with national average yearly income in the first five years of practice
after training. The average yearly future incomes of above- and below-median junior trainees are 424,000 and
$268,000, respectively; the respective yearly future incomes for senior trainees are $409,000 and $249,000
(junior trainees include “preliminary interns,” described in Section 2, who generally move on to more lucrative
specialties). Practice styles are calculated as empirical Bayes posterior means from the random-effects model
specified in Equation (3), where estimated variance components of the random-effects model are treated as
prior distributions. The model controls are as stated for Figure 1. Trainees prior to one year in tenure are junior
trainees and become senior trainees after one year in tenure; a vertical line denotes the one-year tenure mark.
Results for other trainee characteristics are shown in Appendix Tables A-2 and A-3.
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Figure 7: Average Serial Correlation by Tenure Period Lag
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Note: This figure shows the average serial correlation in trainee effects between 120-day tenure periods as a
function of the lag between the tenure periods. Serial correlation parameters are estimated for each pair of
tenure periods by a maximum likelihood method described further in Appendix A-3.2. There are a total of 9
non-overlapping tenure periods across the three years of training. The x-axis corresponds to the lag between
the tenure periods, such that when the lag is 1, the y-axis displays the average of the serial correlations across
the pairs of tenure periods (1,2) , (2,3) , . . ., (8,9). In general, for lag L, the y-axis displays an average of the
serial correlations computed for 9−L tenure periods (1,1+ L) , . . ., (9− L,9). Thus, for the lag of 1, the average
is across 8 serial correlation cells, while for the lag of 8, the “average” simply contains the serial correlation
between tenure periods (1,9). Underlying results for each pair of tenure periods are given in Appendix Table
A-4 and are also shown graphically in Appendix Figure A-4. Confidence intervals are calculated by bootstrap.
The model controls are as stated for Figure 1.
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Table 2: Summary Statistics of Spending in Categories and Services

Log daily total costs
(1) (2) (3) (4) (5)

Radiology Laboratory Medication Transfusion Nursing
Cardiology

5th percentile 0 11 4 0 189
10th percentile 0 16 14 0 244
Median 0 34 67 16 658
Mean 54 51 113 33 662
90th percentile 125 103 233 56 1,075
95th percentile 375 145 417 87 1,212

Oncology
5th percentile 0 3 0 0 192
10th percentile 0 13 13 0 256
Median 0 34 94 12 673
Mean 66 58 155 78 682
90th percentile 248 124 350 204 1,033
95th percentile 423 212 542 411 1,270

General Medicine
5th percentile 0 8 2 0 160
10th percentile 0 12 10 0 205
Median 0 35 69 14 561
Mean 66 62 99 38 577
90th percentile 234 139 210 48 959
95th percentile 385 222 286 95 1,130

Note: This table reports summary statistics of patient-daily spending in categories across columns, and in ward
services of cardiology, oncology, and general medicine. The statistics are calculated based on 56,780, 66,662,
and 96,632 patient-day observations on the cardiology, oncology, and general medicine services, respectively.
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Table 3: Team Concerns

Discontinuity Convergence
Independent practice None Yes
Span of control Decrease Yes
Principal-agent, rank Increase Yes
Information aggregation Increase Depends

Note: This table summarizes implications of three types of team concerns on two features of the practice
variation profile with respect to trainee tenure: (i) the existence and direction of a discontinuity in practice
variation as trainees move from junior to senior at the one-year tenure mark, and (ii) whether practice variation
decreases (i.e., practices “converge”) with tenure as trainees learn. Section 4.3 discusses team concerns in
detail. “Independent practice” represents the benchmark with no team concerns. “Span of control” refers to the
team theoretic idea that agents have limited bandwidth, and agents higher in the hierarchy (i.e., senior trainees)
assigned to more than one agent lower in the hierarchy (i.e., junior trainees) will attend to fewer problems per
case (Marschak and Radner, 1972; Garicano, 2000). “Principal-agent, rank” refers to models in which “senior”
agents may have power over other “junior” agents, which may induce junior agents to suggest decisions that
herd around the beliefs of senior agents (Prendergast, 1993). “Information aggregation” refers to the possibility
of Bayesian information aggregation across agents to make a single decision (DeGroot, 2005). Although team
concerns may coexist, each row represents one team concern in the absence of the other two team concerns. For
example, in “span of control,” predictions are for classical team theory, in which there are no principal-agent
issues, and decisions are separable across agents and do not aggregate information.
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Appendix

A-1 Random Assignment

This appendix presents two sets of randomization tests for quasi-random assignment, complementing

evidence in Table 1. Section A-1.1 presents results regarding the assignment of patients to trainees.

Section A-1.2 presents the assignment of trainees to supervising physicians.

A-1.1 Assignment of Patients to Trainees

First, I test for the joint significance of trainee identities in regressions of this form:

Xa = Tt (a)η + µs(a) + ζ
τ<T
j (a) + ζ

τ>T
k (a) + ζ`(a) + εa, (A-1)

where a is a patient admission and Xa is some patient characteristic or linear combination of patient

characteristics for the patient in admission a, described in Section 2.3. t (a) refers to the day of

admission, s (a) is the service of admission, j (a) is the junior trainee, k (a) is the senior trainee, and

` (a) is the supervising physician. Tt (a) is a set of time categories for the admission day, including the

day of the week and the month-year interaction; µs is a fixed effect that corresponds to the admitting

service s (e.g., “heart failure service” or “oncology service”). ζτ<Ti , ζτ>Tj , and ζk are fixed effects for

the intern i, resident j, and attending k, respectively. I do not impose any relationship between the

fixed effect of a trainee as an intern and the fixed effect of the same trainee as a resident. I then test

for the joint significance of the fixed effects
(
ζτ<Tj , ζτ>T

k

)
j∈J,k∈K

.

In Column 1 of Table A-1, I show F-statistics and the corresponding p-values for the null hypoth-

esis that
(
ζτ<Tj , ζτ>T

k

)
j∈J,k∈K

= 0. I perform the regression (A-1) separately each of the following

patient characteristics Xa as a dependent variable: patient age, a dummy for male gender, and a

dummy for white race.28 I also perform (A-1) using as dependent variables the linear prediction of

log admission total spending based on patient age, race, and gender. I fail to find joint statistical

significance for any of these tests.

Second, I test for the significance of trainee characteristics in regressions of this form:

Xa = Tt (a)η + µs(a) +γ1Z j (a) +γ2Zk (a) + ζ`(a) + εa . (A-2)

Equation (A-2) is similar to Equation (A-1), except for the use of a vector of trainee characteristics

Z j (a) and Zk (a) for the junior and senior trainee, respectively, on day of admission to test whether cer-

tain types of residents are more likely to be assigned certain types of patients. Trainee characteristics

include the following: position on the rank list; USMLE Step 1 score; sex; age at the start of training;

and dummies for foreign medical school, rare medical school, AOA honor society membership, PhD

or another graduate degree, and racial minority.

28I do not test for balance in patient diagnoses, because these are discovered and coded by physicians potentially endoge-
nous. Including or excluding them in the baseline specification of Equation (3) does not qualitatively affect results.
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Columns 2 and 3 of Table A-1 show F-statistics and the corresponding p-values for the null

hypothesis that (γ1, γ2) = 0. Column 2 includes all trainee characteristics in Zh; column 3 excludes

position on the rank list, since this information is missing for a sizable proportion of trainees. Patient

characteristics for dependent variables in (A-2) are the same as in (A-1). Again, I fail to find joint

significance for any of these tests.

Third, I compare the distributions of patient age and of predicted total costs across patients ad-

mitted to interns and residents with high or low spending. I consider trainee spending effects that are

fixed within junior or senior role using this regression:

Ya = Xa β+Tt (a)η + ζ
τ<T
j (a) + ζ

τ>T
k (a) + ζ`(a) + εa, (A-3)

where Ya is log total spending for admission a, and other variables are defined similarly as in Equation

(A-1). Figure A-1 shows kernel density plots of the age distributions for patients assigned to interns

and residents, respectively, each of which compare trainees with practice styles above and below

the mean. Figure A-2 plots the distribution of predicted spending for patients assigned to trainees

with above- or below-mean spending practice styles. There is essentially no difference across the

distribution of age or predicted spending for patients assigned to trainees with high or low spending

practice styles. Kolmogorov-Smirnov statistics cannot reject the null that the underlying distributions

are different.

A-1.2 Assignment of Trainees to Other Providers

To test whether certain types of trainees are more likely to be assigned to certain types of other trainees

and attending physicians, I perform the following regression to examine the correlation between two

trainees and between a trainee and the supervising physician assigned to the same patient:

ζ̂rh(a) = γh ζ̂
1−r
−h(a) +γ` ζ̂`(a) + εa, (A-4)

where r ≡ 1 (τ > T ) is an indicator for whether the fixed effect for trainee h was calculated while h

was a junior trainee (r = 0) or a senior trainee (r = 1). As in Equation (A-1), I assume no relationship

between ζ̂τ<T
h

and ζ̂τ>T
h
. Each observation in Equation (A-4) corresponds to an admission a, but

where error terms are clustered at the level of the intern-resident-attending team, since there are

multiple observations for a given team. ζ̂` is the estimated fixed effect for attending k.29 Estimates

for γh and γ` are small, insignificant, and even slightly negative.

Second, I perform a similar exercise as in the previous subsection, in which I plot the distribution

of estimated attending fixed effects working with trainees with above- or below-mean spending prac-

tice styles. In Figure A-3, the practice-style distribution for attendings is similar for those assigned to

29I use two approaches to get around the reflection problem due to the first-stage joint estimation of ζ0
j
, ζ1

k
, and ζ`

(Manski, 1993). First, I perform (A-4) using “jack-knife” estimates of fixed effects, in which I exclude observations with
−h and ` to compute the ζ̂h

restimate that I use with ζ̂1−r
−h

and ζ̂k . Second, I use the approach by Mas and Moretti (2009),
in which I include nuisance parameters in the first stage to absorb team fixed effects for

(
j, k, `

)
.
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high- versus low-spending trainees. As for distributions of patient characteristics in Appendix A-1.1,

differences in the distributions are not qualitatively significant, and Kolmogorov-Smirnov statistics

cannot reject the null that these distributions are different, at least when clustering at the level of the

intern-resident-attending team.

A-2 Random-Effects vs. Fixed-Effects Identification

The fixed-effects estimation approach (e.g., Abowd et al., 1999; Card et al., 2013) relies on a version

of Assumption 1 that is only slightly weaker:

Assumption 2 (Quasi-Random Team Assignment within Connected Sets (Abowd et al., 1999)).
Potential team decisions are independent of team assignments, conditional on clinical service s (i, t) ,

indicators of time t, and connected sets g (i, t):

{Yit ( j, k) } ( j,k)∈Jit×Kit
⊥⊥

(
Di jt,Dikt

) ��� s (i, t) , t,g (i, t) .

As discussed in Abowd et al. (2008), a “connected set” g comprises cases (i, t) such that j (i, t) ∈ J g

or k (i, t) ∈ K g. J g includes any junior trainee who has worked with a senior trainee in K g, and

K g includes any senior trainee who has worked with a junior trainee in J g. Any pair of trainees

( j, k) ∈ J g ×K g, whose observations are in the same connected set, can be “connected” via a chain

of trainees that have worked together.

Assumption 1 implies Assumption 2, and if J g(i,t) ⊇ Jit andK g(i,t) ⊇ Kit , then Assumption 1 is

equivalent to Assumption 2. Fixed-effects estimation, under Assumption 2, comes with the cost that

the effects of trainees in different connected sets are not comparable: For each g, one junior-trainee

effect and one senior-trainee effect need to be dropped from estimation to satisfy the rank condi-

tion. Stated differently, to identify any trainee effects, the fixed-effects framework requires trainee

“movers,” who work with more than one teammate. While our setting involves and exploits such

movers, this requirement is not strictly necessary in the random-effects approach, under Assumption

1. The sense in which Assumption 2 is weaker than Assumption 1 mostly results from the rank condi-

tion and not a necessarily substantive difference in the quasi-experimental design. In finite samples, if

we observed fewer cases for the same set of trainees, the sets J g(i,t) and K g(i,t) could contain fewer

elements, even though Jit and Kit would be unchanged.

A-3 Statistical Model of Trainee Effects

A-3.1 Patient Admission Random Effects

We may augment Equation (4) to allow for patient admission random effects, since the same patient

may stay for more than one day and be exposed to different trainees:

Ỹit = ξ
τj ;τk
j (i,t) + ξ

τk ;τj
k (i,t) + νi + εit, (A-5)
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where νi is a random effect for the patient admission.30 Under Assumption 1, ξτj ;τkj , ξτk ;τj
k

, and νi
are uncorrelated with one another.

Let NI be the number of patient admissions in sample C
(
τj, τk

)
. Then in Equation (5), D is an

N × (NJ +NK +NI ) selection matrix for junior trainees, senior trainees, and patient admissions. u is

an (NJ +NK +NI ) ×1 stacked vector of junior trainee, senior trainee, and patient admission random

effects. We can then restate the variance-covariance matrix of u as

Var u =G =



σ2
(
τj ;τk

)
INJ 0 0

0 σ2
(
τk ;τj

)
INK 0

0 0 σ2
νINI



.

The log likelihood function in Equation (6) remains the same, with V = DGD′+σ2
εIN . I maxi-

mize this log likelihood with respect to σ2
(
τj ;τk

)
, σ2

(
τk ;τj

)
, σ2

ν , and σ2
ε . Estimates of σ2

(
τj ;τk

)
and σ2

(
τk ;τj

)
in this augmented model are qualitatively unchanged relative to the baseline imple-

mentation in Section 3.4.

A-3.2 Correlation of Trainee Effects

I augment models in (4) and (A-5) to estimate the correlation between trainee effects in two separate

tenure periods, τ1 and τ2, which I denote by ρ (τ1, τ2). Although I observe each trainee across her

entire training, I only observe a subset of these trainees in each period. The number of trainees

observed in both tenure periods in the pair (τ1, τ2) is even smaller. Because trainees that I do not

observe in both τ1 and τ2 do not contribute to the estimate of ρ (τ1, τ2), I include in the estimation

sample only observations associated with a trainee observed in both tenure periods. I also redefine

tenure periods to be 120 days in order to enlarge the sample of trainees whom I observe in both

periods in a tenure-period pair.

Specifically, in place of Equation (4), I consider

Ỹit = ξτh(i,t) + ξ−h(i,t) + εit, (A-6)

where τ ∈ {τ1, τ2} may be one of two tenure periods in a pair.. This specifies that effects of trainees

in the tenure periods of interest (τ1 and τ2) may be drawn from two separate distributions depending

on the tenure period τ1 or τ2 corresponding to observation t; I pool the effects of the teammates into a

single distribution that does not depend on tenure. Because I focus on the correlation between trainee

effects, I am unconcerned about the scale of practice variation and I thus do not specify the tenure of

the teammate. The analog for Equation (A-5) is

Ỹit = ξτh(i,t) + ξ−h(i,t) + νi + εit . (A-7)

30This specification requires the use of sparse matrices for estimation. In specifications without the use of sparse matrices,
I nest this effect within interns, i.e., I include νai as an intern-admission effect. While it is easier to estimate a specification
with νai , I will describe this specification for ease of explication. In practice, results are materially unaffected by whether
I use νa or νai , or in fact whether I include an admission-related effect at all.
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I estimate (A-6) or (A-7) in a sample of observations, which I define as follows: C (τ1, τ2) =

{(i, t, h) : h ∈ { j (i, t) , k (i, t) } , τ (h, t) ∈ {τ1, τ2}}. I require that, for every trainee h in C (τ1, τ2), there

are observations in the sample in which she has tenure τ1 and other observations in the sample in

which she has tenure τ2. Otherwise, we cannot use trainee h to estimate the correlation in trainee

effects between these two periods.

As above, I can represent both Equation (A-6) and Equation (A-7) in matrix form, as Equation

(5). Denote the number of trainees h in C (τ1, τ2) as NH . Denote the number of teammates trainees

interacted with their tenure periods as N−H . The selection matrix Z is of size N ×
(
2NH +N−H

)
, since

it now maps observations onto one of two random effects, depending on whether τ = τ1 or τ = τ2, for

each trainee h observed in both τ1 and τ2 tenure periods. The stacked vector of random effects u is

similarly of size
(
2Nτ +N−τ

)
×1. The variance-covariance matrix of u is

Var u =G =


GH 0
0 σ2

ξ−
IN−H


,

where GH is a 2NH ×2NH block-diagonal matrix of the form

GH =



A 0 · · · 0

0 A
...

...
. . . 0

0 · · · 0 A



, (A-8)

with each block being the 2× 2 variance-covariance matrix A of random effects within trainee and

across tenure periods:

Var


ξτ1
h

ξτ2
h


= A, for all h, where

A ≡



σ2 (τ1) ρ (τ1, τ2) σ (τ1) σ (τ2)

ρ (τ1, τ2) σ (τ1) σ (τ2) σ2 (τ2)


.

Representing (A-7) as (5) is a similar exercise. The selection matrix Z is of size N×
(
2NH +N−H +NI

)
,

and the vector of random effects u is of size
(
2NH +N−H +NI

)
× 1. The variance-covariance matrix

of u is

Var u =G =



GH 0 0
0 σ2

ξ−
IN−H 0

0 0 σ2
vINI



,

where GH is the same as in Equation (A-8). The log likelihood is the same as in Equation (6), but

using revised definitions of G that allow for covariance between random effects of the same trainees

across tenure periods. The correlation parameter of interest ρ (τ1, τ2) is constrained to be between −1
and 1.
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A-4 Intrinsic Heterogeneity: Trainee Characteristics

The key alternative explanation for persistent variation that I explore in this section is that physicians

may intrinsically differ for reasons unrelated to knowledge and learning, such as preferences or ability

(e.g., Doyle et al., 2010; Fox and Smeets, 2011; Bartel et al., 2014). To assess the possibility of

intrinsic heterogeneity, I first exploit detailed trainee characteristics that should be highly correlated

with preferences and ability. For example, USMLE scores measure medical knowledge as a medical

student; position on the residency rank lists reflects overall desirability; and specialty tracks, mostly

predetermined relative to the beginning of residency, reflect important career decisions and lifestyle

preferences, such as a decision to become a radiologist rather than a primary care physician. To

capture the variety of future career paths across internal medicine trainees, I impute future yearly

incomes after specialty training based on the final specialty choices of trainees. As cited in Section

2.3, trainees with above-median future incomes will earn substantially more than their peers with

below-median future incomes.

I assess the relationship between each of these characteristics and daily spending totals for either

the junior or senior trainee:

Yit = αmCharacteristicmh(i,t) +Xi β+Ttη + ζ−h(i,t) + ζ`(i,t) + εaijkt, (A-9)

where Characteristicm
h

is an indicator for whether the junior (or senior) trainee h has the characteristic

m, ζ−h is a fixed effect for the other senior (or junior) trainee −h, and ζ` is a fixed effect for attending

`.31 The coefficient of interest, αm, quantifies the predictive effect of a trainee with characteristic m on

patient spending decisions. I also evaluate the combined predictive effect of trainee characteristics in

two steps. First, I regress outcomes on all direct trainee characteristics, with continuous characteristics

like position on rank list entered linearly, along with the other admission and time regressors in

Equation (A-9):

Yit =
∑
m

αmCharacteristicmh(i,t) +Xi β+Ttη + ζ−h(i,t) + ζ`(i,t) + εit . (A-10)

This yields a predicted score Zh for each trainee h, Zh =
∑

m α̂mCharacteristicm
h

, which I normal-

ize to Z̃h = Zh/
√

Var (Zh) with standard deviation 1. Second, I regress daily total spending on this

normalized score:

Yit = α Z̃h(i,t) +Xi β+Ttη + ζ−h(i,t) + ζ`(i,t) + εit . (A-11)

In addition, I evaluate the predictive power of trainee characteristics more flexibly by allowing

splines of continuous characteristics and two-way interactions between characteristics, while assum-

ing an “approximately sparse” model and using LASSO to select for significant characteristics (e.g.,

Belloni et al., 2014). This approach guards against overfitting in finite data when the number of po-

31In principle, I could include trainee characteristics as mean shifters in the baseline random effects model in Equa-
tion (3). However, since characteristics are generally insignificant predictors of variation, results of (residual) variation
attributable to trainees are unchanged.
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tential characteristics becomes large. In total, excluding collinear characteristics, I consider 36 and

32 direct characteristics for interns and residents, respectively, and 285 and 308 two-way interactions,

as potential regressors in Equation (A-9).

Table 4 shows results for Equation (A-11) and a subset of results for Equation (A-9). Considering

characteristics individually in Equation (A-9), only two characteristics (gender and high USMLE test

score) are statistically significant at the 5% level, and no characteristic approaches the one-standard

deviation benchmark effect in the trainee effect distribution. Likewise, a standard-deviation change

in the overall predictive score has no economically significant effect on spending for either interns or

residents. LASSO selected no intern characteristic as significant and selected only resident gender

as significant. Although it is possible that there are other unmeasured and orthogonal characteristics

that are more relevant for practice variation, this seems a priori unlikely given that these are the

characteristics on which the residency program bases acceptance decisions,32 and that they are also

highly predictive of future career paths and incomes.

Finally, I investigate the distribution of trainee effects as a function of tenure for trainees in dif-

ferent groups. As shown in Figure 6, the distributions of trainee effects throughout training are not

meaningfully different between groups of trainees separated by their test scores, rank list positions,

or future earnings. This finding implies that trainees who differ significantly along meaningful di-

mensions still practice similarly not only on average, but also in terms of variation over time. That is,

trainees evaluated with higher test scores, more desirable rankings, or higher future earnings do not

exhibit lower variation or higher convergence over training.

A-5 Learning by Osmosis: Predictable Learning

Finally, I assess whether trainee practice styles can be predicted by the sequence of observable learn-

ing experiences. This evaluation tests two concepts. First, practice styles may predictably change

if they reflect acquired skill that may grow with greater experience. Second, trainees may absorb

spending patterns from supervising physicians or from a broader practice environment.33

To explore the potential effect of learning from others in greater detail, I estimate supervising

physician “effects” by shrinking their observed fixed effects, and I similarly calculate best linear un-

biased predictions (BLUPs) of senior trainee effects. The standard deviation of shrunken supervising

physician effects is 7.3%, and the standard deviation of the senior trainee BLUPs is 16.6% in terms of

overall spending. I then form measures of prior exposure to spending due to supervising physicians

by averaging spending effects of supervising physicians who have previously worked with a given

trainee, weighted by patient-days, at a given point in time. This exposure measure may or may not be

32Using the same characteristics to predict whether a trainee was ranked in the upper half on the residency program’s rank
list (excluding rank as a characteristic) yields a predictive score that with one standard deviation changes the probability of
being highly ranked by about 20%.

33The related concept of “schools of thought,” in which physicians may have systematically different training experi-
ences, has been proposed as a mechanism for geographic variation (e.g., Phelps and Mooney, 1993). This hypothesis is not
inconsistent with tacit knowledge and in fact relies partly on it, but it does not by itself explain large variation within the
same training program.
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restricted to patient-days on the same ward service (e.g., cardiology, oncology, or general medicine).

Similarly, the measure may be calculated for all prior patient-days or only for patient-days in the last

three months. I also calculate similar measures of exposure to senior trainees for trainees based on

their previous team matches when they were junior.

For a given prior exposure measure, I define trainees with above-median measures in a given

tenure period as having “high exposure” to spending and trainees with below-median measures as hav-

ing “low exposure” to spending. Compared to other trainees with the same tenure, these trainees have

worked with attending physicians or residents trainees (while they were interns) with higher average

spending effects. Table A-5 shows the difference between high-exposure and low-exposure trainees

for various spending-exposure measures at different trainee tenure periods. Differences between high

and low exposure to supervising-physician spending range from 1.9% to 6.7%. Differences between

high and low exposure to senior-trainee spending range from 17.5% to 23.4%.

I then estimate the effect of high exposure to spending over each tenure period of training with a

regression of the form

Yit =
∑
τ:τ<1

ατ1 (τ ( j (i, t) , t) = τ) ·HighSpendingExposuremj (i,t),t + (A-12)∑
τ:τ≥1

ατ1 (τ (k (i, t) , t) = τ) ·HighSpendingExposuremk (i,t),t +

Xi β+Ttη + ζ`(i,t) + εit,

where, as in Equation (3), j (i, t) is the junior trainee, k (i, t) is the senior trainee, and τ ( j (i, t) , t)

and τ (k (i, t) , t) are the relevant tenure periods of the junior and senior trainees at t. The variables

HighSpendingExposuremj,t and HighSpendingExposuremk,t are indicators for high exposure to spending

under measure m for the junior and senior trainee, respectively. The effect of this exposure can vary

by τ. Figure A-6 shows results for exposure to spending by supervising physicians, and Figure A-7

shows similar results for exposure to spending by senior trainees. Results among the wide range of

exposure measures are broadly insignificant.

More broadly, I also consider several measures of prior experience—including days on ward

service, patients seen, and supervising physicians for a given trainee prior to a patient encounter—for

either the junior or senior trainee. For each of these experience measures, I estimate a regression of

the form

Yit = αmExperiencemh(i,t),t +Xi β+Ttη + ζ−h(i,t) + ζ`(i,t) + εit, (A-13)

where Experiencemh,t is an indicator for whether trainee h at time t has experienced a measure (e.g.,

number of days on service, average supervising physician spending effect) above median for the rele-

vant tenure period, where both the measure and the median are calculated using observations prior to

the relevant tenure period. In my baseline specification, I control for the other trainee and supervising

physician identities, although this does not qualitatively affect results. Results are shown in Table

A-6 and are broadly insignificant. A LASSO implementation that jointly considers a larger number

of summary experience measures in early or more recent months relative to the patient encounter, as
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well as two-way interactions between these measures (112 and 288 variables for interns and residents,

respectively), also fails to select any measure as significant.

In addition to trainees in the main residency program, I observe visiting trainees based in a hos-

pital with 20% lower Medicare spending according to the Dartmouth Atlas. I evaluate the effect of

these trainees on teams, as interns and as residents, using Equation (A-9). This effect includes both

differences in selection (i.e., intrinsic heterogeneity) into the different program and in training expe-

riences across the programs. Table 4 shows that visiting trainees do not have significantly different

spending effects, either as interns or as residents.34

Overall, these results indicate that summary measures of trainee experience are poor predictors

of practice and outcomes, especially relative to the large variation across trainees. The results fail to

support “learning by osmosis” as a major source of practice variation, at least within an organization

with ex ante uniform training experiences but nonetheless large practice variation.

A-6 Model of Information Aggregation and Experiential Learning

A-6.1 Setup

Each decision d can be summarized perfectly by an unknown parameter θd. If θd were known, then

the optimal action would be ad = θd. Each agent has only partial knowledge about the correct action,

in the form of a Bayesian prior about θd. A team decision is made as follows:

1. Each agent h ∈ { j, k} has prior knowledge bearing on the decision; specifically, a Bayesian

prior distribution, θd,h. θd,h is a normal distribution and can be summarized by mean µd,h and

precision ρd,h. One may describe µd,h as the judgment (due to prior knowledge) that agent h

has about d.

2. There may also be external information about d. Some of this knowledge is held by the at-

tending physician, but other sources derive from hospital nurses, consultants, and protocols.

Each agent may also collect information about the decision, which I assume to be independent

of prior knowledge. I consider external information as a public judgment with mean 0 and

precision P∗
d
.

3. The team takes an action and derives utility u = − (θd − ad)2. As in the standard team-theoretic

environment, there is no conflict of interest between agents.

Proposition A-1. The optimal (Bayesian) action for decision d assigned to trainees j and k is

a∗d =
ρd, j µd, j + ρd,k µd,k

ρd, j + ρd,k +P∗
d

. (A-14)

34This result of course does not rule out that training programs can matter. Doyle et al. (2010) studies the effect of trainee
teams from two different programs and find that trainees from the higher-prestige program spend less. However, this result
does suggest that even when trainees come from significantly different hospitals, differences in their mean practice styles
can be dwarfed by variation within training program.
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This expression aggregates information as a weighted average of judgments in proportion to the

precisions of the respective judgments (DeGroot, 2005). Supervisory information, measured by pre-

cision P∗
d
, reduces the effect of either trainee’s judgment on a∗

d
.

The weights on judgments in the Bayesian action in Equation (A-14),

g∗d,h;−h ≡
ρd,h

ρd,h + ρd,−h +P∗
d

,

have a natural interpretation as the influence of trainee h on the action a∗
d
. The more precise the signal

from her prior knowledge relative to her teammate and any supervisory information, the greater her

influence will be. In the limit, if either her teammate’s knowledge or external information is perfect

(i.e., ρd,−h =∞ or P∗
d
=∞), a trainee would have no influence. On the other hand, if a trainee has

perfect knowledge, then she would have full influence. At the one-year tenure mark, influence discon-

tinuously increases because the precision of a trainee’s teammate ρd,−h discontinuously decreases.

Influence may deviate from the Bayesian benchmark due to other team concerns. Career con-

cerns or the “prestige” of senior titles may underweight the knowledge of junior trainees (Scharfstein

and Stein, 1990; Prendergast, 1993; Ottaviani and Sorensen, 2001), or trainees may be given more

influence than justified by their knowledge if supervisors wish to encourage experiential learning that

requires a stake in decision-making (Lizzeri and Siniscalchi, 2008; Ludmerer, 2014). In estimation, I

allow for actions that deviate from the Bayesian benchark:

âd =
ρ̃d, j µd, j + ρ̃d,k µd,k

ρ̃d, j + ρ̃d,k +Pd
. (A-15)

ρ̃d,h = ρd,h+δ (τh) as an effective “precision” that equals the true precision of h’s knowledge adjusted

by δ (τh), depending on the tenure of h, τh. The influence of trainees with tenure τh relative to their

peers may receive less influence than the Bayesian benchmark if δ (τh) < 0 or more influence if

δ (τh) > 0. Similarly, for external and supervisory information, Pd is an effective “precision”: Even

though supervising physicians and the broader supervisory structure may have access to information

relevant for d with precision P∗
d
, this information may be underweighted (Pd < P∗

d
) or overweighted

(Pd > P∗
d
) in decision-making.

I consider the precision of knowledge as a function of tenure for given class of decisions, c: ρd,h =

ρc(d) (τh (t (d) ) ). I similarly specify external information as depending on the class of decisions:

Pd = Pc(d) .35 Effective influence of a trainee with tenure τh working with teammate with tenure τ−h
is

gc (τh;τ−h) =
ρ̃c (τh)

ρ̃c (τh) + ρ̃c (τ−h) +Pc
. (A-16)

Model-predicted practice variation (i.e., standard deviation of trainee effects) for trainees with

35In Appendix Figure A-5, I support for this assumption by showing that both the trainee-related variation and the
residual variation in spending are relatively constant across July, when old interns transition to residents and new interns
begin training.
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tenure τh, working with teammates with tenure τ−h, is then

σc (τh, τ−h) = gc (τh;τ−h)
√
κc/ρc (τh), (A-17)

where κc ∈ [0,1] reflects the similarity of judgments across different decisions in class c within the

same provider. Systematic practice variation across trainees, requires that κc > 0, or that trainees prac-

tice similarly across different decisions. While levels of knowledge, learning, and practice variation

are scaled by κc, ratios comparing different points in training will be unaffected by κc.

A-6.2 Identification

As trainees learn, the precision of their knowledge, or ρc (τh), increases with tenure. Greater knowl-

edge increases influence, or gc (τh;τ−h), holding teammates and external information fixed, while it

reduces dispersion in judgments, or
√

1/ρc (τh). Thus practice variation may not always decrease

even as trainees learn. In general, the effect of increasing influence on practice variation will tend

to dominate when a trainee’s influence is relatively low, while when a trainee has relatively high in-

fluence, the effect of reducing dispersion in judgments will tend to dominate. In the extreme, agents

who practice independently (i.e., they have full influence over their decisions) will show convergence

in their decisions as they learn.

A-6.2.1 Analytical Evaluation

Consider practice variation—or the standard deviation of trainee effects—under Bayesian-benchmark

influence:

σ (τh, τ−h) =
g∗ (τh;τ−h)√
ρ (τh)

=

√
ρ (τh)

ρ (τh) + ρ (τ−h) +P
, (A-18)

where I assume that κ = 1 in (A-17) without loss of generality.

As a first observation, note that the discontinuity in practice variation is greater across the one-

year tenure mark than it is across the two-year tenure mark.

Proposition A-2. Defineσ
(
1−

)
≡ limτ→1− E−h [σ (τh, τ−h) | τh], andσ

(
1+

)
≡ limτ→1+ E−h [σ (τh, τ−h) | τh];

similarly define σ
(
2−

)
≡ limτ→2− E−h [σ (τh, τ−h) | τh], and σ

(
T+

)
≡ limτ→2+ E−h [σ (τh, τ−h) | τh].

Then
σ

(
1+

)
σ (1−)

>
σ

(
2+

)
σ (2−)

> 1.

Proof. Assume that interns work with second-year residents in λ proportion of the time and work

with third-year residents in the remaining 1− λ proportion of the time. At the first-year discontinuity,

σ
(
1+

)
σ (1−)

=
ρ (1) + λρ (2) + (1− λ) ρ (3) +P

ρ (1) + ρ (0) +P
.
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At the second-year discontinuity,

σ
(
2+

)
σ (2−)

=
ρ (2) + ρ (1) +P
ρ (2) + ρ (0) +P

.

Since ρ (·) is increasing in τ, ρ (0) ≤ ρ (1) ≤ ρ (2) ≤ ρ (3), which yields our result. �

Because there is a change in the tenure of the other trainees as new interns arrive at the beginning

of each academic year, there is in principle a discontinuous increase in influence (and therefore prac-

tice variation) at the beginning of each year. However, the increase at τh = 1 is always larger than the

increase at τh = 2 for two reasons, both related to the monotonic increase in precision with tenure:

First, trainees at τh = 1 have less precise subjective priors than those at τh = 2, so any decrease in

the relative tenure of their peer trainee increases their influence by more. Second, the decrease in the

relative tenure of the peer is greater at τh = 1 (from τ−h = 2 to τ−h = 0) than at τh = 2 (from τ−h = 1 to

τ−h = 0). I show below in the numerical examples that, within this framework, this difference in the

discontinuous increases at τh = 1 and at τh = 2 can be quite large, and that the discontinuity at τh = 2
can be quite trivial.

Second, I consider whether practice variation is likely to increase or decrease with tenure. Since

trainees and their teammates gain tenure together, I consider τ−h = τh +∆, where ∆ is fixed in a

continuous portion of practice variation (i.e., not at the one- or two-year discontinuities). Applying

the quotient rule to σ (τh, τ−h) = σ (τh, τh +∆),

σ′ (τh) ≡
∂σ (τh, τh +∆)

δτh

=

1
2 ρ (τh)−1/2 ρ′ (τh) (ρ (τh) + ρ (τ−h) +P) − ρ (τ)1/2 (ρ′ (τ) + ρ′ (τ−h) )

(ρ (τ) + ρ (τ−h) +P)2 .

Focusing on the numerator to determine the sign of σ′ (τ), I arrive at the following necessary and

sufficient condition for convergence (i.e., decreasing practice variation with tenure, or σ′ (τh) < 0):

Proposition A-3. Practice variation decreases if and only if

ρ′ (τh)
ρ′ (τh) + ρ′ (τ−h)

< 2g∗ (τh;τ−h) . (A-19)

Learning (i.e., ρ′ (τh) > 0) does not guarantee convergence. Instead, convergence requires that the

“share of learning,” defined as ρ′ (τh) / (ρ′ (τh) + ρ′ (τ−h) ), is smaller than twice the influence. Since

this “share” is always less than 1, convergence is guaranteed whenever the trainee has full influence,

or g∗ (τh;τ−h) = 1, as is the case in a single decision-maker. The larger the trainee’s influence, the

more likely convergence will occur. Since influence grows with tenure, this also implies that practice

variation generally increases and then decreases. Special cases may involve practice variation only

increasing or only decreasing, but not decreasing and then increasing with tenure.
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A-6.2.2 Numerical Examples

Figure A-8 presents a few numerical examples of variation profiles under various learning profiles

described by functions of the piecewise linear form in Equation (A-20). The three parameters of

interest are ρ0, or initial knowledge; ρ1, or the rate of increase in the precision during the first year

as a junior trainee; and ρ2 = ρ3, or the rate of increase during the subsequent two years as a senior

trainee. The precision of judgments at the end of training is ρ (3) = ρ0 + ρ1 + 2ρ2. I also normalize

P = 1, so that whether precisions of beliefs are greater than the precision of the supervisory prior

simply depends on whether they are greater or less than 1. I consider this normalization as only

relevant for the scale of the variation profile, since any scale keeping the same shape over the overall

variation profile σ (τ) can be implemented by multiplying ρ0, ρ1, ρ2, and P by some constant.

I discuss each panel of Figure A-8 in turn:

• Panel A considers equal ρ0 = ρ1 = ρ2 = 0.2, which are relatively small compared to P = 1. The

result is broadly non-convergence, as greater experience primarily results in greater influence

against a relatively strong supervisory practice environment. The discontinuity in variation is

significantly larger at τ = 1 than at τ = 2. Variation increases in intern year and decreases but

only slightly in the next two years as resident.

• Panel B imposes no resident learning (ρ2 = 0) and presents the limiting case in which discon-

tinuous increases in variation at τ = 1 and τ = 2 are the same. Variation is still at least as big

during the two years as resident as during the year as intern, driven by influence. Variation

seems relatively constant over training.

• Panel C generates a similar variation profile as in Panel B with a non-zero ρ2 by increasing

the ratios of ρ0 and ρ1 to ρ2. The scale of variation is smaller than in Panel B, which reflects

that precision in trainee beliefs are now larger. A rescaled version with smaller precisions (and

smaller P) would reveal larger relative increases in variation at the discontinuities.

• Panel D examines increasing ρ1 relative to ρ0, so that more learning occurs in the first year of

training compared with knowledge possessed before starting training. Influence more obviously

increases in the first year, and increases in variation are sharper at the discontinuities, since

intern experience matters more. Note that working with a resident is equivalent to working

with an end-of-year intern, and increases in variation at τ = 1 and τ = 2 are the same (as in

Panel B).

• Panel E asserts that most of the learning occurs during the role as resident. There is much

greater variation across residents than across interns, and the discontinuous increase in variation

is much larger at τ = 1, while the increase is negligible at τ = 2. There is significant convergence

during the two years as resident.

• Panel F is similar to panel E but shows less convergence during role as resident. The ratio

of learning as intern to learning as resident (ρ1/ρ2) is similar, but learning during training is
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reduced relative to knowledge from prior to training (ρ0) and to supervisory information (P).

A-6.3 Specification and Estimation

I specify the precision of knowledge as a piecewise-linear function of trainee tenure:

ρc (τ) =




ρ0,c + ρ1,cτ, τ ∈ [0,1] ;

ρ0,c + ρ1,c + ρ2,c (τ−1) , τ ∈ [1,2] ;

ρ0,c + ρ1,c + ρ2,c + ρ3,c (τ−2) , τ ∈ [2,3],

(A-20)

where ρ0,c represents the precision of knowledge before starting residency, and ρ1,c, ρ2,c, and ρ3,c are

the yearly rate of learning in the first, second, and third years of residency, respectively, for decisions

in class c.

Assuming that knowledge is continuous with tenure, I also identify deviations from efficient in-

fluence that come from a step function with respect to years of training. That is, the “effective” trainee

precision relevant for influence is

ρ̃c (τ) = ρc (τ) + δ1,c1 (τ ≥ 1) + δ2,c1 (τ ≥ 2) . (A-21)

δ1,c and δ2,c represent deviations in influence from the efficient benchmark that may result from ti-

tles (e.g., “senior trainee”) that discontinuously change at years of training, bτc .36 Finally, I identify

deviations from the Bayesian benchmark from the fact that P∗c ≥ ρc (τ = 3): At a minimum, external

information must be greater than the knowledge held by a senior trainee, since all supervising physi-

cians have completed training, and since supervisory information includes informational inputs from

outside staff (e.g., nursing, consultants), or any information gathered by the trainees themselves.37

Pc < ρc (3) would strongly imply that trainees are granted more influence than warranted by their

knowledge.

I estimate learning and influence parameters as a two-step process. The first step recovers mo-

ments of practice variation, specifically the standard deviation of the distribution of trainee effects, for

trainees of tenure τh working with teammates of tenure τ−h. These empirical moments, σ̂ (τh, τ−h),

are estimated from the random effects model in Equation (3) and were previously discussed in Sec-

tion 3. The second step takes these moments of practice variation and, from the model in Section 5.3,

recovers underlying primitives of knowledge and influence using minimum distance estimation.

For each class of decisions c, I estimate model primitives θc =
(
ρ0,c, ρ1,c, ρ2,c, ρ3,c, δ1,c, δ2,c,Pc

)
36Common title conventions may refer to trainees by their year of training: PGY1, PGY2, and PGY3 use the acronym

“PGY” for “post-graduate year”; R1, R2, and R3 simply use “R” for “resident.”
37While I consider the distribution of this “supervisory” information as having mean 0 in the simple model, this as-

sumption is inconsequential, as it is by definition orthogonal to trainee knowledge. The “judgment” of the supervisory
information can be viewed as captured by all terms other than the trainee effects in the regression Equation (3), including
the error term.
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by minimum distance:

θ̂c = arg min
θc ∈Θ

(σ̂c −σ (θc) ) ′W (σ̂c −σ (θc) ) ,

where σ̂c is the vector of empirical estimates of practice variation corresponding to decisions in

class c from the first step, with elements corresponding to (τh, τ−h) ∈ T ; σ (θc) is the corresponding

vector of model-implied practice variation from Equation (A-17) given θc; and W is a weighting

matrix. Primitives may also be estimated on overall practice variation moments, in which case I omit

labels of c.

Consistent with previous reduced-form estimation, I fit the model on ‖T ‖ = 18 moments of

practice variation: I divide observations with residents in the second year of training into resident

tenure blocks of 60 days, resulting in 6 resident moments and 6 intern moments of practice vari-

ation; I also divide observations with residents in the third year of training into resident tenure

blocks of 120 days, resulting in 3 resident moments and 3 intern moments of practice variation.

If
√

n (σ̂c −σ (θc) )
d
→ N (0,Ωc), then the asymtotic variance of θ̂c is given by

Asy. Var θ̂c =
1
n

(
Γ

(
θ0,c

) ′WΓ (
θ0,c

) ) −1 (
Γ

(
θ0,c

) ′WΩcWΓ
(
θ0,c

) ) (
Γ

(
θ0,c

) ′WΓ (
θ0,c

) ) −1
,

where θ0,c is the true parameter vector, and Γ
(
θ0,c

)
= plim ∂σ

(
θ̂c

)
/∂θ̂c is an 18× 7 matrix of

analytical derivatives of Equation (A-17) with respect to θc, evaluated at θ̂c. The optimal weighting

matrix is W = Ω̂−1
c , which I obtain from the first-step estimation of practice variation. This yields for

inference

V̂ar θ̂c =
1
n

(
Γ

(
θ̂c

) ′
Ω̂
−1
c Γ

(
θ̂c

) ) −1
.

I also calculate likelihood ratio tests for the joint-significance of learning and influence parameters

against a restricted model with no learning but potentially inefficient senior influence via “status”

(i.e., only ρ0,c, δ1,c, and Pc are non-zero).

A-6.4 Results

In Table A-7, Column 1, I show baseline parameter estimates based on practice variation in overall

spending. In Figure A-9, I show the implied path of practice variation according to the model and

estimated parameters, overlaid on reduced-form estimates from Section 3. Structural estimates imply

very little knowledge at the beginning of residency (ρ0 = 0.04) compared to learning in the first year

(ρ1 = 0.20). Learning in the second year occurs at a rate 30 times faster than in the first year (ρ2 =

7.5), but appears to cease by the third year (ρ3 = 0). Between junior and senior trainees, influence

approximates the Bayesian benchmark.38 However, I find that the contribution of external information

38I estimate that δ1 = 0.23. Although this deviation from the Bayesian benchmark for senior trainees is large relative
to knowledge at the end of the first year (ρ0 + ρ1 = 0.24), it is relatively small compared to learning that occurs in the
second year (δ1/ρ2 · 365 days = 11 days worth of second-year learning). I also estimate that δ2 = −1.4, which implies that
third-year trainees have less influence than under the Bayesian benchmark, although this parameter is imprecisely estimated
and small relative to ρ2.
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(P = 3.7) is much lower than the knowledge of a graduating trainee (P ≡ ρ (3) ≈ 7.74). Since external

information includes knowledge of supervising physicians who have completed training, this suggests

that trainees are given much more influence than under the Bayesian benchmark.

I also estimate model parameters based on practice variation in spending specific to classes of de-

cisions (Table A-7) and by types of patient-days (Table A-8). Learning is often greatest in the second

year of training, regardless of the set of decisions. Decisions broken into components of diagnostic

testing, prescriptions, blood transfusions, and nursing orders show somewhat less pronounced learn-

ing in the second year, which suggests potential interactions between components that are important

for learning.

Based on likelihood ratio tests comparing the baseline model and more restrictive models, I can

reject a model with no learning (i.e., ρ1 = ρ2 = ρ3 = 0) and only senior prestige (i.e., δ1 > 0) for

overall spending decisions (Column 1 of Table A-7) and for the majority of other outcomes or subsets

of the data (Tables A-7 and A-8). On the other hand, if I allow for learning but impose the Bayesian

benchmark influence between trainees (i.e., δ1 = δ2 = 0), the restricted model (Panel B of Figure

A-10) fits the data quite well and cannot be rejected by the likelihood ratio test. Finally, I can strongly

reject a model with strictly Bayesian influence between trainees and supervisors (i.e., δ1 = δ2 = 0, P ≥

ρ0+ ρ1+ ρ2+ ρ3); the graphical fit of this model (Panel C of Figure A-10) is obviously problematic.

A-6.5 Counterfactual Analyses

A-6.5.1 Model of Learning

In my baseline results, I find that learning is low as a junior trainee in the first year, high as a senior

trainee in the second year, and null in the third year. I interpret the first switch in the rate of learn-

ing—from low learning in the first year to high in the second—as due to the effect of influence on

learning. τ = 1 serves as an intuitive kink point for this switch.

I interpret the second switch in learning—from high learning in the second year to none in the

third—as an indication that trainees have reached “full knowledge,” after which learning stops, due

to the relative benefits and costs of learning. It is not obvious why this kink in the rate of learning

should occur at τ = 2. Thus, the first step in my approach for counterfactual analyses is to specify a

more flexible model of trainee learning, in which this kink point occurs at any τ = τc ∈ (1,3) during

the two years of the senior trainee role. In this model, trainee knowledge takes this form:

ρ (τ) =




ρ0+ ρ1τ, τ ∈ [0,1] ;

ρ0+ ρ1+ ρ2 (τ−1) , τ ∈ [1, τc] ;

ρ0+ ρ1+ ρ2 (τc −1) + ρ3 (τ− τc) , τ ∈ [τc,3] .

(A-22)

Estimation of this more flexible model yields similar results to those from the baseline model: ρ̂0 =

0.04, ρ̂1 = 0.20, ρ̂2 = 8.01, ρ̂3 = 0, τ̂c = 1.87, δ̂1 = 0.21, δ̂2 = −1.42, and P̂ = 3.65.

In counterfactual scenarios of learning, I assume that the rate of learning depends on influence, but
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that learning continues until full knowledge has been reached. Parameters in Equation (A-22) imply

that full knowledge is ρ = ρ̂0 + ρ̂1 + ρ̂2 (τ̂c −1) ≈ 7.17, which I consider as fixed in counterfactual

scenarios. For the key relationship that drives learning from influence, I assume that the rates of

learning during training, ρ1 and ρ2, are piecewise linear functions of the average influence of the

trainee during the respective tenure intervals, T1 ≡ [0,1] and T2 ≡ [1, τc].
In notation, first define average influence over tenures uniformly distributed in interval T as

g (T ;θ) ≡ Eτh

[
g (τh;τ−h) | θ

]
, (A-23)

where influence g (τh;τ−h) is given in Equation (A-16) and depends on θ = (ρ0, ρ1, ρ2, ρ3, δ1, δ2,P).

Consider a counterfactual scenario as defined by key parameters of supervisory information or influ-

ence, and denote the corresponding set of counterfactual parameters as θ∆. Then a counterfactual rate

of learning takes the following form: For t ∈ {1,2},

ρ∆t =




ρ̂1g
(
Tt ;θ∆

)
, g

(
Tt ;θ∆

)
≤ g

(
T1; θ̂

)
,

ρ̂1+
ρ̂2−ρ̂1

g
(
T2;θ̂

)
−g

(
T1;θ̂

) (
g
(
Tt ;θ∆

)
−g

(
T1; θ̂

) )
, g

(
Tt ;θ∆

)
> g

(
T1; θ̂

)
.

(A-24)

Under estimated parameters θ̂, the implied rates of learning are similar for g
(
Tt ;θ∆

)
above and below

g
(
T1; θ̂

)
: ρ̂1/g

(
T1; θ̂

)
≈ 13.2, and ( ρ̂2− ρ̂1) /

(
g
(
T2; θ̂

)
−g

(
T1; θ̂

) )
≈ 14.6.

A-6.5.2 Counterfactual Scenarios and Outcomes

I consider counterfactual scenarios defined by counterfactual supervisory information (P∆) or influ-

ence between trainees (δ∆1 and δ∆2 ). A counterfactual scenario implies varying levels of influence

along the entire course of training, as given by Equations (A-16) and (A-21). Influence also depends

on knowledge, as given by Equation (A-22), which in turn depends on learning via influence, as given

by (A-24).

Thus, I must find an internally consistent set of parameters θ∆ that contains P∆. In all counterfac-

tual scenarios, I hold fixed ρ∆0 = ρ̂0 and ρ∆3 = ρ̂3 = 0. In counterfactual scenarios involving P∆, I also

hold fixed δ̃∆1 ≡ δ
∆
1 /

(
ρ∆0 + ρ

∆
1

)
= δ1/ (ρ0+ ρ1), since it is not possible to have δ∆1 −

(
ρ∆1 + ρ

∆
0

)
< 0; I

similarly hold fixed δ̃∆2 ≡ δ
∆
2 /min

(
ρ, ρ∆0 + ρ

∆
1 + ρ

∆
2

)
= δ2/min

(
ρ, ρ0+ ρ1+ ρ2

)
. Conversely, for coun-

terfactual scenarios involving influence between trainees, I vary δ̃∆1 or δ̃∆2 while holding fixed P∆ = P.

Given these constraints, I identify an internally consistent θ∆ by solving for ρ∆1 and ρ∆2 in the non-

linear system of two equations implied by Equations (A-16), (A-21), (A-22), (A-23), and (A-24), for

t ∈ {1,2}.
For each of the counterfactual scenarios, I consider the following outcomes of learning and

decision-making information:
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1. Time for trainees to acquire full knowledge:

τ∆ = 1+
ρ−

(
ρ0+ ρ

∆
1

)
ρ∆2

.

This calculated time summarizes the counterfactual rates of learning, ρ∆1 and ρ∆2 . Since learning

is always incomplete in the first year of training under all counterfactual scenarios (i.e., ρ∆1 < ρ),

this time is always greater than one year.

2. Average information from trainee knowledge: A trainee can contribute no more information

than her knowledge, but she can contribute less if decision-making departs from the Bayesian

benchmark. In other words, when working with peers of tenure τ−h, trainees of tenure τh
contribute precision equal to

ρ∆ (τh;τ−h) =min
(
1,

g (τh;τ−h)
g∗ (τh;τ−h)

)
ρ∆ (τh) .

Counterfactual knowledge, ρ∆ (τh), is given by Equation (A-22) using the counterfactual pa-

rameters ρ∆1 and ρ∆2 ; ρ̃∆ (τ), as given by Equation (A-21), may differ from ρ∆ (τ) if δ∆1 , 0
or δ∆2 , 0. For patients uniformly distributed over the course of an academic year, the average

information from trainee teams is then

Q∆ =
∫ 1

0

(
λ

(
ρ∆ (τ;τ+1) + ρ∆ (τ+1;τ)

)
+ (1− λ)

(
ρ∆ (τ;τ+2) + ρ∆ (τ+2;τ)

) )
dτ,

where λ = 0.7 is the approximate fraction of patients seen by teams with second-year trainees,

and 1− λ is the remaining fraction of patients seen by teams with third-year trainees. The

three terms inside the integral represent levels of information contributed by first-, second-, and

third-year trainees, respectively.

3. Average total information in decision-making: P∆+Q∆, or the sum of supervisory information

and average information from trainee knowledge.

A-6.5.3 Discussion of Results

In Figure A-11, I show outcomes under counterfactual scenarios varying P∆ and δ̃∆1 . As expected,

increasing P∆ slows the rate of learning and increases the time for trainees to acquire full knowledge.

There are direct effects of P∆ in decreasing trainee influence as well as indirect effects, as trainees with

less influence acquire less knowledge to contribute to decision-making. Thus, increasing supervisory

information decreases the information from trainee knowledge used in decision-making. The gain in

total decision-making information is reduced by about 40% by this mechanism of diminishing trainee

knowledge. In contrast, there is only limited impact of varying δ̃∆1 on learning and trainee knowledge

over the course of residency, at least in the range of δ̃∆1 ∈ [−1,1]. By decreasing δ̃∆1 , trainees gain more

knowledge when they are junior but less when they are senior. The effect of influence on learning
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is slightly steeper for senior trainees, which explains why there are some slight returns to increasing

δ̃∆1 in terms of decreasing years to acquire full knowledge and increasing information from trainee

knowledge in the average team decision.

In Figure A-12, I show outcomes under counterfactual scenarios varying δ̃∆2 . The effects of in-

creasing δ̃∆2 on learning and decision-making information are similar to those of increasing δ̃∆1 : In-

creasing senior influence speeds up training and increases overall trainee knowledge. The effect

range of counterfactual values of δ∆2 is larger, since the denominator in δ̃∆2 (i.e., ρ∆ (2)) is larger. In-

terestingly, around δ̃∆2 = 0, decreasing δ̃∆2 has a larger effect on Q∆ than does increasing δ̃∆2 , due to the

following intuition: Near baseline parameters, much of the third year involves no learning. Therefore,

increasing the influence of third-year trainees does not aid learning for those trainees, and learning

among junior trainees will suffer. However, learning indirectly increases for second-year trainees who

then work with less knowledgeable junior trainees. Nonetheless, the effects on learning are generally

small relative to those for varying P∆.
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Figure A-1: Patients Age by Housestaff Spending Effect
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A: Distribution by Intern Spending Effect
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B: Distribution by Resident Spending Effect

Note: This figure shows the distribution of the age of patients assigned to interns with above- or below-average
spending effects (Panel A) and residents with above- or below-average spending effects (Panel B). Trainee
spending effects, not conditioning by tenure, are estimated by Equation (A-3) as fixed effects by a regression of
log spending on patient characteristics and physician (intern, resident, and attending) identities. Kolmogorov-
Smirnov statistics testing for the difference in distributions yield p-values of 0.496 and 0.875 for interns (Panel
A) and residents (Panel B), respectively.
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Figure A-2: Demographics-predicted Spending by Trainee Spending Effect
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A: Distribution by Intern Spending Effect
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B: Distribution by Resident Spending Effect

Note: This figure shows the distribution of predicted log costs (based on patient age, race, and gender) for
patients assigned interns with above- or below-average spending effects (Panel A) and residents with above- or
below-average spending effects (Panel B). Trainee spending effects, not conditioning by tenure, are estimated
by Equation (A-3) as fixed effects by a regression of log spending on patient characteristics and physician
(intern, resident, and attending) identities. Kolmogorov-Smirnov statistics testing for the difference in distribu-
tions yield p-values of 0.683 and 0.745 for interns (Panel A) and residents (Panel B), respectively.
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Figure A-3: Attendings Spending Effects by Trainee Spending Effect
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A: Distribution by Intern Spending Effect
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B: Distribution by Resident Spending Effect

Note: This figure shows the distribution of spending fixed effects for attendings assigned to interns with above-
or below-average spending effects (Panel A) and residents with above- or below-average spending effects (Panel
B). Trainee and attending spending effects, not conditioning by tenure, are estimated by Equation (A-3) as fixed
effects by a regression of log spending on patient characteristics and physician (intern, resident, and attending)
identities. Kolmogorov-Smirnov statistics testing for the difference in distributions yield p-values of 0.059 and
0080 for interns (Panel A) and residents (Panel B), respectively.
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Figure A-4: Serial Correlation of Trainee Random Effects
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Note: This figure shows the serial correlation between random effects within trainee between two tenure pe-
riods. Details of the estimation routine are given in Appendix A-3.2. The random effect model of log daily
total costs is given in Equation (3). The model controls are as stated for Figure 1. Trainees prior to one year in
tenure are junior trainees and become senior trainees after one year in tenure. Numerical values and confidence
intervals are given in Table A-4.
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Figure A-5: Trainee-associated and Residual Variation by Day of Year
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Note: This figure shows the standard deviation of random effects due to junior and senior trainee teams (solid
dots) and the standard deviation of the residual (hollow dots) in 30-day periods by day of the year. Residual
variation can be interpreted as variation due to independent observation. The two vertical gray lines indicate
when new junior trainees begin residency on July 19 and when senior trainees advance a year on July 28 (i.e.,
becoming a new second-year senior trainee, becoming a third-year trainee, or completing residency). The
model is similar to Equation (3), except that a single random effect is modeled for the junior and senior trainee
combination, instead of two additively separable random effects for the respective trainees. Controls are given
in the note for Figure 1.
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Figure A-6: Effect of High Prior Exposure to Spending
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B: Prior 3 Months
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C: All Prior in Service
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D: Prior 3 Months in Service

Note: This figure shows the effect of high prior exposure to supervising-physician spending. This exposure
measure is discussed in Section and in Table A-5 and reflects the average spending effects of supervising
physicians that a given trainee was matched to in the past. The tenure-specific effect of having high prior
exposure to spending is estimated as in Equation (A-12). Panel A uses an exposure measure that includes
all prior matches, regardless of service (corresponding to Column 1, Panel A of Table A-5). Panels B and
D use an exposure measure that includes matches within the last three months with supervising physicians
(corresponding to Columns 2 and 4, Panel A of Table A-5). Panels C and D use an exposure measure that is
restricted to prior matches on the same service (corresponding to Columns 3 and 4, Panel A of Table A-5).
The vertical line indicates the one-year mark of training; trainees are junior prior to this and senior after this.
The model controls are as stated for Figure 1. The effect of high prior exposure to senior-trainee spending is
shown in Figure A-7. Point estimates are shown as connected dots; 95% confidence intervals are shown as
dashed lines. Trainees prior to one year in tenure are junior trainees and become senior trainees after one year
in tenure; a vertical line denotes the one-year tenure mark.
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Figure A-7: Effect of High Exposure to Senior-trainee Spending
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Note: This figure shows the effect of high prior exposure to senior-trainee spending. This exposure measure
is discussed in further detail in Appendix A-5 and in Table A-5 and reflects the average spending effects of
senior trainees that a given trainee was matched to in the past as a junior trainee. The tenure-specific effect of
having high prior exposure to spending is estimated as in Equation (A-12). Panel A uses an exposure measure
that includes all prior matches with senior trainees, regardless of the ward service (corresponding to Column 1,
Panel B of Table A-5); Panel B uses an exposure measure that is restricted to prior matches on the same service
(corresponding to Column 3, Panel B of Table A-5). For tenure periods after the one-year mark (shown as the
vertical line), the trainee of interest is senior, and matches with senior trainees all date back to the trainee’s
first year of training as a junior trainee. The model controls are as stated for Figure 1. The effect of high prior
exposure to supervising-physician spending is shown in Figure A-6.
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Figure A-8: Numerical Examples of Variation Profiles
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Note: This figure shows variation profiles of the expected standard deviation of trainee effects over tenure,
σ (τ), differing by the underlying profile of learning over tenure. Learning is parameterized as a piecewise
linear function g (τ) that describes how the precision of subjective priors increases over tenure. In particular,
this figure considers piecewise linear functions of the form (A-20), parameterized by ρ0, ρ1, and ρ2 = ρ3. Each
panel considers a different set of parameters of ρ (τ). Given ρ (τ), I calculate the expected standard deviation
of trainee effects over tenure using Equation (A-18). I assume that interns are equally likely to work with
second-year residents and third-year residents. These profiles are discussed further in Appendix A-6.2.
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Figure A-9: Model Fit to Practice Variation Profile
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Note: This figure shows practice variation, defined as the standard deviation of random trainee effects specified
in Equation (3), in log daily total costs at each non-overlapping tenure period. Trainee prior to one year in tenure
are junior trainees and become senior trainees after one year in tenure. Reduced-form estimates of practice
variation are shown in dots and are the same as shown in Figure 1. Practice variation implied by the model of
learning and influence, specifically Equation (A-17), is shown as a dashed line. Estimation of parameters of
this model is described in Section 5.3. The Sargan-Hansen over-identification J-test statistic of the model is
J = 8.60, which is less than the 95th percentile value of 19.7 the χ2

18−7 distribution (the p-value corresponding
to J = 8.60 is 0.67)
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Figure A-10: Model Restrictions
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C: Fully Efficient
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Note: This figure shows the fit of restricted models of learning and influence, with parameters described in
Table A-7. Each panel shows the same reduced-form moments of practice variation for each tenure period,
which are also the same as those shown in Figure A-9, reproduced in Panel D. Panel A restricts the model
to no learning (i.e., ρ1 = ρ2 = ρ3 = 0). Panel B restricts the model to the Bayesian benchmark of influence
between trainees (i.e., δ1 = δ2 = 0). Panel C additionally restricts the model so that supervisors receive as much
influence as warranted by the lower bound of their knowledge (i.e., δ1 = δ2 = 0, P ≥ ρ0 + ρ1 + ρ2 + ρ3). The
likelihood ratio test comparing a no-learning model (Panel A) with the baseline model (Panel D) rejects the
restricted model with a p-value less than 0.01. Likelihood ratio tests for other outcomes or for subsets of the
data are also given in Tables A-7 and A-8. Sargan-Hansen over-identification J-test statistics are 15.66 (p-value
= 0.405 under χ2

18−3 distribution) for Panel A, 13.42 (p-value = 0.416 under χ2
18−5 distribution) for Panel B,

and 65.97 (p-value < 0.01 under χ2
18−4 distribution).
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Figure A-11: Counterfactual Training Time and Team Information
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Note: This figure shows counterfactual results on time for trainees to acquire “full knowledge” and on informa-
tion used in decision-making. I consider two types of counterfactual scenarios: In subpanels in Panel A, I alter
on the x-axes the amount of supervisory information used in decision-making, or P in the model, while holding
fixed the relative influence between junior and senior trainees. In subpanels in Panel B, I alter on the x-axes the
relative influence between junior and senior trainees, or δ1 in the model, while holding fixed the amount of su-
pervisory information. Appendix Figure A-12 shows results for varying δ2 in the model. The time for trainees
to acquire full knowledge (or “years to train”) is measured on the y-axes of the left subpanels, and the informa-
tion used in decision-making is measured on the y-axes of the right subpanels. The right subpanels show both
information from trainee knowledge (dashed lines) and total information (solid lines) used in decision-making.
On each line, I plot a solid dot indicating actual results and a hollow dot indicating counterfactual results under
Bayesian-benchmark influence; supervisory influence in Panel A is a lower bound for the Bayesian benchmark
that equals full trainee knowledge, or P = ρ0+ ρ1+ ρ2 (τc −1). Lines in Panel A are plotted for counterfactual
P∆ ∈

[
0,2P

]
; lines in Panel B are plotted for counterfactual δ∆1 /

(
ρ∆0 + ρ

∆
1

)
∈ [−1,1]. Further details are given

in Appendix A-6.5.
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Figure A-12: Counterfactual Results, Varying δ2
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Note: This figure shows results for counterfactual scenarios in which I vary the additional deviation in effective
precision for third-year trainees, or δ2 in the model and shown in the x-axes of both panels. The y-axis of Panel
A plots the time for trainees to acquire “full knowledge” (or “years to train”). The y-axis of Panel B plots
information from trainee knowledge (dashed lines) and total information (solid lines) used in decision-making.
On each line, I plot a solid dot indicating actual results and a hollow dot indicating counterfactual results under
the Bayesian benchmark. Lines are plotted for counterfactual δ∆2 /ρ

∆ (2) ∈ [−1,1]. Further details are given in
Appendix A-6.5.
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Table A-5: Differences in Prior Exposure to Spending

Differences Between High and Low Exposure
(1) (2) (3) (4)

All services Within service
Tenure period
(days)

All prior
Prior 3
months

All prior
Prior 3
months

Panel A: Exposure to Spending by Supervising Physicians
0-60 5.31% 5.65% 4.62% 4.84%
61-120 5.16% 5.52% 4.81% 5.03%
121-180 4.64% 5.41% 4.39% 4.87%
181-240 4.47% 5.43% 3.85% 4.41%
241-300 4.06% 5.21% 3.85% 4.41%
301-365 3.81% 4.92% 3.31% 4.28%
366-425 3.54% 5.80% 3.87% 5.41%
426-485 3.70% 6.06% 4.05% 6.04%
486-545 3.30% 5.71% 3.31% 4.83%
546-605 3.15% 5.27% 3.67% 5.47%
606-665 3.34% 6.01% 4.05% 6.26%
666-730 3.39% 5.91% 3.44% 5.24%
731-850 3.53% 4.97% 2.22% 3.78%
851-970 3.52% 5.82% 2.56% 4.05%
971-1095 3.03% 3.91% 1.80% 3.02%

Panel B: Exposure to Spending by Senior Trainees
0-60 19.08% 19.50% 20.82% 20.92%
61-120 19.88% 20.32% 22.89% 23.02%
121-180 19.54% 21.03% 21.51% 23.23%
181-240 19.52% 20.54% 22.12% 23.53%
241-300 19.04% 20.12% 21.95% 23.61%

301-365 17.76% 17.99% 19.88% 20.28%

Note: This table presents differences in average spending effects of supervising physicians (Panel A) and of
senior trainees (Panel B) who worked with trainees in the past at each tenure period for the trainees. Columns 1
and 2 include prior team pairings in all services, while Columns 3 and 4 only include prior team pairings within
the same service. For example, for an observation in the cardiology service, Columns 3 and 4 only include
prior team pairings for a trainee while working in the cardiology service. Columns 2 and 4 further restrict prior
team pairings to those within the last three months. The spending effect of the relevant supervising physician or
senior trainee is the empirical Bayes posterior mean from a random-effects model of log daily overall spending.
Of the set of eligible prior team pairings, the exposure to spending measure is a weighted average (by patient-
day) of the spending effects of the relevant matched physician (i.e., either the supervising physician or the
senior trainee). Trainees in a given tenure period are categorized as having “high exposure” to spending if this
measure is above the median measure for trainees in the same tenure period. The difference in exposure to
spending between high and low exposure is simply the average measure for high-exposure trainees subtracted
by the average measure for low-exposure trainees in a given tenure period.
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Table A-6: Effect of Trainee Experience on Spending

Log daily total costs
(1) (2) (3) (4) (5)

Number of
days

Number of
patients

Number of
attendings

Attending
spending

Attending
spending

Panel A: Interns
Effect of trainee with
measure above median

0.001
(0.004)

0.003
(0.004)

-0.001
(0.004)

-0.010**
(0.005)

-0.001
(0.005)

Observations 182,500 182,500 182,500 156,545 131,654
Adjusted R2 0.088 0.088 0.088 0.089 0.089

Panel B: Residents
Effect of trainee with
measure above median

0.005
(0.007)

-0.005
(0.008)

-0.001
(0.007)

0.010*
(0.005)

0.013***
(0.005)

Observations 200,266 200,266 200,266 182,982 176,086
Adjusted R2 0.089 0.089 0.089 0.086 0.086

Measure and median
within service

Y Y Y N Y

Note: This table reports results for some regressions of the effect of indicators of trainee experience. Panel A
shows results for interns; Panel B shows results for residents. Regressions are of the form in Equation (A-9),
where the coefficient of interest is on an indicator for a group of trainees identified whether their measure (e.g.,
number of days) is above the median within a 60-day tenure interval (across all trainees). The relevant tenure
interval is the tenure interval before the one related to the day of the index admission. All columns except
for (4) represent measures and medians that are calculated within service (e.g., number of days is calculated
separately for a trainee within cardiology, oncology, and general medicine and compared to medians similarly
calculated within service). Columns 4 and 5 feature a measure of attending spending, which is the average
cumulative effect of attending physicians who worked with the trainee of interest up to the last prior tenure
interval. Attending “effects” are calculated by a random effects method that adjusts for finite-sample bias;
since patients are not as good as randomly assigned to attending physicians, these effects do not have a strict
causal interpretation at the level of the attending physician. Other specifications (e.g., calculating all measures
across services, or not conditioning on trainee identity) were similarly estimated as insignificant and omitted
from this table for brevity. All models control for patient and admission characteristics, time dummies, and
fixed effects for attending and the other trainees on the team (e.g., the resident is controlled for if the group is
specific to the intern). Standard errors are clustered by admission.
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Table A-8: Model Parameter Estimates by Day of Stay and Patient Severity

Day of Stay Patient Severity
(1) (2) (3) (4)

Early Late
High

Severity
Low

Severity

Knowledge parameters

Prior to training (ρ0)
0.076

(0.056)
0.006

(0.000)
0.091

(0.078)
0.060

(0.059)

First year (ρ1)
0.346

(0.223)
0.294

(0.087)
0.371

(0.299)
0.207

(0.253)

Second year (ρ2)
6.681

(2.528)
6.655

(1.414)
6.242

(2.719)
7.644

(3.572)

Third year (ρ3)
0.000

(0.000)
0.845

(0.007)
0.000

(0.000)
0.000

(2.000)
Influence parameters

Deviation after first year (δ1)
0.271

(0.288)
0.192

(0.198)
0.294

(0.315)
0.204

(0.300)

Deviation after second year (δ2)
−0.912
(0.719)

−1.554
(0.082)

−1.347
(0.780)

−0.367
(1.597)

Supervisory information (P)
3.850

(0.545)
3.495

(0.419)
3.725

(0.608)
3.759

(0.622)

Likelihood ratio test p-value 0.151 0.000 0.020 0.182

Note: This table shows parameter estimates of the model of learning and influence described in Section 5.3.
Columns correspond to models estimated on observations by patient-day: Columns 1 and 2 are for days re-
spectively before or after the middle of each patient’s stay; Columns 3 and 4 are for patients with above- or
below-median expected 30-day mortality, respectively. Parameters are as described in the note for Table A-7
and are estimated from reduced-form practice variation moments, as shown in Figure 4 for type of patient-day.
The likelihood ratio test p-value compares the estimated model against a restricted model of no learning (i.e.,
only ρ0, δ1, and P are non-zero). Standard errors are displayed in parentheses.
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