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Abstract

Core-periphery trading networks arise endogenously in over-the-counter markets as
an equilibrium balance between trade competition and inventory efficiency. A small
number of firms emerge as core dealers to intermediate trades among a large number
of peripheral firms. The equilibrium number of dealers depends on two countervailing
forces: (i) competition among dealers in their pricing of immediacy to peripheral firms,
and (ii) the benefits of concentrated intermediation for lowering dealer inventory risk
through dealers’ ability to quickly net purchases against sales. For an asset with a
lower frequency of trade demand, intermediation is concentrated among fewer dealers,
and interdealer trades account for a greater fraction of total trade volume. These two
predictions are strongly supported by evidence from the Bund and U.S. corporate bond
markets. From a welfare viewpoint, I show that there are too few dealers for assets
with frequent trade demands, and too many for assets with infrequent trade demands.
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1 Introduction

Using a continuous-time model of network formation and trading in over-the-counter (OTC)

markets, I show how an explicit core-periphery network arises endogenously as an equilib-

rium balance between trade competition and inventory efficiency. Even when agents are all

ex-ante identical, a small number of them emerge as core agents, known as “dealers,” who

intermediate among a large number of peripheral buyside firms. The equilibrium number of

dealers is determined by a key trade-off between two countervailing forces: (i) competition

among dealers in their pricing of immediacy to buyside firms, and (ii) the benefits of concen-

trated intermediation for lowering dealer inventory risk through dealers’ ability to quickly

offset purchases against sales. This trade-off need not be efficient. In addition to predicting

the number of dealers providing intermediation, my results point to under-provision of dealer

intermediation for actively traded assets, and over-provision for infrequently traded assets.

Most OTC markets, such as those for bonds, swaps, inter-bank lending, and foreign

exchange derivatives, exhibit a clear and stable core-periphery network structure.1 Roughly

the same 10 to 15 dealers, all affiliated with large banks, form the core. The vast majority

of trades have one of these dealers on at least one side. For example: The largest sixteen

derivatives dealers, known as the “G16,”2 intermediate 53% of the total notional amount of

interest rate swaps, 62% of credit default swaps, and 40% of foreign exchange forwards.3

Figure 1 illustrates some examples of core-periphery networks in OTC markets.

Many studies4 have argued that recent illiquidity in bond markets has been worsened by
1Bech and Atalay (2010), Allen and Saunders (1986), Afonso, Kovner, and Schoar (2014) provide evidence

on federal funds, Boss, Elsinger, Summer, and Thurner (2004), Chang, Lima, Guerra, and Tabak (2008),
Craig and von Peter (2014), in ’t Veld and van Lelyveld (2014), Blasques, Bräuning, and van Lelyveld (2015)
on foreign interbank lending, Peltonen, Scheicher, and Vuillemey (2014) on credit default swaps, Di Maggio,
Kermani, and Song (2015) on corporate bonds, Li and Schürhoff (2014) on municipal bonds, Hollifield,
Neklyudov, and Spatt (2014) on asset-backed securities and James, Marsh, and Sarno (2012) on currencies.

2The G16 dealers are BoA, Barclays, BNP Paribas, Citi, Crédit Agricole, Credit Suisse, Deutsche Bank,
Goldman Sachs, HSBC, JPMorgan, Morgan Stanley, Nomura, RBS, Société Générale, UBS and Wells Fargo.

3These statistics are computed by Abad, Aldasoro, Aymanns, D’errico, Fache, Hoffmann, Langfield,
Neychev, and Roukny (2016) using EMIR data as of November 2015.

4Adrian, Fleming, Goldberg, Lewis, Natalucci, and Wu (2013) provide a recent discussion. Prior studies
include Grossman and Miller (1988), Gromb and Vayanos (2002, 2010), Lagos, Rocheteau, and Weill (2008),
Brunnermeier and Pedersen (2008), Comerton-Forde, Hendershott, Jones, Moulton, and Seasholes (2010),
Hendershott and Seasholes (2007), Hendershott and Menkveld (2014), Rinne and Suominen (2010, 2011),
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Li and Schüerhoff - muni bonds Hollifield, Neklyudov, Spatt - ABS Bech and Atalay - Fed funds

ESRB - Interest rate swaps ESRB - Credit default swaps ESRB - FX forwards

Figure 1 – Core-periphery networks in OTC markets

crisis-induced regulations (such as the Volcker Rule) and higher bank capital requirements,

which have increased the cost of access to dealers’ balance sheets. My results suggest that,

aside from financial stability benefits (which I do not model), weighting capital requirements

by asset liquidity can foster more efficient provision of dealer intermediation.

The model works as follows. A finite number of ex-ante identical agents form bilateral

trading relationships in a continuous-time trading game. It is costly for agents to hold asset

inventory beyond their immediate needs. Dealers arise endogenously to form the core of the

market, exploiting their central position to balance inventory risk by quickly netting many

purchases against many sales. Dealers compete in their pricing of immediacy to maintain long

term trading relationships with peripheral buyside firms. As more dealers compete for trades,

each dealer must post a narrower bid-ask spread, while requiring a higher intermediation

compensation given its reduced ability to balance inventory. The equilibrium number of

dealers is such that the equilibrium spread, driven by trade competition, is just enough

to cover the dealer sustainable spread driven by inventory balancing. Figure 2 depicts an

example equilibrium core-periphery network of 23 agents, 3 of whom emerge as dealers.

Weill (2007), Meli (2002), Adrian, Moench, and Shin (2010), Adrian, Etula, and Shin (2010).
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Each dealer induces a negative externality on other dealers’ inventory efficiency by reduc-

ing their order flow. This externality pushes toward over-provision of dealer intermediation,

and is particularly pronounced for infrequently traded assets which have fewer opportunities

for netting. For actively traded assets, however, this externality is inconsequential relative

to the distortion caused by the market power of dealers over their customers. The bilateral

nature of OTC trading gives dealers a temporary monopolistic position during each contact

with buyside firms, causing a “holdup” distortion by which dealers extract rents that dis-

courage some beneficial trades. For actively traded assets, the holdup effect dominates the

inventory-efficiency externality, leading overall to under-provision of dealer intermediation.

d1

d2 d3

Figure 2 – An example of a core-periphery network with 3 dealers and 20 buyside firms

Partly in response to post-crisis regulation, the basic core-periphery network of some OTC

markets includes additional structure in the form of trading platforms on which multiple

dealers provide quotes. Multilateral trading platforms have appeared in OTC markets for

foreign exchange, treasuries, some corporate bonds, and (especially through the force of

recent regulation) standardized swaps. Examples of such platforms include MarketAxess

and Neptune for bonds, 360T and Hotspot for currencies, and Bloomberg for swaps. This

paper restricts its focus, however, to the more “classical” case of purely bilateral OTC trade.

There is a rising interest in providing theoretical foundations for the endogenous core-

periphery structure of OTC markets. In prior research on this topic, the agents who form the
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core have some ex-ante special advantages in serving this role. Hugonnier, Lester, and Weill

(2016) and Chang and Zhang (2016) derive the “coreness” of investors from their preferences

for ownership of the asset. Those with average preferences act as intermediaries between

high and low-value investors. The models of Neklyudov (2014) and Üslu (2016), instead, are

based on exogenous heterogeneity in investors’ search technologies. Moreover, prior work

all leads to a continuum of “core” agents, thus ruling out realistic predictions related to the

number of dealers intermediating a given market, and neglecting some strategic behavior

of dealers arising from their individual impacts on the market. For example, Farboodi,

Jarosch, and Shimer (2016), who allow investors to acquire superior search technologies, lead

to equal equilibrium value for all core and peripheral investors. As a further distinction, in

Farboodi (2015), the endogenous network structure is generated by counterparty default risk

management, and not (as in my model) by trade competition and inventory risk management.

My results contribute to this literature in three ways: First, I provide a non-cooperative

game-theoretic foundation for the formation of core-periphery networks in OTC markets that

is motivated by inventory management and trade competition. Even when agents are all ex-

ante identical, an ex-post separation of core from peripheral agents is determined solely by

endogenous forces that tend to concentrate the provision of intermediation. Second, I explic-

itly calculate the equilibrium number of dealers as a function of market characteristics. The

endogenous set of dealers has significantly higher equilibrium values than peripheral buyside

firms. Finally, my model characterizes the endogenous relationships among welfare, dealer

intermediation and asset trade frequency, pointing to under-provision of intermediation for

actively traded assets, and over-provision for infrequently traded assets.

The paper is organized as follows. Section 2 presents the setup of the symmetric-agent

model and defines the equilibrium solution concept. Section 3 shows that a core-periphery

network structure emerges in equilibrium, and solves for the endogenous number of dealers

as a function of market characteristics. Section 4 provides comparative statics and welfare

analysis, and discusses policy implications. Section 5 offers an extension of the symmetric-

agent model, in which dealers are allowed to bilaterally negotiate the terms of their trades,

rather than merely offer take-it-or-leave-it quotes. Section 6 provides concluding remarks.
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2 The Basic Model

Asset and preferences. I fix a probability space and the time domain [0,∞). A finite

number n of ex-ante identical risk-neutral agents trade a non-divisible asset. The asset

generates a sequence (Dk)k≥1 of per-unit lump-sum payoffs, independent random variables

with some finite mean v, at the event times of an independent Poisson process. To simplify

exposition, I assume that v = 0, which is without loss of generality. Every agent has 0 initial

endowment of the asset and incurs a quadratic cost βx2 per unit of time when holding an

asset inventory5 of size x. That is, the agent experiences an instantaneous disutility when

her inventory position deviates from a bliss point, which is normalized to 0. All agents

are infinitely-lived with time preferences determined by a constant discount rate r, and can

borrow and lend in a frictionless money market at the risk-free rate r.

Network formation, search and trade protocols. Each agent i is shocked by exoge-

nously determined needs to buy or sell (equally likely) one unit of the asset at the event

times of a Poisson process, independent of asset payoffs and across agents, with some mean

rate 2λ. Upon receiving such a shock, there is an immediacy benefit π to agent i if the trade

can be executed immediately. If it cannot, the opportunity is lost. These demand shocks

can be viewed as outside customer orders, arbitrage opportunities or private hedging needs.

At any time t ≥ 0, a given agent i can open a trading account with any other agent

j, giving i the right to obtain executable price quotes from j. If i does so, then j is said

to be a quote provider to i. Setting up a trading account is costless, but maintaining an

account incurs an ongoing cost of c per unit time to agent i, which can be viewed as a

monitoring or operational cost. An agent is permitted to terminate any of her accounts at

any time, thus eliminating the associated maintenance costs. On the equilibrium path, these

trading accounts, once set up, will be maintained forever. The option to close an account,
5Broker-dealers and asset-management firms have extra costs for holding inventory of illiquid risky assets.

These costs may be related to regulatory capital requirements, collateral requirements, financing costs, and
the expected cost of being forced to raise liquidity by quickly disposing of inventory into an illiquid market.
The quadratic-holding-cost assumption is common in both static and dynamic trading models, including
those of Vives (2011), Rostek and Weretka (2012) and Du and Zhu (2014).
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however, plays an important equilibrium role in supporting competition as a credible threat

that discourages quote providers from offering aggressively unfavorable prices.

At any time t > 0, agent i may search among her current quote providers. Search is

cost-free, but an agent is allowed to search only a finite number of times during any finite

time interval. Whenever agent i searches among her m current quote providers, there is

some probability θm of immediate success, in which case one of these m quote providers is

selected, each with equal probability 1/m, to provide a quote. These search outcomes are

independent of asset payoffs, demand shocks, and across searches. The probability θm ∈ (0, 1)

of a successful search is increasing and strictly concave in m > 0, and θ0 = 0. Establishing

more trade relationships benefits an agent’s search prospects but also raises maintenance

costs. Appendix B provides an example microfoundation of this search technology.

At the point of a successful search contact with some quote provider j, agent i submits

a request for quote (RFQ) indicating a desired trade direction (buy or sell). Agent j then

posts an executable bid or ask quote, a binding take-it-or-leave-it offer to buy or sell one unit

of the asset at the respective prices. The quote is observed and executable only by agent i,

and is good only when offered. The identity of agent i is not revealed to agent j at the time

of the RFQ. This trade protocol is known6 as “anonymous RFQ.” Section 5 considers “name

give-up RFQ,” in which i “gives up” her identity to j. The restriction to a trade size of one

unit is not realistic, especially for inter-dealer trading, and will be relaxed in Section 5.

When agent i accepts an ask quote of a from agent j at time t, the current inventory

xjt of agent j is reduced by 1 and the agreed price a is immediately transferred from i to j.

Conversely, if a bid price b is accepted, xjt increases by 1 and j pays7 the amount b to i.

For technical modeling convenience, I allow a quote provider the option, whenever a quote

is accepted, of not taking the trade on her own account, instead allowing the transaction

with agent i to be diverted to a neutral third-party account called a “deep pocket.” Agent i
6On Swap Execution Facilities in 2014, 31% of investors prefer trading via anonymous RFQ, and 52%

prefer name give-up RFQ, according to McPartland (2014) based on survey responses.
7These price transfers can be immediately consumed or invested in the money market account for later

consumption. Since the time discount rate r is equal to the money-market interest rate, whether to consume
or save the price transfer is a matter of indifference to agent j, thus simplifying the model.
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does not learn whether or not agent j invokes this deep pocket. In equilibrium, it turns out

that the deep pocket is invoked only when the inventory of agent j is so large in magnitude

that agent j, if she had no access to the deep pocket, would have provided a quote that

would be refused by agent i, thus revealing to agent i that agent j must have an inventory

that is correspondingly large in magnitude. This information would change the future search

strategy of agent i in an intractable way. (Agent i would learn that seeking a future trade

with agent j is relatively more likely to be a waste of time.) The existence of a deep pocket

simply avoids this informational complexity. In equilibrium, as I will show, the deep-pocket

account is technically feasible, in the sense that it can indeed service all trades diverted to

it while maintaining a non-negative net present expected discounted value at all times.

Two tie-breaking rules are assumed: (i) If agent j is indifferent to using or not using her

deep pocket, she does not use it; (ii) Whenever using her deep pocket, j always quotes a

price that yields the maximum profit for her deep pocket, subject to maximizing her own

continuation utility. Section 5 eliminates the deep-pocket assumption in a richer model,

where the equilibrium outcome remains qualitatively intact.

Figure 3 illustrates the order of events from the perspective of a given agent i. Figure 4

shows the sequence of events that could happen at a given time t > 0.

0 T1 T2 T3
Sets up trading accounts

Receives a demand shock

Receives a RFQ from another agent j

. . .

1. Searches among quote providers
2. If search is successful, receives a quote
3. Accepts or rejects the quote
4. Possibly terminates some trading accounts

Posts an ask or bid quote

Figure 3 – Timeline of a given agent i

Information structure and solution concept. For any agent i and time t ≥ 0, I let

Nout
it be the set of her quote providers, and N in

it be the set of agents who have i as a quote
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Start

Event 1:
Arrival of de-
mand shocks.

Event 2:
Agents search
linked quote
providers to
request quotes.

Event 3:
Upon successful
search, quotes
are provided to
quote seekers.

Event 4:
Agents accept
or reject the
quotes.

Event 5:
Agents open
or terminate
their trading
accounts.

Figure 4 – Sequence of events that could occur at a given time t > 0

provider. The process (Nit)t≥0 =
(
Nout
it , N in

it

)
t≥0

of potential counterparties of agent i is

taken to be right continuous with left limits (RCLL).8 I let Fit represent the information

available to agent i up to but excluding time t, consisting of the sets (Nis)s<t of the agent’s

prior counterparties, her past inventories (xis)s<t, the directions (Ois)s<t of her prior demand

shocks (buy or sell), the requests for quote (Ris)s<t from and to other agents, the quotes

(pis)s<t that she has offered, the quotes (p̃is)s<t that she was offered by others, the identities

(jis)s<t of the associated quote providers, and the payments (Pis)s<t to agent i in past trades.

The payment Pit could be either the price transferred at a trade or the benefit π of fulfilling

a demand shock. I let N be the set of agents. A strategy for agent i consists of

(i) A search strategy Si that specifies, for every time t > 0, a search decision Sit ∈

{Search, Do Not Search}. When making this decision, agent i possesses her prior in-

formation Fit, and has also observed the direction of her demand shock at time t, if

there is one. Therefore, Sit must be measurable with respect to F1
it, the information

generated9 by Fit and Oit.

(ii) A quoting strategy pi that specifies, for every time t > 0, the price pit that i would

quote upon receiving a request for quote. The quote pjt is measurable with respect to

F2
jt, the information generated by F1

jt and Rjt. In particular, the quote is allowed to

depend on whether the RFQ is to buy or sell.
8An RCLL function is a function defined on R+ that is right-continuous and has left limits everywhere.

RCLL functions are standard in the study of jump processes. Please see, for example, Protter (2005). Here,
the process (Nit)t≥0 is taken to be RCLL to be consistent with real-life account maintenance behavior. It
also ensures that the set Nit− of counterparties available at time t is well defined for every t > 0.

9That is, F1
it = σ(Fit, Oit).
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(iii) A quote acceptance strategy ρi for agent i specifies, for every time t > 0, a trade

decision ρit ∈ {Accept, Reject}. The response ρit is measurable with respect to F3
it,

the information generated by F2
it, pit, p̃it, and jit.

(iv) A set Nout
it ⊆ N\{i} of quote providers to i that is measurable with respect to F4

it, the

combined information of F3
it, Pit, and xit.

Given strategies for all agents, the continuation utility of agent i at time t is

Uit = E

(∫ ∞
t

e−r(s−t)
(
−βx2 −

∣∣Nout
is

∣∣ c) ds+
∑
τk≥t

e−r(τik−t) Piτik
∣∣∣ Fit) , (1)

where (τik)k≥1 is the sequence of trade times of agent i.

In a perfect Bayesian equilibrium (PBE), each agent maximizes her continuation utility at

each time, given the strategies of other agents. Appendix C provides a basic definition of PBE

for continuous-time games. I focus on Markovian and stationary strategies. Formally, the

Markov state variable of agent i is Yit = (xit, Nit, Oit, Rit, p̃it, jit). In a stationary equilibrium,

the strategies of agent i can be written as [fi(Yit)]t>0 for some measurable function fi.

A network G is an equilibrium trading network if it is supported by some stationary

equilibrium σ, in that there is directed link from i to j if and only if i has a trading account

with j at any time t ≥ 0. In this case, σ is a said to be a supporting equilibrium for G.

3 Core-Periphery Network and Core Size

Given a set of model parameters (n, β, π, λ, θ, c, r), I determine all equilibrium networks,

showing that they all have a flavor of “core-periphery” structure. I also provide equilibrium

selection criteria that select a unique equilibrium core-periphery network.

A family of concentrated core-periphery networks.

There exists a family of equilibrium core-periphery networks of the form depicted in

Figure 2. In each such network, agents are partitioned into I∪J = N with |J | = m “dealers”
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and |I| = n −m “buyside firms.” Each buyside firm i ∈ I opens a trading account with all

m dealers in J . The dealers set up accounts only with each other. This network, denoted by

G(m), is called a concentrated core-periphery network. The family of equilibria is indexed

by the number m of dealers, ranging from 0 to some maximally sustainable number m∗ of

dealers, where m∗ is endogenously determined. For every d ≤ m, I let

Φd,P ∗(m) =
2λθd(π − P ∗(m))− dc

r
, where P ∗(m) = π − c

2λ(θm − θm−1)
. (2)

Theorem 1. (i) The concentrated core-periphery network G(m) with m dealers is an equi-

librium network if and only if m ≤ m∗, for some maximum number m∗ of dealers. (ii) In

any supporting equilibrium of G(m), each dealer j always posts some constant ask a∗j and bid

b∗j , with a spread a∗j−b∗j = 2P ∗(m). The equilibrium payoff of every buyside firm is Φm,P ∗(m).

I first construct a supporting equilibrium σ∗(m) = (S∗, ρ∗, p∗m, N
∗
m) for G(m), then calcu-

late the maximum core size m∗. In the supporting equilibrium σ∗(m), dealers post symmet-

ric bid-ask quotes [−P ∗(m), P ∗(m)]. In any other supporting equilibrium, dealers’ bid-ask

quotes do not have to be symmetric, whereas the equilibrium spread must be 2P ∗(m).

Each agent i ∈ N searches among her dealer couterparties when receiving a demand

shock, and does not search otherwise. I denote this search strategy by S∗. When buying,

i accepts any ask a ≤ π. When selling, i accepts any bid b ≥ −π. I denote this quote

acceptance strategy by ρ∗. In equilibrium, i obtains the ask quote P ∗(m) when buying and

the bid quote −P ∗(m) when selling. Thus, i earns a net profit of π − P ∗(m) for every

successful execution of trade opportunity. Hence, the continuation utility of i is

Φm,P ∗(m) =
2λθm(π − P ∗(m))−mc

r
.

The numerator is the mean rate of benefit, which is the product of the demand rate 2λ, the

probability θm of a trade, and the profit π − P ∗(m) of a successful trade, net of the account

maintenance cost mc. Multiplying by 1/r converts this mean benefit rate to the associated

lifetime present value. I now suppose that i discontinues its account with dealer d1 at some

time t. This is an off-the-equilibrium-path event that is observed only by i and d1. Thus, all
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other agents cannot condition their strategies on this deviation in the continuation game. In

particular, d2, . . . , dm continue to post the bid-ask prices ±P ∗(m) to their buyside customers,

including i who now only has m− 1 dealer accounts left. The continuation utility of i thus

becomes Φm−1,P ∗(m). One has Φm,P ∗(m) ≥ Φm−1,P ∗(m), since by definition of equilibrium,

m is the optimal number of dealer accounts for i. If Φm,P ∗(m) > Φm−1,P ∗(m), then a given

dealer would be strictly better off widening its spread by some amount ε > 0, knowing that

it is optimal for every buyside firm to always maintain m dealer accounts. Therefore, the

indifference condition

Φm,P ∗(m) = Φm−1,P ∗(m)

must hold for buyside firms. This indifference condition gives every buyside firm the ability to

costlessly discontinue any given dealer account, making termination of a trading relationship

a credible threat to the m dealers should they offer aggressively unfavorable prices. This

indifference condition uniquely determines the equilibrium mid-to-bid spread P ∗(m) as given

by (2). Figure 5 illustrates Φd,P as a function of d for P = P ∗(m) and P = P ∗(m+ 1).
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P = P ∗(m)

P = P ∗(m+ 1)

m− 1 m m+ 1

Φm,P ∗(m)

Φm+1,P ∗(m+1)

Figure 5 – Indifference condition for buyside firms – If the bid-ask spread is P = P ∗(m), then a buyside
firm reaches its optimal contintuation value Φd,P with d = m−1 orm dealer accounts, while being indifferent
between these two choices. If P = P ∗(m+1), the optimal value improves, in that Φm+1,P∗(m+1) > Φm,P∗(m).

In σ∗(m), agent i discontinues her trading account with a given dealer when (a) she has

m dealer accounts in total, and (b) she receives an ask a > P ∗(m) or a bid b < −P ∗(m).
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When these two conditions (a) and (b) simultaneously hold, agent i, after accepting the

current quote if the trade is profitable (that is, if a ≤ π or b ≥ −π), immediately closes her

account with this dealer. In particular, any given dealer always maintains trading accounts

with all other m− 1 dealers. I denote this account maintenance strategy by N∗m.

No account termination occurs on the equilibrium path. However, the ability of buyside

firms to discontinue their dealer accounts constitutes a credible threat to dealers that dis-

courages them from gouging. I will shortly describe the tradeoff faced by a dealer when the

dealer posts quotes to a buyside firm. From expression (2) of the equilibrium spread P ∗(m),

one obtains the following implication of trade competition by dealers.

Proposition 1. The equilibrium mid-to-bid spread P ∗(m) is strictly decreasing in the number

m of dealers. When there is only one dealer, the equilibrium spread P ∗(1) is the monopoly

price, extracting all rents from buyside firms. That is, Φ1,P ∗(1) = 0.

As the number of dealers increases, dealers compete more intensely for trades by offering

tighter bid-ask quotes. Hence, profit on each trade declines and each dealer receives a thinner

order flow from buyside firms. The benefits of acting as a dealer thus decrease, limiting the

equilibrium scope for dealer competition. Next, I demonstrate this intuition and determine

the maximum number m∗ of dealers. For this, I first describe dealer’s optimization problem.

Each dealer generates the same value Φm,P ∗(m) as a buyside firm for executing its exoge-

nous trade demands. In addition, each dealer serves requests for trade from other agents.

Fixing some candidate spread P ∈ (0, π] and some number k ≥ 1 of buyside customers of a

given dealer j ∈ J , I consider a continuous-time control problem for j, in which price quotes

are artificially restricted to the given spread P . (This restriction is later relaxed.)

Dealer’s restricted-quote problem P(k,m, P ):

(a) The state space is the set Z of integers, the inventory space of dealer j.

(b) The control space is {−P,−PDP} × {P, PDP}, the set of possible bid-ask quotes that

j could offer. The subscript DP denotes invoking the deep pocket. That is, dealer j
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decides whether to use its deep pocket at the given ask price P upon receiving a request

to buy, or at the given bid −P upon receiving a request to sell.

(c) Dealer j receives RFQ from k buyside firms at the total mean rate 2kλθm/m, and from

the other m− 1 dealers at the total mean rate 2λθm−1.

(d) At each time t, dealer j maximizes, over the control space {−P,−PDP} × {P, PDP}, its

continuation utility Ujt as defined by (1).

I denote this restricted-quote problem by P(k,m, P ). In the actual game, a dealer is allowed

to post any quote rather than being limited to the prices ±P as in the control problem

P(k,m, P ). However, a dealer has no incentive to post any ask a < P ∗(m) or bid b >

−P ∗(m), since it would otherwise cede some trading rents to its quote requester. It will

later be shown that a dealer has no incentive to “gouge” by raising its ask or lowering its bid,

given the fear of losing buyside customers. Therefore, the auxiliary problem P(k,m, P ∗(m))

determines an (unrestricted) optimal quoting strategy of a dealer.

I let Vk,m,P be the value function of dealer j in the control problem P(k,m, P ). That is,

Vk,m,P (x) is the dealer’s maximum attainable continuation utility if its current inventory size

is x. The Bellman principle implies that for every inventory level x ∈ Z,

rVk,m,P (x) = −βx2 + λ

(
k
θm
m

+ θm−1

)
[Vk,m,P (x+ 1)− Vk,m,P (x) + P ]+

+ λ

(
k
θm
m

+ θm−1

)
[Vk,m,P (x− 1)− Vk,m,P (x) + P ]+.

(3)

The first term −βx2 is the inventory flow cost for holding x units of the asset. The second

and third terms are the expected rates of profit associated with serving requests to sell and

buy, respectively, from buyside firms and the other dealers. This Hamilton-Jacobi-Bellman

(HJB) equation determines a unique optimal inventory management strategy.

Proposition 2. Given the problem P(k,m, P ), a dealer has a unique optimal quoting strategy

[a∗(·), b∗(·)], characterized by an inventory threshold x̄k,m,P ∈ Z with the following property:

• If x ≤ −x̄k,m,P , then a∗(x) = PDP and b∗(x) = −P .
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• If x ≥ x̄k,m,P , then a∗(x) = P and b∗(x) = −PDP.

• If −x̄k,m,P < x < x̄k,m,P , then a∗(x) = P and b∗(x) = −P .

Whenever the dealer’s inventory is lower than the threshold −x̄k,m,P , it is not willing

to sell more assets at the price P because the trade gain P no longer covers its indirect

marginal inventory cost. Similarly, when the dealer’s inventory exceeds x̄k,m,P , it is not

willing to buy. If its inventory is within the range (−x̄k,m,P , x̄k,m,P ), it has enough profit

incentive to warehouse additional inventory. In equilibrium, the dealer optimally controls

its inventory within the interval [−x̄k,m,P , x̄k,m,P ]. The dealer uses its deep pocket only if its

inventory is at the boundary x̄k,m,P when receiving a request to sell, or is at the opposite

boundary −x̄k,m,P when receiving a request to buy.

Now, I consider whether dealer j has sufficient incentive to “gouge.” If j decides to use

its deep pocket, and if j posts some ask a > P , then j does not get any additional trade

profit for itself (since the trade payment is received by its deep pocket), but j could lose a

buyside customer. When not using its deep pocket, if dealer j “gouges” by posting some ask

a > P , then j increases its trade profit for the current contact at the risk of losing a buyside

customer and the associated future profit stream. The highest acceptable ask price being π,

the one-shot benefit for the dealer of gouging is thus

Π(P ) = π − P.

By symmetry, a request to sell gives the dealer the same one-shot benefit of gouging. When

losing one buyside firm, the future profits forgone by j lowers its continuation value by

Lk,m,P (x) = Vk,m,P (x)− Vk−1,m,P (x).

The dealer has no incentive to gouge if and only if the benefit does not exceed the expected

cost, in that

Π(P ) ≤ L(k,m, P ) ≡ k

k +m− 1
min
x∈Z

Lk,m,P (x). (4)

where k/(k +m− 1) is the probability that a contacting agent is a buyside firm (instead of
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another dealer), who can credibly and would discontinue its account if being gouged.

Lemma 1. The no-gouging condition (4) is satisfied if and only if P ≥ P (k,m), where

P (k,m) is uniquely determined by

Π(P (k,m)) = L(k,m, P (k,m)).

Lemma 1 implies that [−P (k,m), P (k,m)] are the tightest bid-ask quotes the dealer is

willing to offer without having incentive to gouge. The mid-to-bid spread P (k,m) is called

the (k,m)-sustainable spread. Any spread P is (k,m)-sustainable if P ≥ P (k,m). Figure 6

illustrates the tradeoff between the gain Π(P ) and the loss L(k,m, P ) from gouging.

Π(P )

(k < n−m)

(m′ = n− k > m)

Spread P0

π
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P (m) P (k,m) P (m′)

L(n−m,m,P )

L(k,m, P )

L(n−m′,m′, P )

more dealers,
(m′ > m),

less buyside customers,
(k < n−m)

Figure 6 – The tradeoff between the one-shot benefit Π(P ) and the expected cost L(k,m, P ) of gouging.
The cost L(k,m, P ) associated with forgone future profits is increasing in k and P and decreasing in m.
Hence, the dealer-sustainable spread P (m) is increasing in m.

In the actual network trading game, a given dealer has n−m buyside customers. Thus,

condition (4) needs to be satisfied for k = n−m for dealers to refrain from gouging. Letting

P (m) ≡ P (n−m,m), P (m) is simply called the m-sustainable spread.

Proposition 3. (i) The tightest (k,m)-sustainable spread P (k,m) is strictly decreasing in

the number k of buyside customers of a given dealer, and (ii) the tightest m-sustainable

spread P (m) is strictly increasing in the number m of dealers.

Intuitively, when a dealer has more buyside customers, it can offer a tighter spread thanks

to its ability to efficiently balance inventory by more quickly netting purchases against sales.
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A well connected dealer is in this sense a liquidity hub. When there are more dealers in the

market, however, each dealer receives a thinner order flow from each given buyside firm and

is not as efficient in balancing its inventory. Both factors lower a dealer’s incentive to sustain

a tight spread. Figure 6 provides an illustration of Proposition 3.

The equilibrium spread P ∗(m), as defined in (2), must be m-sustainable. Thus, P ∗(m) ≥

P (m). Since P ∗(m) is strictly decreasing in m, while P (m) is strictly increasing in m,

P ∗(m) ≥ P (m) is equivalent to m ≤ m∗, where m∗ is the largest integer such that

P ∗(m∗) ≥ P (m∗). (5)

The number m∗ is the maximally sustainable core size. Figure 7 plots both spread curves.
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Figure 7 – The equilibrium spread P ∗(m), the sustainable spread P (m), and the maximum core size m∗

I let p∗m be the optimal quoting strategy characterized by the inventory threshold x̄n−m,m,P ∗(m).

If a buyside firm receives a request for quote (which is an event off the equilibrium path), it

posts the ask price π and the bid price −π. I denote this quoting strategy by p∗0.

A supporting equilibrium σ∗(m) for G(m) consists of the following strategies:

(i) Each agent follows the search strategy S∗, the quote acceptance strategy ρ∗ and the

account maintenance strategy N∗m.

(ii) Dealers employ the quoting strategy p∗m, while buyside firms employ p∗0.
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By convention, σ∗(0) denotes the strategy profile in which no agent opens any account, and no

search or trade is conducted. In the equilibrium σ∗(m) (m = 1, . . . ,m∗), dealers are deterred

from gouging by the fear of losing buyside customers. Buyside firms do not terminate any

account on the equilibrium path, but their ability to do so constitutes a credible threat that

discourages dealers from gouging, sustaining the equilibrium.

Characterizing all equilibrium networks.

In practice, core-periphery structures in OTC markets are less “concentrated,” in that a

typical buyside firm is connected to some but not all dealers. Figure 8 illustrates an example

of such core-periphery structure. Based on similar analysis, Theorem 2 states sufficient and

necessary conditions characterizing all equilibrium networks. I show that these equilibrium

networks all have a flavor of “core-periphery” structure, but are less efficient, in a sense to be

specified, than the family of concentrated core-periphery networks in Theorem 1. Roughly

speaking, a network is an equilibrium network if and only if (i) the number of dealers is

relatively small, and (ii) every dealer has at least a minimum number of buyside customers.

d1

d2 d3

Figure 8 – Example: every buyside firm is connected to 2 of the 3 dealers

I fix a network G. Agents are partitioned into I ∪ J = N as follows: Agents in I,

representing “buyside firms,” have no incoming links; Agents in J , representing “dealers,”
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have at least one incoming link. I denote the maximum outdegree of G by

m = µ(G) ≡ max
i∈N
|Nout(i)|,

It is shown in Appendix D that every agent must have m or m− 1 dealer accounts if G is an

equilibrium network. Given a dealer j ∈ J , if k of its quote seekers have m dealer accounts

each and ` of them have m− 1 each, then the dealer’s value function Vk,`,m,P solves

rVk,`,m,P (x) = −βx2 + λ

(
k
θm
m

+ `
θm−1

m− 1

)
[Vk,`,m,P (x+ 1)− Vk,`,m,P (x) + P ]+

+ λ

(
k
θm
m

+ `
θm−1

m− 1

)
[Vk,`,m,P (x− 1)− Vk,`,m,P (x) + P ]+.

I let Lk,`,m,P = Vk,`,m,P − Vk−1,`,m,P , L(k, `,m, P ) =
k

k + `
inf
x∈Z

Lk,`,m,P (x).

The factor k/(k + `) above is the probability that a given contacting agent has m dealer

accounts. Only those k agents who have m dealer accounts can costlessly terminate their

accounts with j. I let P (k, `,m) ∈ R+ be determined by

Π(P (k, `,m)) = L(k, `,m, P (k, `,m)).

Similar to Proposition 3, one can show that P (k, `,m) is strictly decreasing in k. I let k(m, `)

be the smallest integer such that

P (k(m, `), `,m) ≤ P ∗(m),

where P ∗(m) is the equilibrium spread given by (2). The dealer needs at least k(m, `) buyside

customers to sustain the equilibrium spread P ∗(m) without having incentive to gouge. For

every given dealer j ∈ J , I denote by kj the number of its quote seekers who each have m

dealer accounts, and by `j the number of those with m− 1 each.

Theorem 2. A network G is an equilibrium trading network if and only if (i) every agent

has m or m− 1 dealer accounts, with m ≤ m∗, and (ii) for each dealer j ∈ J , kj ≥ k(m, `j).

In any supporting equilibrium, every dealer posts the equilibrium mid-to-bid spread P ∗(m),
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and every buyside firm’s equilibrium utility is Φm,P ∗(m).

Condition (ii) indicates that each dealer needs at least a minimum number of quote

seekers to be efficient in balancing its inventory, and therefore to refrain from gouging. I will

later provide an equilibrium selection criterion that selects m = m∗. Focusing on equilibrium

networks with m = m∗, I derive an explicit upper bound on the total number of dealers.

Corollary 1. If G is an equilibrium network with m = m∗, the number |J | of dealers satisfies

|J | < m∗n

k(m∗, 0)− 1
.

As a numerical example, I consider a market with n = 1000 agents, β = 0.1, π = 1, λ =

3, θm = 1− 0.8m, c = 0.09 and r = 0.1. The upper bound on the number of dealers is 17.

Equilibrium selection.

I propose two equilibrium selection criteria, based on inventory balancing efficiency and

dealer trade competition respectively, to select the concentrated core-periphery network

G(m∗) withm∗ dealers. The next proposition, based on inventory balancing efficiency, shows

that the concentrated core-periphery networks induce higher welfare than other equilibrium

networks. Given a strategy profile σ, I define welfare U(σ) as the sum of all agents’ utilities.

Proposition 4. If σ is a supporting equilibrium for some network G that is not a concen-

trated core-periphery network, then there exists some supporting equilibrium σ′ for a concen-

trated core-periphery network such that U(σ′) > U(σ).

The benefit of a more concentrated network comes from higher efficiency in inventory

balancing by dealers. Given an equilibrium network G in which every buyside firm has

accounts with some but not all dealers, the network G′ is obtained by concentrating buyside

firms’ accounts toward a smaller set of dealers. The networks G and G′ have the same total

number of trading lines, thus the same total trading volume and account maintenance cost.

The same volume of trade is intermediated, however, by a smaller set of dealers in G′ relative

to G. Higher concentration of trades leads to more efficient netting of trades and thus a lower

19



market-wide dealer inventory cost, which results in higher welfare in G′. The second criteria,

based on trade competition, uses that the equilibria are Pareto-ranked for buyside firms.

Corollary 2. If G and G′ are two equilibrium networks, the equilibrium utility of buyside

firms is strictly lower in G than in G′ if µ(G) < µ(G′).

Corollary 2 follows from Theorem 2 and Φm,P ∗(m) < Φm′,P ∗(m′) if m < m′. All buyside

firms prefer an equilibrium in which they are connected to more competing dealers, since the

benefit associated with a tighter equilibrium spread and better trade execution outweighs

additional account maintenance costs. Figure 5 provides a illustration of Corollary 2.

Corollary 2 leads to a natural equilibrium selection criterion: an equilibrium network G

with maximum outdegree µ(G) < m∗ can be ruled out if agents can actively coordinate the

selection of dealers. For example, in the concentrated core-periphery network G(m), anym′−

m buyside firms can credibly propose to serve as dealers, in addition to the existingm dealers,

as such a proposal will result in the equilibrium network G(m′). In the new equilibrium, these

buyside firms improve their utility by exploiting their new network positions as dealers to

earn additional intermediation profits. The remaining n−m′ buyside firms also benefit from

greater dealer competition (Corollary 2). Finally, the m existing dealers have thinner order

flow and are forced to post a narrower spread P ∗(m′). If an existing dealer refuses to lower its

spread, however, it risks losing its buyside customers and ultimately its dealer position. On

the other hand, the concentrated core-periphery network G(m∗) with the maximum number

of dealers cannot be overturned by dealer entry in this manner.

Dealer entry is a form of trade competition. The underlying assumption is that buyside

firms are able to communicate their intention to serve as dealers without being able to commit

to offer a tighter spread. The selection procedure can be formalized using the concept of

coalition-proof Nash equilibrium introduced by Bernheim, Peleg, and Whinston (1987).

Proposition 5. If n is sufficiently large, an equilibrium network G admits a supporting

equilibrium that is a coalition-proof Nash equilibrium if and only if µ(G) = m∗.

Based on inventory balancing and trade competition respectively, Proposition 4 and Corol-

lary 2 offer two selection criteria that select the concentrated core-periphery network G(m∗).

20



4 Comparative Statics, Welfare and Policy Implications

To develop comparative statics on the equilibrium number of dealers, I focus attention on the

concentrated core-periphery networkG(m∗) that is selected by Proposition 4 and Corollary 2.

The equilibrium core size m∗ and the equilibrium spread P ∗(m∗).

The next proposition shows how the core size varies as a function of the model parameters

(n, β, π, λ, θ, c, r). I fix all but one parameter and examine how the equilibrium numberm∗ of

dealers, given by (5), is affected by the remaining parameter. Proofs are given in Appendix E.

Proposition 6. (i) The core size m∗ is weakly increasing in the total number n of agents,

with a finite limit size m∗∞. The limit size m∗∞ is the largest integer m such that

mrπ

2λθm +mr
< P ∗(m).

(ii) The equilibrium number m∗ of dealers is weakly increasing in the arrival rate λ of

demand shocks and the total gain per trade π, and weakly decreasing in the account

maintenance cost c and the inventory cost coefficient β.

(iii) The equilibrium spread P ∗(m∗) is weakly increasing in β, and weakly decreasing in the

total number n of agents.

Part (i) of Proposition 6 has a simple intuitive proof, as follows. As the total number n of

agents increases, each dealer becomes more efficient in balancing inventory, thus can sustain

a tighter spread P (n−m,m) (Proposition 3). The equilibrium spread P ∗(m), however, does

not depend on n. The core size m∗ is thus weakly increasing in n, as shown by Figure 9.

Part (ii) implies that even for an “infinite” set of investors, one should anticipate only a

finite number m∗∞ of dealers. To provide a numerical example of the number m∗∞ of dealers

in a large market, I let π = 1, λ = 3, θm = 1− 0.8m, c = 0.09, and r = 0.1. Then m∗∞ = 3,

and the equilibrium spread in the large market is P ∗(m∗∞) ' 0.1.

As π increases, dealers extract a higher rent per trade (reflected by a wider equilibrium

spread P ∗(m)), but also have a stronger incentive to gouge (wider sustainable spread P (m)).
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Figure 9 – The core size m∗ is weakly increasing in the total number n of agents.

It is shown, in Appendix E, that the equilibrium spread P ∗(m) increases more than the

sustainable spread P (m). The core size m∗ is thus weakly increasing in π.

The parameter λ measures the liquidity demand of each agent. With a higher liquidity

demand, it is natural that more dealers emerge to facilitate the intermediation of the asset,

leading to a lower market concentration. This prediction of a negative relationship between

liquidity demand and market concentration is consistent with empirical evidences from OTC

markets. Using data on the German Bund market, de Roure and Wang (2016) show that

higher trade frequency leads to lower Herfindahl index. In the foreign exchange derivatives

market, the Herfindahl index ranking is, from low to high, USD, EUR, GBP, JPY, CHF,

CAD and SEK. The order of the outstanding notional amounts of these currencies is almost

reversed(with the exception of JPY and GBP, which are close in both measures). Across

asset classes, the Herfindahl index is lowest in the interest rate derivatives market, followed

by the credit derivatives market and finally the equity derivatives market. As a time-series

example, Cetorelli, Hirtle, Morgan, Peristiani, and Santos (2007) document a substantial

decline in the market concentration of the credit derivatives market during 2000-04, as “fi-

nancial institutions have rushed to take part in this exploding market.” Figures 10 to 12

and Table 1 illustrate these four examples.
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Figure 10 – Source: de Roure and Wang (2016)
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Figure 11 – Source: Semiannual Statistics (BIS)

Four firms Eight firms HHI
Notional Percent Notional Percent

Interest rate 173.5 40.0 272.9 62.9 629.4
Credit 10.7 40.8 18.4 69.9 738.5
Equity 2.7 43.0 4.5 70.8 747.9
Total 184.6 39.5 293.2 62.8 630.1

Table 1 – Souce: ISDA Market Survey, Mid-Year 2010, by Mengle (2010)

Figure 12 – Source: Cetorelli, Hirtle, Morgan, Peristiani, and Santos (2007)
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If dealers become less risk tolerant (higher β), they find it more costly to warehouse

inventory risk. As a result, dealers need to be compensated with a wider spread P (m) to

continue making markets. On the other hand, the equilibrium spread P ∗(m) is not affected

by dealer risk tolerance, as it is determined by an indifference condition for buyside firms.

Therefore, the market can only support a smaller core with agents of reduced risk tolerance.

A current hotly debated issue is bond market illiquidity. The world’s biggest banks are

shrinking their bond trading activities to comply with post-crisis regulations such as the

Volcker rule and higher capital requirements. These restrictions have curbed the ability of

banks to build inventory or warehouse risk. On Friday, October 23, 2015, Credit Suisse

exited its role as a primary dealer across Europe’s bond markets, the latest signal that banks

are scaling back bond trading activities. Other markets, such as corporate bond and cur-

rency, are slowly experiencing structural changes due to significant dealer disintermediation.

Intermediation in these markets is increasingly agency-based, and many investors report that

post-crisis regulatory reforms have reduced market liquidity.

Dealer inventory levels and turnover, market-wide dealer inventory cost.

Given the model parameters (n, β, π, λ, θ, c, r), the total arrival rate of demand shocks is

2nλ. In the concentrated core-periphery network G(m) (m ≤ m∗), I examine how the dealer

inventory dynamic depends on n and λ. I let x̄ denote the inventory threshold x̄n−m,m,P ∗(m).

Proposition 7. The inventory threshold x̄ is weakly decreasing in β and weakly increasing

in nλ. As nλ goes to infinity, x̄ goes to infinity at the rate (nλ)1/3, and the mixing time10

of dealer inventory process goes to 0 at the rate (nλ)−1/3.

Fixing the level of dealer competition, as it becomes more costly to warehouse inventory,

dealers optimally reduce their inventory size. When the asset is more liquid (either because

of a larger rate λ or because of a larger number n of market participants), dealers expand

their inventory size to take advantage of the increased order flow from quote seekers.
10The mixing time of a Markov process (Xt)t≥0 is defined as tmix = inf{t : d(t) ≤ 1/4}, where d(t) =

supx0
||Xt, µ||TV is the total variation distance between Xt and the stationary distribution µ of the Markov

process (Xt). Levin, Peres, and Wilmer (2009) provide background on Markov chains and mixing times.
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Roughly speaking, the mixing time of dealer inventory process is the expected time it

takes for a dealer to rabalance its inventory. In a liquid asset market, dealer inventory has

quick turnover and exhibits fast mixing. The positive relationship between asset liquidity and

the rate of dealer inventory rebalancing, as predicted by the model, is consistent with prior

empirical studies. Using data on the actual daily U.S.-dollar inventory held by a major dealer,

Duffie (2012) estimates that the “expected half-life” of inventory imbalances is approximately

3 days for the common shares of Apple, versus two weeks for a particular investment-grade

corporate bond. The data also reveal substantial cross-sectional heterogeneity across indi-

vidual equities handled by the same market maker, with the expected half-life of inventory

imbalances being the highest for (least liquid) stocks with the highest-bid-ask spreads and

the lowest trading volume. Figure 13 illustrates the two inventory processes of the Dealer.
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Figure 13 – Inventory processes of a major US dealer - Source: Duffie (2012)

Next, I examine properties of dealer inventory cost. The equilibrium utility of a dealer

can be decomposed into inventory cost and profits from trading with quote seekers:

Vn−m,m,P ∗(m)(0) = −C(n, λ,m) + 2λ

(
(n−m)

θm
m

+ θm−1

)
P ∗(m)

r
.

Proposition 8. (i) The present value C(n, λ,m) of individual dealer inventory cost is strictly
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concave in n and λ. As nλ goes to infinity, C(n, λ,m) increases to infinity at the rate (nλ)2/3.

(ii) The market-wide total cost mC(n,m, λ) of dealer inventory is strictly increasing in m.

The inventory holding cost βx2 is quadratic in inventory size, whereas the present value

C(n, λ,m) of individual dealer inventory cost grows sublinearly with n and λ. This captures

the netting benefit, in the sense that a given dealer is more efficient in balancing its inventory

when receiving thicker order flow, and the associated netting effect more than offsets the

convexity of the inventory cost function.

Property (iii) follows from the decreasing returns to scale of the individual inventory

cost function C(n,m, λ) and Jensen’s inequality. It implies that in order to minimize the

market-wide dealer inventory cost, it is better to concentrate the provision of intermediation

at a smaller set of dealers in order to maximize the netting efficiency.

Inventory-efficiency externality and holdup distortion.

In OTC markets, it is extremely rare for regulators to directly intervene in asset alloca-

tion. However, regulators may impose transaction tax, capital requirements or some price

rule to induce a different equilibrium outcome, in which decisions related to trading and

link formation are still left to market participants. Subject to equilibrium selection, the

concentrated core-periphery network G(m∗) emerges as the unique equilibrium network in

the model, where the core size m∗ is endogenously determined as a function of model pa-

rameters. Therefore, feasible regulations amount to induce a different endogenous core size.

Regulators thus face a one-dimensional problem, in which they choose the optimal number

of dealers intermediating a given market. From a welfare viewpoint, the next result points to

under-provision of dealer intermediation for liquid assets, and over-provision for illiquid as-

sets. I discuss the effects of three regulation policies – a “soft” stub-quote rule, a transaction

tax, and capital requirements – in inducing a more efficient level of dealer intermediation.

For any given integer m (possibly greater than m∗), I let Um = U(σ∗(m)) denote the

welfare induced by the strategy profile σ∗(m), and m be the largest integer such that

P ∗(m) > 0.
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I let m∗∗ be the socially efficient number of dealers, in that

m∗∗ = argmax
m≤m

Um

Proposition 9. (i) If nλ is sufficiently large, one has m∗∗ ≥ m∗ and under-provision of

dealer intermediation. (ii) Under certain parameter conditions that reduce nλ, one has

m∗∗ < m∗ and over-provision of dealer intermediation.

These inefficiencies result from two sources. First, each dealer induces a negative ex-

ternality on other dealers’ inventory efficiency by reducing their order flow, as shown by

Proposition 8. This inventory-efficiency externality pushes toward over-provision of dealer

intermediation. Second, dealers’ monopolistic position in each contact with buyside firms

give them a private incentive to gouge their customers. Even though dealers do not gouge in

equilibrium, their incentive to gouge induces a holdup distortion, by which dealers extract

rents that discourage buyside firms from seeking socially beneficial trades. This holdup

effect pushes toward under-provision of intermediation. For an actively traded asset, the

total inventory cost is inconsequential relative to the welfare (Proposition 8). Therefore, the

inventory-efficiency externality is dominated by the holdup distortion, leading overall to an

under-provision of intermediation. For an infrequently traded asset, however, the inventory

cost is large relative to the welfare. The inventory-efficiency externality could outweigh the

holdup distortion, resulting overall in an over-provision of intermediation. Figure 14 shows

numerically the welfare Um as a function of m for a liquid (λ = 120, or 20 trade demands

per agent per month) and an illiquid asset (λ = 12, or 2/agent/month), respectively.

To improve market efficiency, under-intermediation can be mitigated by regulations that

aim to discourage dealers from gouging. Such regulations can be, for example, a “soft”

stub-quote rule that imposes a penalty should a dealer widen its spread relative to the

market-prevailing level. Every dealer would internalize the penalty cost Cpenalty into its loss

L(n −m,m,P ) from gouging and can thus sustain a tighter spread P (m). Such a penalty

cost on dealers - never triggered in equilibrium - encourages dealer entry. The penalty creates

room for greater dealer competition by improving dealer’s commitment power. By choosing
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Figure 14 – The welfare Um, where the number of dealers is m = 1, 2, . . . ,m

an appropriate penalty cost Cpenalty, regulators can achieve the socially optimal level of

intermediation provision. Figure 15 illustrates the effect of such a penalty cost. Sometimes,

such rules are proposed by self-regulatory organizations (SRO), such as FINRA. Broker-

dealers have an incentive to join such an SRO, as the improvement of their commitment

power via self regulation gives them an advantage over their non-member competitors.

To reduce dealer intermediation, regulators can impose a transaction tax on dealers,

which would widen their sustainable spread, reducing the endogenous core size m∗.
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Figure 15 – Introducing a penalty cost Cpenalty on gouging increases dealer competition.

Post-crisis regulations such as the Volcker rule and capital requirements have been imple-

mented to limit dealer risk appetite. My results suggest that, aside from financial stability

benefits (which I do not model), weighting balance-sheet regulations by asset liquidity can
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foster more efficient provision of dealer intermediation. To improve welfare, regulators should

encourage dealer intermediation for liquid assets such as the Treasuries, and reduce inter-

mediation for illiquid assets. The current regulatory capital requirements adopted by Basel

III uses risk-weighted assets as the denominator of the capital ratio of a bank. Similarly,

the Basel III Net Stable Funding Ratio (NSFR) and Supplementary Leverage Ratio (SLR)11

treats high quality liquid assets (HQLA) equally as non-HQLA. These approaches can be

improved by adding a liquidity component into the weight calculation, putting lower weights

on more liquid assets in order to encourage dealer intermediation for these assets. This im-

plication on balance-sheet regulations – based on intermediation efficiency – is in line with

the primary objective of regulators in promoting financial stability, which I do not model.

Recently, more non-bank firms such as fund managers have begun to act as liquidity

providers. However, many question whether these firms can substitute for dealers by taking

an effective role of market makers. This paper highlights the importance of having a large

customer base for a market maker to efficiently balance inventory. Being in a central network

position is essential for enabling a financial institution to “lean against the wind” – that is,

to provide liquidity during financial disruptions. Buyside firms are not naturally liquidity

hubs. Without the same number of trading lines and global customer base that traditional

dealers have, these firms may be unable or unwilling to absorb external selling pressure in

a selloff. It is worrisome that the liquidity provided by non-bank firms may be “illusory,” in

that liquidity may vanish when it is most needed. This paper does not cover this topic.

5 Inter-Dealer Trading through Nash Bargaining

In practice, dealers trade with each other – usually in large quantities – to share their

inventory risk accumulated from trading with buyside firms. Rather than a request for

quote by one counterparty and a take-it-or-leave-it offer by the other, two dealers usually
11The NSFR, to be implemented in 2018, requires banks to maintain sufficient available stable funding

(ASF) relative to the amount of required stable funding (RSF). The SLR, also to be implemented in 2018,
requires U.S. globally systemically important bank holding companies to have capital equal to or greater
than 5% of their total assets, regardless of the risk and liquidity composition of the assets.
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negotiate both the trading quantity and price with roughly equal bargaining power. In this

section, I present a more realistic variant of the symmetric-agent model, in which dealers

conduct Nash Bargaining when trading with each other. The model no longer preserves

agent symmetry, as a subset of agents (dealers) have access to an interdealer market with

a trading protocol featuring Nash bargaining that is not available to other agents (buyside

firms). In practice, dealers resist the participation of buyside firms in the interdealer segment

and accuse buyside firms of taking liquidity without exposing themselves to the risks of

providing liquidity. Others criticize dealers for trying to prevent competition that would

compress bid-ask spreads in the market.12 The equilibrium of the symmetric-agent model

remains to be an approximate equilibrium, despite the addition of an interdealer market.

The structure of the trading game is similar to that of the symmetric-agent model of

Section 2. A non-divisible asset with 0 expected payoffs is traded by n agents. Every agent

has 0 initial endowment of the asset, and is subject to the quadratic inventory holding cost

βx2. The time discount rate is r. At any time t ≥ 0, agents can open new and terminate

existing trading accounts. Maintaining an account costs c per unit of time.

All assumptions above are identical to the symmetric-agent model. Next, I distinguish

dealers from buyside firms and introduce an interdealer market. Agents are partitioned

into I ∪ J = N with |J | = m dealers and |I| = n − m buyside firms. Every buyside firm

in I has an exogenously determined desire to buy of sell (equally likely) one unit of the

asset at mean rate 2λ, and receives a fixed benefit π for each immediate execution of such

trade. Dealers in J do not receive demand shocks. Dealers give each other Nash bargaining

rights. Specifically, if a pair of dealers j1, j2 ∈ J have trading accounts with each other, they

bilaterally negotiate the quantity and price according to Nash bargaining when they trade.

The buyside firms have no access to this interdealer market. That is, every buyside firm

only trades via RFQ. The RFQ protocol, however, does not need to be anonymous. Instead,

I assume name give-up RFQ, more common in OTC markets, in which the quote requester

“gives up” her identity to the quote provider. For more realism, I also eliminate the deep

pocket assumption. That is, agents have no access to deep pockets. Encounters between
12Some recent electronic facilities such as SEF blur the exclusivity of the interdealer market.
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pairs of dealers are based on independent random matching, with pair-wise meeting intensity

ξ. The search technology of buyside firms remains the same as in the symmetric-agent model.

That is, if a buyside firm searches among its d quote providers, there is some probability θd of

immediate success, where θd ∈ (0, 1) is increasing and strictly concave in d > 0, and θ(0) = 0.

The information structure departs from that of the symmetric-agent model in two aspects:

(i) The model assumes the name-give-up RFQ protocol, as mentioned above. (ii) When

two dealers meet, they observe all dealers’ inventories, which implies complete information

for interdealer bargaining. The model avoids bargaining with incomplete information and

maintains modeling focus on network formation and trading.

To summarize, this model is different from the symmetric-agent model in three aspects:

(i) the introduction of an interdealer market, (ii) the replacement of anonymous RFQ by

name give-up RFQ, and (iii) the elimination of the deep pocket assumption. I focus on large

markets and use an approximate equilibrium concept when solving this model. This restric-

tion is not necessary for solving the symmetric-agent model. In a perfect ε-equilibrium,13

each agent’s continuation utility at each information set at each time is within ε of her

maximum attainable continuation utility, given the strategies of other agents.

Since deep pockets are no longer available, I let p̂∗m denote the quoting strategy that

is obtained from p∗m by replacing deep-pocket quotes with b = −∞ and a = ∞, prices

which signal that the quote provider has no intention to buy or sell, respectively. I let

σ̂∗(m) denote the strategy profile that is obtained from σ∗(m) by replacing dealers’ quoting

strategy p∗m with p̂∗m. The next theorem shows that, when the market is sufficiently large,

introducing an interdealer market does not qualitatively affect the equilibrium outcome of

the symmetric-agent model.

Theorem 3. For a given set of model parameters (n, β, π, λ, ξ, θ, c, r), I let m∗ be defined as

in (5). There is some constant n0, such that if n > n0, then σ̂∗(m) is a perfect ε-equilibrium

for every m ≤ m∗, supporting the concentrated core-periphery network G(m).

With an interdealer market, I provide a testable prediction about interdealer volume.
13Mailath, Postlewaite, and Samuelson (2005) provide game theoretical background for this concept.
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Proposition 10. As nλ→∞, the fraction of interdealer volume is on the order of (nλ)−2/3.

For more actively traded assets, interdealer trade accounts a small fraction of total trade

volume. Intuitively, the volume of an interdealer trade is large only when dealer inventories

are far away from their long-run averages and need to be quickly rebalanced. When the

total demand for trade is high, dealers can efficiently balance their inventories with customer

orders. Therefore, dealers are less reliant on each other to lay off their inventory risk.

Using TRACE transaction data for U.S. corporate bonds between 2005-2014, I estimate

the relationship between the fraction of interdealer volume and annual trade volume across

all 61,823 bonds. Proposition 10 predicts that the logarithms of these two variables are

linearly related, with a negative slope. Consistent with this prediction, the data shows that

a 10% increase in total volume is associated with a 1% decrease in the fraction of interdealer

volume. The t-statistic is -7, with standard errors clustered at the company level. This

result illustrates the role of inventory efficiency in dealers’ ability to provide intermediation.

Figure 16 – Interdealer Trading in the U.S. Corporate Bond Market

To examine asset intermediation efficiency, I let Ûm = U(σ̂∗(m)) be the welfare of σ̂∗(m).

Proposition 11. When n is sufficiently large, the welfare Ûm is strictly increasing in the

number m of dealers, for m ≤ m. There is under-provision of dealer intermediation.
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6 Concluding Remarks

Extensive empirical work has shown that core-periphery networks dominate conventional

OTC markets. However, few theoretical foundations have been provided. Existing literature

has a continuum of dealers, and exploits some ex-ante heterogeneity of agents to explain the

ex-post differentiation in their “network” positions. This paper is original in its ability to

(i) provide a separation of core from peripheral agents solely based on trade competition

and inventory balancing – two endogenous forces that tend to concentrate the provision of

intermediation, and to (ii) explicitly determine the equilibrium number of dealers as a trade-

off between these two forces. Although financial institutions are heterogeneous in real OTC

markets, the core-periphery separation obtained in this paper highlights the importance of

these two economic forces in determining market structure.

From a welfare viewpoint, the model identifies two sources of externalities: (1) dealers’

private incentive to gouge, and (2) the negative externality of each individual dealer on the

market-wide netting efficiency. The first pricing externatlity dominates for a liquid asset and

leads to insufficient dealer intermediation. Regulators or an SFO can implement a soft stub-

quote rule to deter dealers from gouging. Such a price rule improves dealers’ commitment

power, and therefore creates room for greater dealer competition. The second inventory

externality is more pronounced for an illiquid asset, and results in over-provision of dealer

intermediation. These welfare results suggest balance-sheet regulations that treat assets

differently according to their liquidity demand through, for example, the introduction of a

“liquidity weight,” in addition to the currently adopted “risk weight.”

One useful direction of future research is to introduce agent heterogeneity in order to

study the relationship between dealer centrality and the pricing of immediacy. Recent em-

pirical work suggests that the price-centrality relationship changes across different markets.

In the municipal bond market, central dealers earn higher markups compared with less cen-

tral dealers.14 The opposite is true in the market for asset-backed securities.15

14Li and Schürhoff (2014) provide evidence from the municipal bond market.
15Hollifield, Neklyudov, and Spatt (2014) provide evidence from the market of asset-backed securities.
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Appendices

A A Symmetric Tri-Diagonal Matrix

This appendix establishes some properties for the inverse of a symmetric tri-diagonal matrix.

I let n be a strictly positive integer. A vector ψ of length n is said to be U-shaped if

ψi = ψn+1−i, ∀ 1 ≤ i ≤ n, and ψ1 > ψ2 > · · · > ψm, where m =

⌊
n+ 1

2

⌋
.

Given two vectors ψ and ϕ of the same length, I write ψ < ϕ if ψ is strictly less than ϕ

entry-wise. Given a constant ζ > 1, I let A be the following tri-diagonal matrix of size n×n:

A =



ζ − 1
2
−1

2

−1
2

ζ −1
2

−1
2

ζ −1
2

. . . . . . . . .

−1
2

ζ −1
2

−1
2

ζ − 1
2


(6)

Lemma 2. The matrix A is invertible. Its inverseM ≡ A−1 satisfies the following properties:

(i) The matrix M is symmetric, with strictly positive entries.

(ii) For every 1 ≤ i ≤ n, Mi,1 < Mi,2 < · · · < Mi,i and Mi,i > Mi,i+1 > · · · > Mi,n.

(iii) For every i 6= j, Mi,j−1 +Mi,j+1 > 2Mi,j.

(iv) For every i, j, Mi,j = Mn+1−i,n+1−j.

(v) If a vector ψ is U-shaped, then Mψ is U-shaped and (Mψ)n ≤ ψn/(ζ − 1).

(vi) Letting m = b(n+ 1)/2c, then Mm,1 −Mn+1−m,1 < 2.

(vii) If n→∞ and ζ → 1 with (ζ − 1)n→ 0, letting rangeM = max(i,j)Mij −min(i,j) Mij,

(ζ − 1) rangeM ∼ (ζ − 1)n.
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Proof. Properties (i). Since ζ > 1, the matrix A is diagonally dominant thus invertible. Its

inverse M is symmetric since A is. The matrix A can be written as A = ζI −B/2, where

B =



1 1

1 1
. . . . . .

1 1

1 1


The sup-norm of the matrix B is ||B||∞ = 2. All entries of M are strictly positive, since

M = A−1 = ζ−1

(
I − B

2ζ

)−1

= ζ−1

[
I +

B

2ζ
+

(
B

2ζ

)2

+ . . .

]
.

Properties (ii) and (iii). One has MB/2 = ζM − I. Then for every i > 1,

Mi,1 +Mi,2

2
= ζMi,1 > Mi,1 =⇒ Mi,1 < Mi,2.

I suppose Mi,j−1 < Mi,j for some j ∈ (1, i), then

Mi,j−1 +Mi,j+1

2
= ζMi,j > Mi,j =⇒ Mi,j < Mi,j+1.

By induction, one has Mi,j < Mi,j+1 if j < i. Similarly, one has Mi,j < Mi,j−1 if j > i.

Property (iv). It is clear that Bi,j = Bn+1−i,n+1−j for every i, j. If B`
i,j = B`

n+1−i,n+1−j, then

B`+1
i,j =

∑
k

Bi,k

(
B`
)
k,j

=
∑
k

Bn+1−i,n+1−k
(
B`
)
n+1−k,n+1−j = B`+1

n+1−i,n+1−j.

Therefore, Mi,j = Mn+1−i,n+1−j for every i, j.

Property (v). Given a U-shaped vector ψ, then for every i,

(Mψ)i =
∑
j

Mi,jψj =
∑
j

Mn+1−i,n+1−jψn+1−j = (Mψ)n+1−i.
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For every 0 ≤ k ≤ m, I let

w(k) =

1, . . . , 1︸ ︷︷ ︸
k 1′s

, 0, . . . , 0︸ ︷︷ ︸
(n−2k) 0′s

, 1, . . . , 1︸ ︷︷ ︸
k 1′s


>

.

Any U-shaped vector ψ can be written as a linear combination of the vectors w(k) with

strictly positive weights. Thus, to show that Mψ is U-shaped for any U-shaped vectors ψ,

it is sufficient to show that Mw(k) is U-shaped for every 0 ≤ k ≤ m. For every i ∈ [k,m),

[Mw(k)]i+1 =
∑
j≤k

Mi+1,j +
∑
j>n−k

Mi+1,j

=
∑
j≤k

(Mj,i+1 +Mj,n−i) <
∑
j≤k

(Mj,i +Mj,n−i+1) = [Mw(k)]i.

I let e = (1, . . . , 1)>. Then Ae = (ζ − 1)e and thus Me = e/(ζ − 1). Then for every i < k,

[Mw(k)]i+1 =
1

ζ − 1
−

∑
k<j≤n−k

Mj,i+1 <
1

ζ − 1
−

∑
k<j≤n−k

Wj,i = [Ww(k)]i.

Therefore, Mw(k) is U-shaped. Given a U-shaped vector ψ,

(Mψ)n =
∑
j

Mn,j ψj ≤
∑
j

Mn,j ψn = ψn (Me)n =
1

ζ − 1
ψn.

Property (vi). I let H = (−2A)−1. Then property (vi) is equivalent to Hn+1−m,1−Hm,1 < 1.

If n = 2, Hn+1−m,1−Hm,1 = 1/(2ζ) < 1. If n > 2, I define the second-order linear recurrences

zk = −2ζzk−1 − zk−2, k = 2, 3, . . . , n− 1

where z0 = 1, z1 = 1− 2ζ. I let ζ = cosh γ where γ > 0. It follows from induction that

zk = (−1)k
cosh

((
k + 1

2

)
γ
)

cosh γ
2

k = 0, 1, . . . , n− 1.
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Huang and McColl (1997) calculate the entries of H in closed form. In particular,

H1,1 =
1

1− 2ζ − zn−2

zn−1

= −
cosh

((
n− 1

2

)
γ
)

2 sinh (nγ) sinh(γ/2)
, (7)

Hi,1 = (−1)i−1 zn−i
zn−1

H1,1 ∀i > 1.

It then follows that for every 1 ≤ i ≤ n,

Hn+1−i,1 −Hi,1 =

(∣∣∣∣ zi−1

zn−1

∣∣∣∣− ∣∣∣∣ zn−izn−1

∣∣∣∣)H1,1

=
cosh

((
n− i+ 1

2

)
γ
)
− cosh

((
i− 1

2

)
γ
)

2 sinh(nγ) sinh γ
2

=
2 sinh(nγ/2) sinh((n− 2i+ 1)γ/2)

2 sinh(nγ) sinh(γ/2)

(8)

When i = m, one has

Hn+1−m,1 −Hm,1 ≤
sinh(nγ/2) sinh γ

sinh (nγ) sinh(γ/2)
=

cosh(γ/2)

cosh (nγ/2)
< 1.

Property (vii): Since nγ goes to 0, it follows from (7) that H1,1 ∼ −1/(nγ2). Letting

i = j = 1 in (8), one has H1,1 −Hn,1 ∼ −n/2. This implies that

(ζ − 1)

(
max
(i,j)

Mij −min
(i,j)

Mij

)
= (ζ − 1)(M1,1 −Mn,1) ∼ (ζ − 1)n.

B A Microfoundation for the Search Technology

This appendix provides an example microfoundation of the search technology in Section 2.

When agent i receives a demand shock at time t, the opportunity to trade is lost after an

exponentially distributed time with infinitesimal16 mean ν ∈ ∗R . To get connected, each
16The hyperreals, ∗R, are an extension of the real numbers that contain infinite and infinitesimal numbers.

An infinitesimal ν ∈ ∗R is a hyperreal such that |ν| < 1/n, ∀n ∈ N. The hyperreals are used in a branch of
mathematics known as nonstandard analysis (Anderson (2000)).
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line of contact of i has an independent and exponentially distributed latency time with

infinitesimal mean η ∈ ∗R . The two infinitesimal means ν and η are “on the same order,” in

that neither is infinitely larger than the other. Hence, upon receiving a demand shock, the

probability that i reaches one of her m quote providers before the order demand explodes is

θm =
mη

mη + ν
,

which is increasing and striclty concave in m > 0, and θ0 = 0.

C Perfect Bayesian Equilibrium in Continuous-Time Games

I define a basic version17 of perfect Bayesian equilibrium for continuous-time games with

complete but imperfect information. Players’ beliefs are given in the form of regular condi-

tional probabilities. I fix a measurable space (Ω,F) and a filtration (Ft)t≥0. A game consists

of (i) a finite set N of players, (ii) a sub-filtration (Fit)t≥0 for each player i ∈ N , where the

sub-σ-algebra Fit ⊆ Ft represents the information available to i up to time t, (iii) a contin-

uum of action spaces (Ait)t≥0 for each player i, where each Ait is a measurable space, (iv) a

Markov kernel P from
∏

i∈N,t≥0Ait to Ω, and (v) a utility function ui for each player i that is

a measurable function from Ω to R. A strategy of player i is a continuum (σit)t≥0, where σit

is a mapping from Ω to Ait that is measurable with respect to Fit. A strategy profile σ is a

collection of all players’ strategies. The continuation value of player i at time t is Eσ(ui | Fit),

where the expectation Eσ(· | Fit) is with respect to a regular conditional probability of P ◦ σ

given Fit. A PBE is a strategy profile σ such that, for every i ∈ N and t ≥ 0, almost surely,

Eσ(ui | Fit) ≤ E(σ′i,σ−i)(ui | Fit).
17Other definitions typically impose additional independence restrictions on players’ beliefs. Fudenberg

and Tirole (1991) and Watson (2016) provide such assumptions. These restrictions are not necessary to
analyze my model. Moreover, previous definitions only apply to discrete-time games.
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D Proofs from Section 3

D.1 Proof of Proposition 1

It follows from expression (2) that the equilibrium spread P ∗(m) is strictly decreasing in the

number m of dealers. When m = 1, the spread P ∗(1) satisfies the indifference condition

Φ1,P ∗(1) = Φ0,P ∗(1).

When a buyside firm is isolated, its continuation value is Φ0,P = 0. Therefore, Φ1,P ∗(1) = 0.

D.2 Proof of Proposition 2

I denote the dealer’s indirect marginal cost of buying one unit of the asset by

∆(x) = Vk,m,P (x)− Vk,m,P (x+ 1)

Lemma 3. Given an inventory level x, the optimal bid and offer prices of the dealer are

b∗(x) =

 − P, if ∆(x) ≤ P,

− PDP, if ∆(x) > P,
a∗(x) =

P, if ∆(x− 1) ≥ −P,

PDP, if ∆(x− 1) < −P.

Proof. When receiving a request to buy, if Vk,m,P (x)−Vk,m,P (x− 1) = −∆(x− 1) < P , then

the trade profit P is greater than the indirect marginal cost of selling one unit of the asset.

Hence, the dealer optimally posts the ask P without using its deep pocket. Conversely, if

−∆(x − 1) > P , the dealer is not willing to sell from its own inventory, resorting to its

deep pocket to execute the trade. If −∆(x − 1) = P , the dealer is indifferent, thus by the

tie-breaking rule, does not use the deep pocket. The case of a request to sell is symmetric.

Lemma 4. I let T1 and T2 be two functional operators such that for every f : Z 7→ R,

T1(f)(x) = max{f(x− 1) + a, f(x)} ∀x ∈ Z, or

T2(f)(x) = max{f(x+ 1)− b, f(x)} ∀x ∈ Z,

where a, b ∈ R are two constants. Then T1 and T2 preserve concavity.
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Proof. If f is a concave function from Z to R, then for every x ∈ Z,

T1(f)(x− 1)− T1(f)(x) ≤ max{f(x− 2)− f(x− 1), f(x− 1)− f(x)}

≤ min{f(x− 1)− f(x), f(x)− f(x+ 1)}

≤ T1(f)(x)− T1(f)(x+ 1).

Therefore, T1 preserves concavity. The same property holds for T2.

Lemma 5. The value function Vk,m,P is even and strictly concave, in that for every x ∈ Z,

Vk,m,P (x) = Vk,m,P (−x), and ∆(x) < ∆(x+ 1).

Proof. I reparametrize the subscripts by letting Vϑ,P denote Vk,m,P , where

ϑ = 2λ

(
k
θm
m

+ θm−1

)
is the total rate of requests for quote. I write the HJB equation (3) into the following form:

Vϑ,P (x) = Bϑ,P,β(Vϑ,P ) (x)

≡ 1

r + ϑ

(
− βx2 +

ϑ

2
max{Vϑ,P (x+ 1) + P, Vϑ,P (x)}

+
ϑ

2
max{Vϑ,P (x− 1) + P, Vϑ,P (x)}

) (9)

With a slight abuse of notation, I sometimes write Bϑ or simply B for the Bellman operator

Bϑ,P,β, and Vϑ for Vϑ,P whenever there is no ambiguity. Given two functions f, g from Z to

R, I write f ≤ g if f(x) ≤ g(x) for every x ∈ Z. I let the space of functions

Θ ≡
{
f : Z→ R : ∀ x, f(x) ≥ −β

r
x2 and f ≤ f̄ for some constant f̄ ∈ R

}
be equipped with the weighted sup-norm % defined as

%(f, g) = sup
x∈Z

|f(x)− g(x)|
φ(x)

,

where φ(x) = βx2/r+ ax+ b for some a, b > 0. The Bellman operator B maps the complete

40



metric space (Θ, %) into itself. For some appropriately chosen (a, b), the operator B satisfies

• (monotonicity) Given two functions f, g ∈ Θ, if f ≤ g, then B(f) ≤ B(g).

• (discounting) For every f ∈ Θ and A > 0, B(V +Aφ) ≤ B(V ) + αAφ for some α < 1.

The Bellman operator B is a contraction on Θ as it satisfies Blackwell-Boyd sufficient con-

ditions. By the Contraction Mapping Theorem, the operator B admits a unique fixed point

in Θ, which is the value function Vϑ,P . I let T be an operator on RZ defined by

T (V )(x) =
ϑ

2
[max{V (x+ 1) + P, V (x)}+ max{V (x− 1) + P, V (x)}]

It follows from Lemma 4 that T preserves concavity. Letting V 0(x) = −βx2/r for every

x ∈ Z, then V 0 ∈ Θ. For every h ≥ 1, I let V h = Bh(V 0). As h→∞, one has

%
(
V h, Vϑ,P

)
→ 0,

which implies that V h converges to Vϑ,P pointwise.

It follows by induction that for every h ≥ 0, V h is even and strictly concave, with

V h(x+ 1) + V h(x− 1)− 2V h(x) ≤ − 2β

r + ϑ
. (10)

Letting h→∞, one obtains that Vϑ,P is even and strictly concave.

Proof of Proposition 2. I let x̄ϑ,P denote x̄k,m,P . I let h→∞ in (10), then for every x ≥ 0,

∆(x) = Vϑ,P (x)− Vϑ,P (x+ 1) ≥ (2x+ 1)β

r + ϑ
.

It follows from Lemmas 3 and 5 that the inventory threshold level x̄ϑ,P is such that

∆(x̄ϑ,P − 1) ≤ P, ∆(x̄ϑ,P ) > P, =⇒ x̄ϑ,P <∞.

D.3 Proofs of Lemma 1 and Proposition 3

I write Vϑ,P,β for Vϑ,P to make clear the dependence of the value function on β.
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Lemma 6. For every x ∈ Z, Vϑ,P,β(x) is jointly continuous in (ϑ, P, β) ∈ R+3.

Proof. First, if 0 ≤ ϑ1 ≤ ϑ2, then Vϑ1,P,β ≤ Vϑ2,P,β. This is because B`
ϑ2

(Vϑ1,P,β) converges

to Vϑ2,P,β pointwise, and B`+1
ϑ2

(Vϑ1,P,β) ≥ B`
ϑ2

(Vϑ1,P,β) for every ` ≥ 0 by induction. Likewise,

Vϑ,P,β(x) is non-decreasing in P and non-increasing in β for every x ∈ Z.

Given a converging sequence of triples (ϑ`, P`, β`)`≥0 of non-negative reals with some limit

(ϑ∞, P∞, β∞). The sequence (ϑ`, P`, β`)`≥0 must be bounded. For simplicity, I write V` for

Vϑ`,P`,β` and B` for Bϑ`,P`,β` . For every x ∈ Z, the sequence (V`(x))`≥0 is bounded. Thus,

there exists a subsequence
(
Vϕ(`)

)
`≥0

that converges pointwise to some V . For every x ∈ Z,

rV (x) = lim
`→∞

rVϕ(`)(x)

= lim
`→∞

(
− βϕ(`)x

2 +
ϑϕ(`)

2

[
Vϕ(`)(x+ 1)− Vϕ(`)(x) + Pϕ(`)

]+
+
ϑϕ(`)

2

[
Vϕ(`)(x− 1)− Vϕ(`)(x) + Pϕ(`)

]+)
= − β∞x2 +

ϑ∞
2

[V (x+ 1)− V (x) + P∞]+

+
ϑ∞
2

[V (x− 1)− V (x) + P∞]+.

That is, V = B∞(V ). Thus, V = V∞. Likewise, every subsequence of (V`)`≥0 admits a

sub-subsequence that converges to V∞ pointwise. The next lemma implies that V` converges

to V∞ pointwise. Thus, for every x ∈ Z, Vϑ,P,β(x) is jointly continuous in (ϑ, P, β) ∈ R+3.

Lemma 7. If a real sequence (y`)`≥0 is such that every subsequence of (y`)`≥0 admits a

sub-subsequence that converges to the same constant y∞ ∈ R, then y` converges to y∞.

Proof. Otherwise, there exists some ε > 0 and a subsequence
(
yϕ(`)

)
such that

∣∣yϕ(`) − y∞
∣∣ >

ε for all `. Then
(
yϕ(`)

)
does not admit a sub-subsequence that converges to y∞.

A function f : Z→ R is said to be U-shaped if f is even and f(x+ 1) > f(x), ∀x ≥ 0.

Lemma 8. The loss function Lk,m,P = Vk,m,P − Vk−1,m,P is U-shaped.
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Proof of Lemma 8. I let x̄ϑ denote x̄ϑ,P,β and formally differentiate (3) with respect to ϑ,

∂

∂ϑ
Vϑ(x) = Tϑ

(
∂

∂ϑ
Vϑ(x)

)
(x) (11)

≡



δψ(x) +
δ

2

[
∂

∂ϑ
Vϑ(x+ 1) +

∂

∂ϑ
Vϑ(x)

]
, x ≤ −x̄ϑ,

δψ(x) +
δ

2

[
∂

∂ϑ
Vϑ(x) +

∂

∂ϑ
Vϑ(x− 1)

]
, x ≥ x̄ϑ,

δψ(x) +
δ

2

[
∂

∂ϑ
Vϑ(x+ 1) +

∂

∂ϑ
Vϑ(x− 1)

]
, |x| < x̄ϑ,

(12)

where δ = ϑ/(ϑ+ r), and for every x ∈ Z,

ψ(x) =
rVϑ(x) + βx2

ϑ2
. (13)

I let ψ̃ = ϑ2ψ/r be a rescaled version of ψ. It follows from (9) that for every x ∈ Z,

ψ̃(x) =
δ

2

([
ψ̃(x+ 1)− β(2x+ 1)

r
+ P

]
∨ ψ̃(x) +

[
ψ̃(x− 1) +

β(2x− 1)

r
+ P

]
∨ ψ̃(x)

)
.

It follows again from Blackwell-Boyd sufficiency conditions and the Contraction Mapping

Theorem that there is a unique solution ψ̃ to the fixed point problem above. By induction,

the function ψ̃ is even and convex. If ψ̃ is not “U-shaped,” it must be that the function ψ̃ is

constant. However, there is no constant function that solves the fixed point problem above.

Therefore, ψ̃ is U-shaped. The function ψ is also U-shaped since ψ is a multiple of ψ̃.

The fixed point problem (11) admits a unique solution ∂
∂ϑ
Vϑ, satisfying A ∂

∂ϑ
Vϑ = ψ,

where ζ = 1/δ and A is the matrix in (6) of size (2x̄ϑ + 1)× (2x̄ϑ + 1). Since ψ is U-shaped,

∂

∂ϑ
Vϑ(x) =

∂

∂ϑ
Vϑ(−x), ∀ |x| ≤ x̄ϑ,

∂

∂ϑ
Vϑ(0) < · · · < ∂

∂ϑ
Vϑ(x̄ϑ) ≤ 1

ζ − 1
ψ(x̄ϑ).

∂

∂ϑ
Vϑ(x) =

ψ(x) + ∂
∂ϑ
Vϑ(x− 1)/2

(ζ − 1) + 1/2
, ∀x > x̄ϑ,

(14)
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which follows from (v) of Lemma 2. One can show by induction that for every x > x̄ϑ,

∂

∂ϑ
Vϑ(x− 1) <

1

ζ − 1
ψ(x).

=⇒ ∂

∂ϑ
Vϑ(x) >

(ζ − 1) ∂
∂ϑ
Vϑ(x− 1) + ∂

∂ϑ
Vϑ(x− 1)/2

(ζ − 1) + 1/2
=

∂

∂ϑ
Vϑ(x− 1).

Combining the inequalities above with (14), one obtains ∂
∂ϑ
Vϑ(x) > ∂

∂ϑ
Vϑ(x − 1) for every

x > 1. Therefore, the unique solution ∂
∂ϑ
Vϑ to the fixed problem (11) is U-shaped.

I let ϑ1, ϑ2 ≥ 0 be such that x̄ϑ1,P = x̄ϑ2,P , and integrate (11) over ϑ ∈ [ϑ1, ϑ2] to obtain

Vϑ2,P − Vϑ1,P =

∫ ϑ2

ϑ1

∂

∂ϑ
Vϑ,P dϑ. (15)

Since Vϑ,P is continuous with respect to ϑ (Lemma 6), then (15) holds for every ϑ1, ϑ2 ≥ 0.

Since ∂
∂ϑ
Vϑ,P is U-shaped for every ϑ ≥ 0, the function Vϑ2,P − Vϑ1,P is also U-shaped for

every ϑ1, ϑ2 ≥ 0. In particular, the loss function Lk,m,P = Vk,m,P −Vk−1,m,P is U-shaped.

Since x̄ϑ = O
(
ϑ1/3

)
(Proposition 7), it then follows from property (vii) of Lemma 2 that

∂

∂ϑ
Vϑ(x̄)− ∂

∂ϑ
Vϑ(0) ≤ ψ(x̄) range

(
A−1

)
= O

(
(ζ − 1) range

(
A−1

))
= O ((ζ − 1)x̄) . (16)

The inequality above will be useful in the proof of Theorem 3.

Lemma 9. The threshold x̄ϑ,P,β is non-decreasing in ϑ, P ≥ 0, and non-increasing in β > 0.

Proof. I let ∆ϑ(x) = Vϑ(x)− Vϑ(x+ 1) for every x ∈ Z. Since ∂
∂ϑ
Vϑ is U-shaped, then

∆ϑ2(x)−∆ϑ1(x) =

∫ ϑ2

ϑ1

∂

∂ϑ
Vϑ(x) dϑ−

∫ ϑ2

ϑ1

∂

∂ϑ
Vϑ(x+ 1) dϑ < 0,

for every x ∈ Z+ and ϑ1 < ϑ2. Lemma 3 implies that x̄ϑ1,P,β ≤ x̄ϑ2,P,β. The same technique

can be applied to show that x̄ϑ,P,β is weakly decreasing in β > 0. The proof is omitted.

For each η > 0, VηP,ηβ = ηVP,β thus x̄ηP,ηβ = x̄P,β. If P2 > P1, I let η = P2/P1 > 1, then

x̄P2,β ≥ x̄P2,ηβ = x̄P1,β. When P = 0, x̄P,β = 0. Thus, x̄P,β weakly increases in P ≥ 0.

I write L(k,m, P, β) for L(k,m, P ) to make clear its dependence on β.
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Lemma 10. The cost L(k,m, P, β) of gouging is (a) strictly increasing in the total number

k of buyside customers, (b) strictly decreasing in the total number m of dealers, (c) strictly

decreasing in β ∈ R++, and (d) strictly increasing and continuous in the half spread P .

Proof of (a) and (b). It is sufficient to establish that for every ϑ2 > ϑ1,

∂

∂ϑ
Vϑ1(0) <

∂

∂ϑ
Vϑ2(0). (17)

Inequality (17) would imply, for every 1 ≤ k1 < k2 and 1 ≤ m1 < m2, that

Lk1,m,P (0) =

∫ ϑ(k1,m)

ϑ(k1−1,m)

∂

∂ϑ
Vϑ(0) dϑ <

∫ ϑ(k2,m)

ϑ(k2−1,m)

∂

∂ϑ
Vϑ(0) dϑ = Lk2,m,P (0),

Lk,m1,P (0) =

∫ ϑ(k,m1)

ϑ(k−1,m1)

∂

∂ϑ
Vϑ(0) dϑ <

∫ ϑ(k,m2)

ϑ(k−1,m2)

∂

∂ϑ
Vϑ(0) dϑ = Lk,m2,P (0),

where ϑ(k,m) = 2kλθm/m is the reparametrization from (k,m) to ϑ.

To show (17), I formally differentiate equation (11) with respect to ϑ to obtain

ζ
∂2

∂ϑ2
Vϑ(x) =



χ(x) +
1

2

[
∂2

∂ϑ2
Vϑ(x+ 1) +

∂2

∂ϑ2
Vϑ(x)

]
, x = −x̄ϑ,

χ(x) +
1

2

[
∂2

∂ϑ2
Vϑ(x) +

∂2

∂ϑ2
Vϑ(x− 1)

]
, x = x̄ϑ,

χ(x) +
1

2

[
∂2

∂ϑ2
Vϑ(x+ 1) +

∂2

∂ϑ2
Vϑ(x− 1)

]
, |x| < x̄ϑ,

(18)

where ζ = 1/δ > 1, and

χ(x) =



1

ϑ

[
∂

∂ϑ
Vϑ(x+ 1)− ∂

∂ϑ
Vϑ(x)

]
, x = −x̄ϑ,

1

ϑ

[
∂

∂ϑ
Vϑ(x− 1)− ∂

∂ϑ
Vϑ(x)

]
, x = x̄ϑ,

1

ϑ

[
∂

∂ϑ
Vϑ(x+ 1) +

∂

∂ϑ
Vϑ(x− 1)− 2

∂

∂ϑ
Vϑ(x)

]
, |x| ≤ x̄ϑ,
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Since the function ∂
∂ϑ
Vϑ is U-shaped, thus the function χ is even and

x∑
x̃=−x

χ(x̃) =


2

ϑ

[
∂

∂ϑ
Vϑ(x+ 1)− ∂

∂ϑ
Vϑ(x)

]
> 0, for 0 ≤ x < x̄ϑ,

0, for x = x̄ϑ.

(19)

The linear system (18) can be written as A ∂2

∂ϑ2
Vϑ = χ. Then ∂2

∂ϑ2
Vϑ = A−1χ. In particular,

∂2

∂ϑ2
Vϑ(0) =

x̄ϑ∑
x=−x̄ϑ

A−1
0,x · χ(x) =

x̄ϑ−1∑
x=0

(
A−1

0,x − A−1
0,x+1

) x∑
x̃=−x

χ(x̃) > 0.

The last inequality follows from (19) and property (ii) of Lemma 2.

Given ϑ1, ϑ2 ≥ 0 such that x̄ϑ1 = x̄ϑ2 , I integrate equation (18) over ϑ ∈ [ϑ1, ϑ2] to obtain

∂

∂ϑ
Vϑ2 −

∂

∂ϑ
Vϑ1 =

∫ ϑ2

ϑ1

∂2

∂ϑ2
Vϑ dϑ.

Since x̄ϑ is non-decreasing in ϑ (Lemma 9), the set of discontinuity points of x̄ϑ is discrete

and admits no accumulation point. I let ϑ0 be a discontinuity point of x̄ϑ, and define x̄− as

x̄− ≡ lim
ϑ↑ϑ0

x̄ϑ ≤ x̄ϑ0 .

The same argument used in the proof of Lemma 6 implies that for every x ∈ Z,

lim
ϑ↑ϑ0

∂

∂ϑ
Vϑ(x) = Ṽ (x),

where the function Ṽ is the unique solution to the fixed point problem

Ṽ (x) =



δψ(x) +
δ

2

[
Ṽ (x+ 1) + Ṽ (x)

]
, x ≤ −x̄−,

δψ(x) +
δ

2

[
Ṽ (x) + Ṽ (x− 1)

]
, x ≥ x̄−,

δψ(x) +
δ

2

[
Ṽ (x+ 1) + Ṽ (x− 1)

]
, |x| < x̄−,

I let Ṽ 0 = Ṽ , and Ṽ h+1 = Tϑ0(Ṽ
h), where Tϑ0 is defined in (12). Then Ṽ h converges to
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∂
∂ϑ
Vϑ0 pointwise as h→∞. Since x̄− ≤ x̄ϑ0 and Ṽ 0 is U-shaped, one has

Ṽ 1(x)


= Ṽ 0(x) |x| < x̄−,

> Ṽ 0(x) x̄− ≤ |x| < x̄ϑ0 ,

= Ṽ 0(x) |x| ≥ x̄ϑ0 .

Thus, Ṽ 0 ≤ Ṽ 1. It then follows that Ṽ h ≤ Ṽ h+1 for every h ≥ 0. Letting h→∞, one has

lim
ϑ↑ϑ0

∂

∂ϑ
Vϑ = Ṽ ≤ ∂

∂ϑ
Vϑ0 .

Hence, ∂

∂ϑ
Vϑ2(0)− ∂

∂ϑ
Vϑ1(0) ≥

∫ ϑ2

ϑ1

∂2

∂ϑ2
Vϑ(0) dϑ > 0.

for every ϑ2 > ϑ1. This establishes (17) and completes the proof of (a) and (b) of Lemma 10.

Part (c). The same technique used in the proof of parts (a) and (b) can be applied to

show part (c). One should apply the continuity property of Vk,d,P,β in β (Lemma 6) and the

monotonicity of x̄k,d,P,β in β (Lemma 9). The proof is omitted.

Part (d). For every η > 0, Vk,m,ηP,ηβ = ηVk,m,P,β. If P2 > P1, I let η = P2/P1 > 1, then

Lk,m,P2,β(0) > Lk,m,P2,ηβ(0) = η Lk,m,P1,β(0) > Lk,m,P1,β(0).

That is, Lk,m,P,β(0) is strictly increasing in P ∈ R+. The continuity of Lk,m,P,β(0) in P is

implied by that of Vk,m,P (0) as per Lemma 6.

Proof of Lemma 1. Since L(k,m, P ) is continuous and weakly increasing in P (Lemma 10),

condition (4) is equivalent to P ≥ P (k,m).

Proposition 3 follows immediately from (a) and (b) of Lemma 10.

D.4 Proof of Theorem 1

Step 1: I first show that σ∗(m) is a PBE for every m ≤ m∗. When receiving a demand shock,

the expected gain from search is θm[π − P ∗(m)] for a buyside firm and θm−1[π − P ∗(m)] for
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a dealer. Without an exogenous need to trade, the expected gain from search is 0. Hence,

the search strategy S∗ is optimal for every agent. Since the total gain per trade is π, the

response strategy ρ∗ is optimal. If an agent has d dealer accounts, the rate of net benefit for

the agent is rΦd,P ∗(m). It is thus strictly optimal to have m−1 or m dealer accounts. Hence,

the account maintenance strategy N∗m is optimal. If a buyside firm i receives a request for

quote at time t, given that the associated quote seeker’s equilibrium strategy is to discontinue

its trading account with i immediately after time t, the quoting strategy p∗0 is thus optimal

for i. Finally, since m ≤ m∗ implies the condition Π(P ∗(m)) ≤ L(n −m,m,P ∗(m)) for no

gouging, each dealer has no incentive to gouge by the One-Shot Deviation Principle. The

quoting strategy p∗(m), determined by dealer’s HJB equation (3), is thus optimal for dealers.

Step 2: I suppose that G(m) is an equilibrium network for some integer m ≥ 0, and that

σ = (S, p, ρ,Nout) is a supporting equilibrium of G(m). I show that on the equilibrium path,

the ask price of any given dealer j ∈ J is some constant a∗j , and its bid price is some constant

b∗j . Formally, for every busyide firm i, every dealer j and every integer ` ≥ 1, I let τi` denote

the time of the `’th request for quote of i, and τj` denote the time of dealer j providing the

`’th quote. I use the subscripts i`, j` and i`− to denote “at time τi`,” “at time τj`,” and “right

before time τi`” respectively. I show that for every ` ≥ 1, aj` = a∗j , bj` = b∗j almost surely.

Since the search strategy Si of every given agent i is stationary, and i searches only a

finite number of times during any finite time interval on the equilibrium path, it must be

that i searches only upon receiving a demand shock. That is, Si = S∗ for every agent i.

Conditional on successfully reaching a quote provider, it must be that agent i accepts any

ask a < π and any bid b > −π. For every j ∈ J , a ∈ R and ` = 1, 2, . . . , I let

Ai`(a, j) = {Oi` = Buy, ãi` = a, ji` = j}

denote the event that buyside firm i receives an ask price a from dealer j at time τi`, and

a∗j = sup{a ∈ [−π, π] : ∀i ∈ I,Nout
i` = J almost surely on the event Ai`(a, j)} (20)
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be the highest ask price that j may offer without triggering account termination by any

buyside firm on the equilibrium path. Likewise, for every b ∈ R, I let

Bi`(b, j) =
{
Oi` = Sell, b̃i` = b, ji` = j

}
,

and b∗j = sup{b ∈ [−π, π] : ∀i ∈ I,Nout
i` = J almost surely on the event Bi`(a, j)}

be the lowest bid price that j may post without triggering account termination.

If dealer j posts some ask price aj` < a∗j , then there exists some ε > 0 such that a+ε ≤ π,

and offering an ask price of aj` + ε would not trigger any account termination. Dealer j is

thus strictly better off if it raises its ask price by ε, contradicting the optimality of its quoting

strategy. If aj` > a∗j , then by definition (20) of a∗j , the ask price aj` triggers at least one

account termination by some buyside firm with some positive probability. This contradicts

that G(m) is the equilibrium trading network. Therefore, the ask price of dealer j is always

a∗j on the equilibrium path. Likewise, the bid price of dealer j is always b∗j . Consequently,

the ask a∗j and the bid b∗j do not trigger account termination by any agent.

Step 3: I next show that for every dealer j ∈ J , the bid-ask spread is a∗j − b∗j = 2P ∗(m). The

equilibrium continuation utility of any buyside firm i at any given time t ≥ 0 is

Φ =
λ

r

θm
m

∑
j∈J

(
π − a∗j + π + b∗j

)
− mc

r
.

If i terminates its trading account with a given dealer j ∈ J , its continuation utility is

Φ−j =
λ

r

θm−1

m− 1

∑
j′∈J/{j}

(
π − a∗j′ + π + b∗j′

)
− (m− 1)c

r
.

It must be that i is indifferent to maintaining all its dealer accounts or terminating one of

them. That is, for every dealer j ∈ J , Φ = Φ−j. It then follows that the spread a∗j−b∗j = 2P ∗j

is the same for every dealer j ∈ J . To see this, I let j1 = argmaxj P
∗
j and j2 = argmaxj P

∗
j

be the dealers posting the largest and the smallest spread respectively. If P ∗j1 > P ∗j2 , then

terminating the trading account with j1 is strictly better than terminating the account with
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j2. That is, Φ−j1 > Φ−j2 , which contradicts Φ = Φ−j1 = Φ−j2 . Thus, there exists some

constant P ∗ such that P ∗j = P ∗ for every dealer j ∈ J . The equilibrium continuation utility

of a buyside firm is then Φ = Φm,P ∗ , where Φd,P is given by (2). The continuation utility of

a buyside firm after terminating one dealer account is Φm−1,P ∗ . The indifference condition

Φm,P ∗ = Φm−1,P ∗ implies P ∗ = P ∗(m), where P ∗(m) is the equilibrium spread given by (2).

Step 4: I suppose G(m) is an equilibrium network for some given m ≥ 0. For a given dealer,

I let a∗ = P ∗(m)+h and b∗ = −P ∗(m)+h be its equilibrium ask and bid prices respectively,

for some h ≥ 0. The dealer’s value function Vk,h solves the following HJB equation:

rVk,h(x) = −βx2 + λ

(
k
θm
m

+ θm−1

)
[Vk,h(x+ 1)− Vk,h(x) + P ∗(m)− h]+

+ λ

(
k
θm
m

+ θm−1

)
[Vk,h(x− 1)− Vk,h(x) + P ∗(m) + h]+.

(21)

This HJB equation differs from (3) only in the bid-ask quotes. It follows from the Blackwell’s

sufficient conditions and the Contraction Mapping Theorem that there is a unique solution

Vk,h to (21) that is bounded above by some constant and below by −βx2/r. I let yh =

Vk,h + βx2/r. It then follows from the HJB equation (21) that for every x ∈ Z,

yh(x) =
δ

2

([
yh(x+ 1)− β(2x+ 1)

r
+ P − h

]
∨ yh(x)

+

[
yh(x− 1) +

β(2x− 1)

r
+ P + h

]
∨ yh(x)

)
,

(22)

I extend the domain of the function yh from Z to R. That is, (22) holds for every x ∈ R.

The Contraction Mapping Theorem implies that the function yh is uniquely determined by

(22). It follows from value iteration that the function y0 is even and convex. Hence, it must

be that y0 is a continuous function on R. It can be verified that for every x ∈ R,

yh(x) = y0

(
x+

rh

2β

)
.

That is, yh is obtained by simply shifting the function y0 to the left by rh/(2β). I extend
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the domain of the function Vk,h from Z to R by defining Vk,h = yh − βx2/r. Hence, yh(x)

and thus Vk,h(x) are jointly continuous in (x, h). The Intermediate Value Theorem implies

the existence of some x̃k,0 ∈ R such that

x̄k = bx̃k,0c, Vk,0(x̃k,0 − 1)− Vk,0(x̃k,0) = P ∗(m).

I next consider the dealer’s incentive to gouge. The one-shot benefit of gouging is

Π(h) = max {π − a∗, π + b∗} = π − P ∗(m) + h.

If the dealer gouges, the probability that it loses a buyside customer is at most k/(k+m−1).

(this probability could be lower since some buyside firms may choose not to terminate their

accounts). I let Lk,h = Vk,h−Vk−1,h. Since the dealer optimally controls its inventory within

the interval Ih =
[
−x̃k,0 − rh

2β
, x̃k,0 − rh

2β

]
, a necessary condition for no gouging is given by

Π(h) ≤ L(k, h) ≡ k

k +m− 1
min
x∈Ih

Lk,h(x). (23)

I will show that, for every h ≥ 0,

L(k, h) ≤ L(k, 0) + h. (24)

Then condition (23) would imply Π(0) ≤ L(k, 0), which is equivalent to m ≤ m∗ when

k = n−m. This would complete Step 4. Since L(k, h) is even and periodic in h with period

2β/r. Hence, it suffices to show that (24) holds for every h ≤ β/r. For every h ≤ β/r,

min
x∈Ih

Lk,h(x) = Lk,h(0).

It is therefore sufficient to show, for every h ≤ β/r, that

Lk,h(0) ≤ Lk,0(0) + h. (25)
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I formally differentiate Vk,h(x) with respect to h in (21), to obtain

ζ
∂

∂h
Vk,h(x) =



1

2

[
∂

∂h
Vk,h(x+ 1) +

∂

∂h
Vk,h(x− 1)

]
, x̃k,h + 1 ≤ x+

rh

2β
≤ x̃k,h − 1,

1

2

[
∂

∂h
Vk,h(x+ 1) +

∂

∂h
Vk,h(x)− 1

]
, x+

rh

2β
< x̃k,h + 1,

1

2

[
∂

∂h
Vk,h(x− 1) +

∂

∂h
Vk,h(x) + 1

]
, x+

rh

2β
> x̄k,h − 1.

I let ` be the number of integers in the interval Ih, s = b(`+ 1)/2c, and $ be the vector

$ = (−1/2, 0, . . . , 0, 1/2)>.

The linear system can be written as A ∂
∂h
Vk,h = $, where A is the matrix (6) of size `× `.

For every h ≤ β/r, it follows from properties (iii), (v) and (vii) of Lemma 2 that

0 ≤ ∂

∂h
Vk,h(0) =

1

2

(
−A−1

`+1−s,1 + A−1
`+1−s,`

)
=

1

2

(
−A−1

`+1−s,1 + A−1
s,1

)
≤ 1.

=⇒ Lk,h(0) = Lk,h(0) + [Vk,h(0)− Vk,0(0)]− [Vk,h(0)− Vk−1,0(0)] ≤ Lk,h(0) + h.

D.5 Proof of Theorem 2 and Corollary 1

The proof of Theorem 2 closely parallels that of Theorem 1, and is thus omitted. In the

equilibrium network G, the sum of outdegrees must equal to the sum of indegrees. Thus,

m∗n−
∑

j∈J `j

m− 1
=
∑
j∈J

(kj + `j).

Since kj ≥ k(m∗, `j) for every j ∈ J (Theorem 2), it follows from the next lemma that

m∗n ≥
∑
j∈J

(
k(m∗, `j) +

m

m− 1
`j

)
> |J | [k(m∗, 0)− 1],

which implies

|J | < m∗n

k(m∗, 0)− 1
.
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Lemma 11. For every integers m > 0 and ` ≥ 0,

k(m, `) +
m

m− 1
` > k(m, 0)− 1.

Proof. It follows from the definition of k(m, `) that

Π(P ∗(m)) > L(k(m, 0)− 1,m, 0, P ∗(m)). (26)

Let ϑ = 2λ(kθm/m+ `θm−1/(m− 1)). With reparametrization, I write Vϑ,P for Vk,m,`,P , and

Lϑ,P for Lk,m,`,P . It follows from (15) and (17) in the proof of Lemma 10 that Lϑ,P (0) is

strictly increasing in ϑ ≥ 0. It then follows that

L(k(m, 0)− 1,m, 0, P ∗(m)) ≥ L
(⌊

k(m, 0)− 1− m

m− 1
`

⌋
,m, `, P ∗(m)

)
.

Combining with (26), one has

Π(P ∗(m)) > L
(⌊

k(m, 0)− 1− m

m− 1
`

⌋
,m, `, P ∗(m)

)
.

Therefore, k(m, `) ≥
⌊
k(m, 0)− m

m− 1
`

⌋
> k(m, 0)− 1− m

m− 1
`.

D.6 Proof of Proposition 4

Step 1: If σ is a supporting equilibrium for some network G with |J(G)| > µ(G), I let

m = µ(G). Since the equilibrium spread is 2P ∗(m) (Theorem 1), the quotes of every given

dealer j are a∗j = P ∗(m) + hj and b∗j = P ∗(m) + hj for some hj. I let E be the set of dealers

with the J(G) −m smallest mid-quotes |hj| in magnitude. These dealers are the ones who

“exit,” in that they give up all trading accounts they host to the remaining m dealers in

J ′ = J(G)\E and become buyside firms. Specifically, if a given agent has m dealer accounts,

then I replace each of his accounts with dealers in E by an account with one of the m dealers

in J ′. Among the m dealers in J ′, I let j′ be the dealer with the smallest mid-quote |hj|. If a

given agent hasm−1 dealer accounts, then I replace each of his accounts with dealers in E by

an account with one of the m− 1 dealers in J ′\{j′}. I let ϑj = 2λ[kjθm/m+ `jθm−1/(m− 1)]
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and ϑ′j = 2λ
[
k′jθm/m+ `′jθm−1/(m− 1)

]
. I define a strategy profile σ′ that differs from σ

only in the quoting strategies of the m dealers, in that each dealer j posts the same bid-ask

quotes a∗j and b∗j as in σ, but with the inventory thresholds determined by the rate ϑ′j instead

of ϑj. Then the value of j from serving requests for quote is given by V ′j = Vϑ′j ,hj(0). With

the same proof of Lemma 10, one can show that Vϑ,h(0) is increasing and strictly convex in

ϑ for every h ∈ R. Since
∑

j∈J(G) ϑj =
∑

j∈J(G) ϑ
′
j, then∑

j∈J(G)

V ′j >
∑
j∈J(G)

Vj.

by Jensen’s inequality, where Vj = Vϑj ,hj(0). Then U(σ′) > U(σ).

Step 2: From G′, I let all buyside firms without an account with j′ open one with j′, if

θm
m

∂

∂ϑ
V ′j′ ≥

(
θm−1

m− 1
− θm
m

)
∂

∂ϑ

∑
j 6=j′

V ′j . (27)

The resulting network is the concentrated core-periphery network G(m). I let σ′′ differ from

σ′ only in the quoting strategy of j′, in that j′ posts the bid-ask quotes a∗j′ and b∗j′ with the

inventory thresholds determined by the rate ϑn−m,m instead of ϑ′. Then σ′′ is a supporting

equilibrium of G(m), and Uσ′′ ≥ Uσ′ > Uσ. If inequality (27) does not hold, then one can

construct a supporting equilibrium σ′′ for G(m− 1) in a similar way, such that Uσ′′ > Uσ.

E Proofs from Section 4

E.1 Proof of Proposition 6

Part (i): I fix m ≥ 1 and P > 0, and suppress m and P from the subscripts to simplify

notations. For example, Vn denotes Vn−m,m,P . Since ∂
∂ϑ
Vϑ is U-shaped, then for every x ≥ 0,

[Vn+1(x)− Vn+1(x+ 1)]− [Vn(x)− Vn(x+ 1)]

=

∫ ϑ(n−m+1,m)

ϑ(n−m,m)

[
∂

∂ϑ
Vϑ(x)− ∂

∂ϑ
Vϑ(x+ 1)

]
dϑ < 0.
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Since the sequence [Vn(x)−Vn(x+ 1)]n≥m is strictly decreasing, it admits some limit ∆∞(x).

It will be shown in the proof of Proposition 7 that x̄n → ∞ as n → ∞. Then for every

x ∈ Z+, x < x̄n for n sufficiently large, and it follows from (9) that

rVn(x)

= − βx2 + λ

(
(n−m)

θm
m

+ θm−1

)
[Vn(x+ 1) + Vn(x− 1)− 2Vn(x) + 2P ]

∼ nλ
θm
m

[∆∞(x− 1)−∆∞(x) + 2P ]

(28)

Where the symbol ∼ indicates asymptotic equivalence as n→∞. Letting x = 0, one has

rVn(0) ∼ nλ
θm
m

[−2∆∞(0) + 2P ]. (29)

For every x ≥ 0,

r[Vn(0)− xP ] ≤ rVn(x) ≤ rVn(0) =⇒ rVn(x) ∼ nλ
θm
m

[−2∆∞(0) + 2P ]. (30)

By comparing the asymptotic equivalences in (28) and (30), one obtains

∆∞(x)−∆∞(x− 1) = 2∆∞(0),

for every x ∈ Z+. Thus

∆∞(x) = (2x+ 1)∆∞(0).

If ∆∞(0) > 0, then ∆∞(x) > P for x > [P/∆∞(0) − 1]/2, which implies x̄n < [P/∆∞(0) −

1]/2. The last inequality contradicts with the fact that x̄n goes to infinity as n → ∞.

Therefore, ∆∞(0) = 0. It then follows from (29) that

rVn(0) ∼ 2nλ
θm
m
P. (31)

Since Ln(0) is strictly increasing in n ≥ m (Lemma 10), it has a (possibly infinite) limit as

n→∞. It then follows Cesàro’s Theorem that

Vn(0)

n−m
=

∑n
k=m+1 Lk(0)

n−m
n→∞−−−→ lim

n→∞
Ln(0).
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The equivalence in (31) then implies that

lim
n→∞

Ln(0) =
2λθm
rm

P

One can then solve Π(P ) = L(n−m,m,P ) to obtain

lim
n→∞

P (n−m,m) =
mrπ

2λθm +mr
.

Since L(n−m,m,P ) is strictly increasing in n, the sustainable spread P (n−m,m) is strictly

decreasing in n. Thus, the limiting number m∗∞ of dealers is the largest integer m such that

mrπ

2λθm +mr
= lim

n→∞
P (n−m,m) < P ∗(m).

Part (ii) (dependence of m∗ on π): To indicate the dependence of endogenous variables

on the parameter π, I will write P ∗(m,π) for the equilibrium spread, and P (m,π) for the

sustainable dealer spread. The loss function L(k,m, P ) does not depend on π.

Given some π1 < π2, one has, for every m ≥ 1, P > 0, and ` = 1, 2,

π` − P (m,π`) = L(n−m,m,P (m,π`)).

Since the loss L(n−m,m,P ) is strictly increasing in P (Lemma 10), it must be that

π1 − P (m,π1) < π2 − P (m,π2), P (m,π2) > P (m,π1).

That is, when the total gain per trade increases from π1 to π2, the increase in the dealer

sustainable spread P (m,π) is strictly less than π2 − π1. On the other hand, one has

P ∗(m,π2)− P ∗(m,π1) = π2 − π1.

That is, the equilibrium spread increases more than the sustainable spread. Therefore, the

core size m∗ is weakly increasing in π.

Part (ii) (dependence of m∗ on λ): The same technique used in the proof of Lemma 10 can
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be applied to show that the loss L(k,m, P ) from gouging is strictly increasing in λ, for every

k ≥ 1 and P > 0. Hence, the dealer-sustainable spread P (m) is strictly decreasing in λ. On

the other hand, the equilibrium spread P ∗(m) is strictly increasing in λ (see expression (2)).

Therefore, the core size m∗ is weakly increasing in λ.

Part (ii) (dependence of m∗ on c): As c decreases, P ∗(m) increases, while P (m) is not

affected. The core size m∗ thus weakly increases.

Part (ii) (dependence of m∗ on β): For every m ≥ 1, k ≥ 1 and P > 0, the loss function

L(k,m, P, β) is strictly decreasing in β ∈ R++ (Lemma 10). Thus, the dealer sustainable

spread P (m) is strictly increasing in β. However, the equilibrium spread P ∗(m) does not

depend on β. Therefore, the core size m∗ is weakly decreasing in β.

Part (iii): When β increases or n decreases, the equilibrium number m∗ of dealers weakly

decreases. With less competition, dealers widen their equilibrium spread offer. This can be

seen directly from expression (2) of the equilibrium spread P ∗(m∗).

E.2 Proof of Proposition 7

Lemma 9 shows that x̄n−m,m,P ∗(m) is weakly decreasing in β and weakly increasing in nλ. To

drive the desired asymptotic, I fix some m ≥ 1 and P > 0, and let ϑ = 2λ((n−m)θm/m +

θm−1). With reparametrization, I write Vϑ for Vn−m,m,P and x̄ϑ for x̄n−m,m,P . It is sufficient

to show that x̄ϑ = Θ
(
ϑ1/3

)
as ϑ goes to infinity. It follows from (3) that

Vϑ(x) = T1(Vϑ)(x), − x̄ϑ < x < x̄ϑ. (32)

Vϑ(x) = T2(Vϑ)(x), x ≥ x̄ϑ. (33)

where for every function V : Z→ R,

T1(V )(x) =
1

ϑ+ r

(
−βx2 +

ϑ

2
[V (x− 1) + V (x+ 1) + 2P ]

)

T2(V )(x) =
1

ϑ+ r

(
−βx2 +

ϑ

2
[V (x− 1) + V (x) + P ]

)
.
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A quadratic solution U0
ϑ of (32) is given by

U0
ϑ(x) = −β

r
x2 +

ϑ

r

(
P − β

r

)
.

To obtain all solutions of (32), I consider its homogeneous version:

rV (x) =
ϑ

2
[V (x− 1) + V (x+ 1)− 2V (x)]. (34)

The set of solutions to the difference equation above forms a 2-dimensional vector space

{aedϑx + ãedϑx : a, ã ∈ R}, wheredϑ =

√
2r

ϑ
+O

(
ϑ−

3
2

)
.

Therefore, the solutions to (32) are

Z 3 x 7→ −β
r
x2 +

ϑ

r

(
P − β

r

)
+ aedϑx + ãe−dϑx,

where a, ã ∈ R. The value function Vϑ must be equal to one of the solutions Uϑ in the region

−x̄ϑ ≤ x ≤ x̄ϑ, for some a = aϑ and ã = ãϑ. Since the function Vϑ is even, one must have

aϑ = ãϑ. Hence, for every integer x ∈ [−x̄ϑ, x̄ϑ],

Vϑ(x) = Uϑ(x) ≡ −β
r
x2 +

ϑ

r

(
P − β

r

)
+ aϑ cosh(dϑx). (35)

Solving equation (33), one obtains, for every integer x ≥ x̄ϑ − 1,

Vϑ(x) = Wϑ(x) ≡ W 0
ϑ(x) + bϑe

cϑx

≡ −β
r
x2 +

ϑ

r

β

r
x−

(
ϑ

r

)2
β

2r
+

ϑ

2r

(
P − β

r

)
+ bϑe

cϑx,

(36)

for some bϑ ∈ R, where cϑ = −2r

ϑ
+ 2

( r
ϑ

)2

+O
(
ϑ−3
)
.

I show that the undetermined coefficients aϑ and bϑ are non-negative. For this purpose, I

define V 0
ϑ as an even function from Z to R such that for every x ∈ Z+,

V 0
ϑ (x) = max

{
U0
ϑ(x),W 0

ϑ(x)
}
.
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I let Bϑ be the Bellman operator defined in (9). Then one hasBϑ

(
V 0
ϑ

)
≥ T1

(
V 0
ϑ

)
≥ T1

(
U0
ϑ

)
= U0

ϑ,

Bϑ

(
V 0
ϑ

)
≥ T2

(
V 0
ϑ

)
≥ T2

(
W 0
ϑ

)
= W 0

ϑ ,
=⇒ Bϑ

(
V 0
ϑ

)
≥ max

{
U0
ϑ,W

0
ϑ

}
= V 0

ϑ .

By iterating the Bellman operator Bϑ, one obtains Vϑ ≥ V 0
ϑ , which implies aϑ ≥ 0, bϑ ≥ 0.

It follows from (35) and (36) that Uϑ and Wϑ have same values at x = x̄ϑ − 1 and x̄ϑ:

Uϑ(x̄ϑ − 1) = Wϑ(x̄ϑ − 1), Uϑ(x̄ϑ) = Wϑ(x̄ϑ). (37)

One also has T1(Uϑ)(x̄ϑ) = Uϑ(x̄ϑ) = Wϑ(x̄ϑ) = T2(Wϑ)(x̄ϑ) = T2(Uϑ)(x̄ϑ),

where the last equality uses (37). It then follows that

Uϑ(x̄ϑ)− Uϑ(x̄ϑ + 1) = P.

By an abuse of notation, I use Uϑ and Wϑ to denote the functions given by (35) and (36)

respectively on the entire real line R. There exists some x̃ϑ ∈ (x̄ϑ, x̄ϑ + 1) such that

U ′ϑ(x̃ϑ) = −P. (38)

Similarly, there exists some x̂ϑ ∈ (x̄ϑ − 1, x̄ϑ + 1) such that

W ′
ϑ(x̂ϑ) = −P, (39)

Plugging the expressions of Uϑ and Wϑ into (37) to (39), one obtains

−2β

r
x̃ϑ + aϑdϑ sinh(dϑx̃ϑ) = −P, (40)

−2β

r
x̂ϑ +

ϑ

r

β

r
+ bϑcϑe

cϑx̂ϑ = −P. (41)

ϑ

2r

(
P − β

r

)
+ aϑ cosh(dϑx̄ϑ) =

ϑ

r

β

r
x̄ϑ −

(
ϑ

r

)2
β

2r
+ bϑe

cϑx̄ϑ , (42)
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Equation (41) and bϑ ≥ 0 imply that

0 ≤ − r
ϑ
bϑcϑe

cϑx̂ϑ =
β

r

(
1− 2r

ϑ
x̂ϑ

)
+
r

ϑ
P.

Thus, bϑecϑx̄ϑ = O(ϑ2) and x̂ϑ = O(ϑ). I multiply (41) by ϑ/2r and subtract by (42),

aϑ cosh(dϑx̄ϑ) = bϑO(ϑ−1)ecϑx̄ϑ +O(ϑ) = O(ϑ). (43)

I show that x̂ϑ = o(ϑ). If this is not the case, then there exists a sequence (ϑ`)`≥0 going to

infinity and x̂ϑ` = Θ(ϑ`) as ` goes to infinity. It then follows from (40) that

aϑ` sinh(dϑ`x̃ϑ`) = Θ
(
ϑ

3/2
`

)
, thus aϑ` cosh(dϑ`x̃ϑ`) = Θ

(
ϑ

3/2
`

)
.

This contradicts equation (43). Therefore, x̂ = o(ϑ), and thus x̄ϑ = o(ϑ).

I multiply (41) by ϑ/2r and subtract by (42), to derive a higher order Taylor expansion

aϑ cosh(dϑx̄ϑ) ∼ β

r

ϑ

r
. (44)

=⇒ aϑdϑ sinh(dϑx̄ϑ) ∼ 2β

r

√
ϑ

r
tanh(dϑx̄ϑ).

It then follows from (40) that dϑx̄ϑ ∼ tanh(dϑx̄ϑ). However, the equation y = tanh y does

not have non-zero solution. Thus, limϑ dϑx̄ϑ = 0. A Taylor expansion applied to (44) gives

aϑ =
βϑ

r2
− βϑ

2r2
d2
ϑx̄

2
ϑ +O(1). (45)

Using equation (45), another Taylor expansion applied to equation (40) leads to

− βϑ

3r2
d4
ϑ x̄

3
ϑ = −P,

which implies x̃ϑ = Θ
(
ϑ1/3

)
, x̄ϑ = Θ

(
ϑ1/3

)
, Vϑ(0)− Vϑ(x̄ϑ) = O

(
ϑ1/3

)
. (46)

One can further obtain the following expansions, which are useful for proving Theorem 3,

Vϑ(x̄ϑ − 1)− Vϑ(x̄ϑ) = P −Θ
(
ϑ−2/3

)
, Vϑ(x̄ϑ)− Vϑ(x̄ϑ + 1) = P + Θ

(
ϑ−2/3

)
. (47)
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E.3 Proof of Proposition 8

Part (i): For somem ≥ 1 and P > 0, I let ϑ = 2λ((n−m)θm/m+θm−1). With reparametriza-

tion, I write C(ϑ) for C(n, λ,m). The dealer value Vϑ(0) increases superlinearly with ϑ

(Lemma 10). Thus, the individual dealer inventory cost C(ϑ) is strictly concave in ϑ. Since

Vϑ(0) ≤ ϑP/r, then C(ϑ) ≥ 0. Hence, it must be that C(ϑ) is strictly increasing in ϑ ∈ R+.

Equation (45) implies that aϑ = βϑ/r2 +O
(
ϑ2/3

)
. Letting x = 0 in (35), one has

Vϑ(0) =
ϑP

r
+O

(
ϑ

2
3

)
=⇒ C(ϑ) = O

(
ϑ2/3

)
.

Part (ii): One has mϑm < (m + 1)ϑm+1. Since the individual dealer inventory cost C(ϑ) is

strictly increasing and strictly concave in ϑ, it follows from Jensen’s inequality that

mC(ϑm) = mC(ϑm) + C(0) < (m+ 1)C

(
mϑm
m+ 1

)
< (m+ 1)C(ϑm+1).

E.4 Proof of Proposition 9

Tthe utility Φm,P ∗(m) of a buyside firm induced by σ∗(m) (m ≤ m) is given by

Φm,P ∗(m) =
2λθm(π − P ∗(m))−mc

r
.

As n goes to infinity, it follows from (31) that

Vn−m,m,P ∗(m)(0) ∼ 2nλ
θm
m
P ∗(m). (48)

Thus, Um = (n−m)Φm,P ∗(m) +mVn−m,m,P ∗(m)(0)

∼
(

2λθmπ −mc
r

)
n =

[ ∑
1≤m′≤m

(θm′ − θm′−1)P ∗ (m′)

]
2λn

r
≡ g(m)

2λn

r
.

Since P ∗(m′) > 0 for every 1 ≤ m′ ≤ m, then g(m) is strictly increasing in m for 0 ≤ m ≤ m.

The asymptotic equivalence above implies that there exists some integer n0 > 0, if the total

number of agent n > n0, the welfare Um is strictly increasing in m for 0 ≤ m ≤ m.
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F Proofs from Section 5

F.1 Proof of Theorem 3

Fixing an arbitrary ε > 0 and (β, π, λ, θ, c, r), for n sufficiently large, I first establish that a

given dealer’s strategy is optimal against σ̂∗m, then that a buyside firm’s strategy is ε-optimal.

The proof is based onm = 2 for ease of exposition. The same steps apply to generalm ≤ m∗.

For a given dealer j1, its expected continuation utility V̂ϑ(x, y), conditional on its infor-

mation and the inventory y of the other dealer j2, is a function of the two dealers’ current

inventories (x, y) only. The function V̂ϑ satisfies

rV̂ϑ(x, y) (49)

=
ϑ

2

[
1{x<x̄ϑ}

(
V̂ϑ(x+ 1, y) + P ∗(2)− V̂ϑ(x, y)

)
+ 1{x>−x̄ϑ}

(
V̂ϑ(x− 1, y) + P ∗(2)− V̂ϑ(x, y)

)]
+
ϑ

2

[
1{y<x̄ϑ}

(
V̂ϑ(x, y + 1)− V̂ϑ(x, y)

)
+ 1{y>−x̄ϑ}

(
V̂ϑ(x, y − 1)− V̂ϑ(x, y)

)]
+ ξ

[
V̂ϑ
(
x+ q̂(x, y), y − q̂(x, y)

)
− V̂ϑ(x, y)− p̂(x, y)

]
− βx2

The interdealer trade terms (p̂, q̂) are antisymmetric, that is, p̂(x, y) = −p̂(y, x), q̂(x, y) =

−q̂(y, x). Moreover, (p̂, q̂) maximize the Nash product:

argmax
p∈R,q∈Z

[
V̂ϑ(x+ q, y − q)− V̂ϑ(x, y)− p

] [
V̂ϑ(y − q, x+ q)− V̂ϑ(y, x) + p

]
subject to V̂ϑ(x+ q, y − q)− V̂ϑ(x, y)− p ≥ 0, V̂ϑ(y − q, x+ q)− V̂ϑ(y, x) + p ≥ 0.

(50)

Letting q1(x, y) = x + q̂(x, y) and q2(x, y) = y − q̂(x, y) be dealers’ post-trade inventories, I

show that there is a V̂ solving the system above, and a unique one such that q1(x, y) and

q2(x, y) are weakly increasing in (x, y), which is natural given dealers’ risk sharing motives.

Step 1: I show that if there exists a function V̂ϑ that satisfies the HJB equation above, then

sup
−x̄ϑ−1≤x≤x̄ϑ
|y|≤x̄ϑ

|∆1(x, y)| = O(1/ϑ), sup
|x|≤x̄ϑ

−x̄ϑ−1≤y≤x̄ϑ

|∆2(x, y)| = O(1/ϑ), as ϑ→∞. (51)

62



where Vϑ is the value function of a dealer in the symmetric-agent model, and

∆1(x, y) =
[
V̂ϑ(x, y)− V̂1(x+ 1, y)

]
−[Vϑ(x)− Vϑ(x+ 1)] , ∆2(x, y) = V̂ϑ(x, y)−V̂ϑ(x, y+1).

I let Ŝϑ(x, y) = V̂ϑ(x, y) + V̂ϑ(y, x). It follows from (50) that

V̂ϑ
(
q1(x, y), q2(x, y)

)
− V̂ϑ(x, y)− p̂(x, y) =

1

2

[
Ŝϑ
(
q1(x, y), q̂2(x, y)

)
− Ŝϑ(x, y)

]
Then Ŝϑ solves the fixed point problem f = Hξ(f), where

Hξ(f)(x, y) =
1

r + 2ϑ+ ξ

(
ϑ

2

[
1{x<x̄ϑ}

(
f(x+ 1, y) + P ∗(2)

)
+ 1{x≥x̄ϑ} f(x, y)+

1{x>−x̄ϑ}
(
f(x− 1, y) + P ∗(2)

)
+ 1{x≤−x̄ϑ} f(x, y)

]
+
ϑ

2

[
1{y<x̄ϑ}

(
f(x, y + 1) + P ∗(2)

)
+ 1{y≥x̄ϑ} f(x, y)+

1{y>−x̄ϑ}
(
f(x, y − 1) + P ∗(2)

)
+ 1{y≤−x̄ϑ} f(x, y)

]
+ ξ f(q1(x, y), q2(x, y))− β

(
x2 + y2

))
Letting Sϑ(x, y) = Vϑ(x) + Vϑ(y), then the function Sϑ solves the same system as the one

above for Ŝ, with ξ = 0 reflecting the absence of an interdealer market. That is, Sϑ = H0(Sϑ).

The operator Hξ satisfies the Blackwell’s sufficient conditions, thus is a contraction mapping

on the set of functions from Aϑ to R, where Aϑ = [−x̄ϑ − 1,−x̄ϑ + 1]2, with a contraction

factor (2ϑ+ ξ)/(r + 2ϑ+ ξ). Letting S0
ϑ = Sϑ, and Sk+1

ϑ = Hϑ(Skϑ) for every k ∈ N, then

sup
(x,y)∈Aϑ

∣∣∣Ŝϑ(x, y)− Sϑ(x, y)
∣∣∣ ≤ ∞∑

k=0

(
2ϑ+ ξ

r + 2ϑ+ ξ

)k
sup

(x,y)∈Aϑ

∣∣S1
ϑ(x, y)− S0

ϑ(x, y)
∣∣

Then (46) implies max
(x,y)∈Aϑ

Sϑ(x, y)− min
(x,y)∈Aϑ

Sϑ(x, y) = O
(
ϑ1/3

)
=⇒ sup

(x,y)∈Aϑ

∣∣S1
ϑ(x, y)− S0

ϑ(x, y)
∣∣ = O

(
ϑ−2/3

)
=⇒ sup

(x,y)∈Aϑ

∣∣∣Ŝϑ(x, y)− Sϑ(x, y)
∣∣∣ = O

(
ϑ1/3

)
(52)

=⇒ max
(x,y)∈Aϑ

Ŝϑ(x, y)− min
(x,y)∈Aϑ

Ŝϑ(x, y) = O
(
ϑ1/3

)
.
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Then the value function V̂ϑ solves the fixed point problem f = Bξ(f), where

Bξ(f)(x, y) =
1

r + 2ϑ

(
ϑ

2

[
1{x<x̄ϑ}

(
f(x+ 1, y) + P ∗(2)

)
+ 1{x≥x̄ϑ} f(x, y)+

1{x>−x̄ϑ}
(
f(x− 1, y) + P ∗(2)

)
+ 1{x≤−x̄ϑ} f(x, y)

]
+
ϑ

2

[
1{y<x̄ϑ} f(x, y + 1) + 1{y≥x̄ϑ} f(x, y)+

1{y>−x̄ϑ} f(x, y − 1) + 1{y≤−x̄ϑ} f(x, y)
]

+
ξ

2

[
Ŝϑ(q1(x, y), q2(x, y))− Ŝϑ(x, y)

]
− βx2

)
The same argument establishing (52) implies that

sup
(x,y)∈Aϑ

∣∣∣V̂ϑ(x, y)− Vϑ(x, y)
∣∣∣ = O

(
ϑ1/3

)
(53)

Subtracting Vϑ = B0 (Vϑ) from V̂ϑ = Bξ(V̂ϑ) gives, ∀(x, y) ∈ [−x̄ϑ − 1, x̄ϑ + 1]2\{x̄ϑ, x̄ϑ},

1{x>−x̄ϑ}∆1(x− 1, y)− 1{x<x̄ϑ}∆1(x, y)− 1{y<x̄ϑ}∆2(x, y) + 1{y<−x̄ϑ}∆2(x, y − 1)

=
1

ϑ

(
2r
[
V̂ϑ(x, y)− Vϑ(x, y)

]
− ξ

[
Ŝϑ
(
x+ q̂(x, y), y − q̂(x, y)

)
− Ŝϑ(x, y)

]) (54)

Some simple algebra also implies, for every (x, y) ∈ [−x̄ϑ − 1, x̄ϑ]2,

∆1(x, y) + ∆2(x+ 1, y)−∆1(x, y + 1)−∆2(x, y) = 0. (55)

Equations (54) and (55) form a fully determined linear system on ∆1(x, y) for (x, y) ∈ A1,ϑ :=

[−x̄ϑ−1, x̄ϑ]×[−x̄ϑ−1, x̄ϑ+1], and ∆2(x, y) for (x, y) ∈ A2,ϑ := [−x̄ϑ−1, x̄ϑ+1]×[−x̄ϑ−1, x̄ϑ].

One can write this linear system into a matrix formMϑzϑ = wϑ, where zϑ denotes the vector

of unknowns. Equations (52) and (53) imply that ||wϑ||∞ = O
(
ϑ−2/3

)
. To establish that

||∆ϑ||∞ = O
(
ϑ−2/3

)
, it is sufficient to show that

∥∥M−1
ϑ

∥∥
∞ ≤ c−1 for some constant c > 0,

which is equivalent to ||Mϑz||∞ ≥ c for every vector z such that ||z||∞ = 1. Since Mϑz is

linear in every component of z, then maximizing ||Mϑz||∞ implies that every component of z

is either 1 or -1. Since all entries ofMϑ are integers, then the vectorMϑz is also integer-valued

64



if z is. Since Mϑ is invertible, thus ||Mϑz||∞ ≥ 1 for every vector z such that ||z||∞ = 1.

Hence, ||zϑ||∞ = O
(
ϑ−2/3

)
. Furthermore, I will show that ||zϑ||∞ = O (ϑ−1). Subtracting

(54) for (x, y) and (x+1, y) gives, for every (x, y) ∈ [−x̄ϑ−1, x̄ϑ]× [−x̄ϑ−1, x̄ϑ+1]\{x̄ϑ, x̄ϑ},

1{x>−x̄ϑ}∆1(x− 1, y)− 1{x>−x̄ϑ−1}∆1(x, y)− 1{x<x̄ϑ}∆1(x, y) + 1{x<x̄ϑ−1}∆1(x+ 1, y)

− 1{y<x̄ϑ}[∆2(x, y)−∆2(x+ 1, y)] + 1{y<−x̄ϑ}[∆2(x, y − 1)−∆2(x+ 1, y − 1)]

=
1

ϑ

[
2r∆1(x, y)− ξ

( [
Ŝϑ(q1(x, y), q2(x, y))− Ŝϑ(q1(x+ 1, y), q2(x+ 1, y))

]
−
[
Ŝϑ(x, y)− Ŝϑ(x+ 1, y)

] )]
Since ∆2(x, y)−∆2(x+ 1, y) = ∆1(x, y)−∆1(x, y+ 1) and ∆2(x, y− 1)−∆2(x+ 1, y− 1) =

∆1(x, y− 1)−∆1(x, y), the left hand side of the equation above can be written as a function

of only the ∆1 terms. Therefore, the linear system above, fully determined, can be written

into a matrix form M̃ϑ z1,ϑ = w1,ϑ, where z1,ϑ denotes the vector ∆1(x, y), for (x, y) ∈ A1,ϑ.

To bound ||z1,ϑ||∞, it is sufficient to bound ||w1,ϑ||∞. Since qk(x, y) (k = 1, 2) is weakly

increasing in (x, y), and q1(x, y) + q2(x, y) = x+ y, then 0 ≤ qk(x+ 1, y) ≤ 1. Thus,

sup
(x,y)∈A1,ϑ

∣∣∣Ŝϑ(q1(x, y), q2(x, y))− Ŝϑ(q1(x+ 1, y), q2(x+ 1, y))
∣∣∣ = O(1).

Therefore, ||w1,ϑ||∞ = O(ϑ−1). Since M̃ϑ is an invertible matrix with integer entries, one has

||z1,ϑ||∞ = O(ϑ−1). Similarly, ||z2,ϑ||∞ = O(ϑ−1), where z2,ϑ denotes the vector of ∆2(x, y),

for (x, y) ∈ A2,ϑ. This establishes (51), completing Step 1.

Step 2: I show that there exists a unique function V̂ϑ solving (49) subject to (50). It follows

from (47) and (51) that if ϑ is sufficiently large, then for every (x, y) ∈ [−x̄ϑ, x̄ϑ]2,

1{x<x̄ϑ}

(
Ŝ(x+ 1, y) + P ∗(2)

)
+ 1{x≥x̄ϑ} Ŝ(x, y) =

(
Ŝ(x+ 1, y) + P ∗(2)

)
∨ Ŝ(x, y),

1{x>−x̄ϑ}

(
Ŝ(x− 1, y) + P ∗(2)

)
+ 1{x≤−x̄ϑ} Ŝ(x, y) =

(
Ŝ(x− 1, y) + P ∗(2)

)
∨ Ŝ(x, y),

1{y<x̄ϑ}

(
Ŝ(x, y + 1) + P ∗(2)

)
+ 1{y≥x̄ϑ} Ŝ(x, y) =

(
Ŝ(x, y + 1) + P ∗(2)

)
∨ Ŝ(x, y),

1{y>−x̄ϑ}

(
Ŝ(x, y − 1) + P ∗(2)

)
+ 1{y≤−x̄ϑ} Ŝ(x, y) =

(
Ŝ(x− 1, y) + P ∗(2)

)
∨ Ŝ(x, y).
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Hence, the function Ŝϑ is the unique solution to the fixed point problem f = Ĥξ(f), where

Ĥξ(f)(x, y)

=
1

r + 2ϑ+ ξ

(
ϑ

2

[ (
f(x+ 1, y) + P ∗(2)

)
∨ f(x, y) +

(
f(x− 1, y) + P ∗(2)

)
∨ f(x, y)

]
+
ϑ

2

[ (
f(x, y + 1) + P ∗(2)

)
∨ f(x, y) +

(
f(x, y − 1) + P ∗(2)

)
∨ f(x, y)

]
+ ξ f(q1(x, y), q2(x, y))− β

(
x2 + y2

))
The operator Ĥϑ is contracting and preserves symmetry and concavity, function Ŝϑ(·, ·) is

thus strictly concave and symmetric. Maximizing Ŝϑ(q1, q2) subject to q1 + q2 = x+ y gives

q1(x, y) =

⌊
x+ y

2

⌋
, q2(x, y) =

⌈
x+ y

2

⌉
.

Hence, the function V̂ is uniquely determined by the linear system V̂ϑ = Bξ(V̂ϑ). Conversely,

if one lets Ŝϑ be the unique solution to the fixed point problem Ĥξ(f) = f , and lets V̂ϑ be

determined by V̂ϑ = Bξ(V̂ϑ), then V̂ϑ solves the system (49) subject to (50).

Step 3: I show that the strategy of a dealer j1 is optimal against σ̂∗2. If ϑ is sufficiently large,

V̂ϑ(x̄ϑ − 1, y)− V̂ϑ(x̄ϑ, y) < P ∗(2), V̂ϑ(x̄ϑ)− V̂ϑ(x̄ϑ + 1, y) > P ∗(2).

for every y ∈ [−x̄ϑ, x̄ϑ] (this follows from (47) and (51)). The same argument as in Step 2

implies that the function V̂ϑ(x, y) is concave in x ∈ R for any fixed y ∈ [−x̄ϑ, x̄ϑ]. Hence,

V̂ϑ(x, y)− V̂ϑ(x+ 1, y)

< P ∗(2) if x < x̄ϑ,

> P ∗(2) if x ≤ x̄ϑ.

for every y ∈ [−x̄ϑ, x̄ϑ]. That is, p̂m is optimal for j1 if j1 were restricted to quotes ±P ∗(2)

and ±∞. It remains to show that j1 has no incentive to quote other prices. I let

ϑ0 = 2λ(n−m)θm/m, ϑ−1 = 2λ(n−m−1)θmx/m, Dϑ = [−x̄ϑ, x̄ϑ]2 , D0 = [−x̄ϑ0 , x̄ϑ0 ]
2 .
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To show that j1 has no incentive to gouge is equivalent to show that

π − P ∗(2) < min
(x,y)∈D0

[
V̂ϑ0(x, y)− V̂ϑ−1(x, y)

]
. (56)

I formally differentiate (49) with respect to ϑ to obtain ∂
∂ϑ
V̂ϑ = T̂ϑ

(
∂
∂ϑ
V̂ϑ

)
, where

T̂ϑ(f)(x, y) =
1

r + 2ϑ+ ξ

(
ϑ

2

[
1{x<x̄ϑ}f(x+ 1, y) + 1{x≥x̄ϑ} f(x, y)+

1{x>−x̄ϑ}f(x− 1, y) + 1{x≤−x̄ϑ} f(x, y)
]

+
ϑ

2

[
1{y<x̄ϑ} f(x, y + 1) + 1{y≥x̄ϑ} f(x, y)+

1{y>−x̄ϑ} f(x, y − 1) + 1{y≤−x̄ϑ} f(x, y)
]

+ ξ f

(⌊
x+ y

2

⌋
,

⌈
x+ y

2

⌉)
+ ϑψ(x) + δ(x, y)

)
,

δ(x, y) =
1

2

[
1{x>−x̄ϑ}∆1(x− 1, y)− 1{x<x̄ϑ}∆1(x, y)− 1{y<x̄ϑ}∆2(x, y) + 1{y<−x̄ϑ}∆2(x, y − 1)

]
,

and ψ is given by (13). It follows from (51), (16) and x̄ = O
(
ϑ1/3

)
that as ϑ→∞,

sup
(x,y)∈Dϑ

|δ(x, y)| = O(1/ϑ),

sup
(x,y)∈Dϑ

∣∣∣∣ ∂∂ϑ Vϑ
(⌊

x+ y

2

⌋)
− ∂

∂ϑ
Vϑ(x)

∣∣∣∣ = O
(
ϑ−2/3

)
,

=⇒ sup
(x,y)∈Dϑ

∣∣∣∣T̂ϑ( ∂

∂ϑ
Vϑ

)
(x, y)− ∂

∂ϑ
Vϑ(x)

∣∣∣∣ = O
(
ϑ−5/3

)
Since the operator T̂ϑ is contracting with a contraction factor (2ϑ+ ξ)/(r+ 2ϑ+ ξ), one has

sup
(x,y)∈Dϑ

∣∣∣∣ ∂∂ϑ V̂ϑ(x, y)− ∂

∂ϑ
Vϑ(x)

∣∣∣∣ = O
(
ϑ−2/3

)
.

then min
(x,y)∈D0

[
V̂ϑ0(x, y)− V̂ϑ−1(x, y)

]
= min

(x,y)∈D0

[∫ ϑ0

ϑ−1

∂

∂ϑ
V̂ϑ(x, y)dϑ

]
= min
|x|≤x̄ϑ0

[∫ ϑ0

ϑ−1

∂

∂ϑ
Vϑ(x)dϑ

]
+O

(
ϑ−2/3

)
= min
|x|≤x̄ϑ0

[
Vϑ0(x)− Vϑ−1(x)

]
+O

(
ϑ−2/3

)
.

67



Since it is assumed that m∗ ≥ 2, one has

π − P ∗(2) < min
|x|≤x̄ϑ0

[
Vϑ0(x)− Vϑ−1(x)

]
,

When ϑ0 is sufficiently large, the desired inequality (56) thus follows.

Hence, the quoting strategy p̂∗m is optimal for a given dealer j1 if j1 knows the inventory

of the other dealer j2 at all times. When employing p̂∗m, j1 does not use this extra inventory

information of j2. For j1, p̂∗m is thus optimal against σ̂∗2 given its available information.

I next show that the strategy of a buyside firm i is ε-optimal. The intuition is as follows:

Under the strategy profile σ̂∗m, i receives a trading gain of either π−P ∗(m) or 0 each time it

requests a quote from a dealer counterparty. This payoff is 0 when the the quoting dealer’s

inventory is on the boundary ±x̄ϑ, and the desired trade direction of the RFQ would further

expand the this inventory. In this case, the dealer rejects the RFQ by posting either an offer

price ∞ or a bid price −∞. When ϑ is large, the probability of this event is arbitrarily

close to 0. Therefore, the continuation payoff of i is arbitrarily close to Φm,P ∗(m). Similarly,

his continuation payoff is arbitrarily close to Φd,P ∗(m) if i has d dealer accounts. Therefore,

maintaining m dealer accounts is an ε-optimal strategy for the buyside firm.

Formally, I first consider the benchmark case in which the buyside firm’s RFQ is never

rejected. Then the maximum attainable continuation utility of i is Φ∗m,P ∗(m). I let G(G(m), i)

be the set of networks in which all agents other than i are connected to each other as in G(m),

and Dϑ := [−x̄ϑ, x̄ϑ]m be the set of all possible dealer inventories in the actual trading game.

To distinguish from the symmetric-agent model, I let X̂jt denote the inventory of agent j at

time t. Since the strategy profile σ̂∗(m) is stationary, the information available to i at time t

can be equivalently represented as an inference distribution of the current state (Gt, X̂t). Any

such inference distribution – obtained through the Bayes rule whenever possible – assigns

probability 1 to the set G(G(m), i) of networks and to the set Dϑ of dealer inventories. I let

Ht include the support of all such inference distributions. That is,

Ht = {Gt ∈ G(G(m), i), X̂jt ∈ Dϑ}
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For every game history ht ∈ Ht up to but excluding time t, I let Φσ̂∗(m)(ht) be the continuation

utility of i after ht has been realized at time t. In other words, Φσ̂∗(m)(ht) is the continuation

utility of i if i were able to observe the complete game history ht. It suffices to show that

Φσ̂∗(m)(ht) is ε-close to Φ∗m,P ∗(m) for every t and ht ∈ Ht.

The vector (X̂Jt)t≥0 of all dealer inventories is a Markov process with state space Dϑ. I

let ∂Dϑ denote the boundary of Dϑ, τk be the k’th time that either (i) a dealer receives a

RFQ, or (ii) two dealers meet in the interdealer market. Then (τk)k≥1 are the event times of

a Poisson process with intensity χ = 2(n−m)λθm + m(m− 1)ξ/2. I let Zk ∈ {0, 1} be the

binary variable indicating whether buyside firm i submits a RFQ at τk, and jk be the dealer

who receives this RFQ. I let xJt be the vector of current dealer inventories under ht, then

Φ∗m,P ∗(m) − Φσ̂∗(m)(ht) ≤ E

(∑
τk≥t

e−r(τk−t)[π − P ∗(m)]1 {Zk = 1} 1
{∣∣∣X̂jkτk

∣∣∣ = x̄ϑ

})

≤ [π − P ∗(m)]
2λθm
χ

∑
k≥1

E
(
e−rτ̃k

)
P
(
Ŷk ∈ ∂Dϑ | Ŷ0 = xJt

)
= [π − P ∗(m)]

2λθm
χ

∑
k≥1

(
χ

χ+ r

)k
P
(
Ŷk ∈ ∂Dϑ | Ŷ0 = xJt

)
,

where (Ŷk)k≥0 is the embedded discrete-time Markov Chain of (X̂Js)s≥t. The second inequal-

ity above uses the independence between (τk)k≥1 and (X̂Jτk)k≥1, between Zk and (τk, X̂jkτk)k≥1,

and P(Zk = 1) = 2λθm/χ. Lemmas 12 and 13 imply that for every ε, there exists n0 and

k(n) = O(n2/3) such that for every n > n0, k > k(n) and xJt ∈ Dϑ,

P(Yk ∈ ∂Dϑ |Y0 = xJt) < ε.

Hence, there exists some n1 such that for every n > n1, t and ht ∈ Ht,

Φ∗m,P ∗(m) − Φσ̂∗(m)(ht) < 2λθm[π − P ∗(m)]

(
k(n)

χ
+
ε

r

)
< 4λθm[π − P ∗(m)]

ε

r
.

Lemma 12. I let µ denote the stationary distribution of X̂Jt, and µ̂ that of X̂Jt. Then

µ̂(∂Dϑ) ≤ µ(∂Dϑ)
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Proof. I show that if X ∼ µ and X̂ ∼ µ̂, then

max
j∈J
|Xj|

d

≥ max
j∈J
|X̂j|, (57)

where
d

≥ denotes stochastic dominance. It would then follow that

µ(∂Dϑ) = P

(
max
j∈J
|X̂j| = x̄ϑ

)
≥ P

(
max
j∈J
|Xj| = x̄ϑ

)
= µ̂(∂Dϑ)

I let (Yk) be the embedded discrete-time Markov Chain of (XJt), and (yk, ŷk, yk+1, ŷk+1) be

integers within [0, x̄ϑ] such that yk ≥ ŷk and yk+1 ≥ ŷk+1. Since interdealer trading can only

reduce the maximum dealer inventory, one has

P

(
max
j∈J
|Yj(k+1)| ≥ yk+1

∣∣∣ max
j∈J
|Yjk| = yk

)
≥ P

(
max
j∈J
|Ŷj(k+1)| ≥ ŷk+1

∣∣∣ max
j∈J
|Ŷjk| = ŷk

)
.

Hence, the desired stochastic dominance (57) follows from induction.

Lemma 13. As n→∞, the mixing time of (X̂Jt)t≥0 is asymptotically bounded by n−1/3.

Proof. I use the coupling technique.18 I consider a lazy version of Ŷk, which remains in

its current position with probability 1/2 and otherwise moves with the same transition

probabilities as Ŷk. I construct a coupling (Yk, Zk) of two lazy chains on Dϑ, starting from

Y0 = y and Z0 = z respectively. At each move, either two randomly chosen dealers j1, j2

trade in the interdealer market with probability ξ/χ, or one dealer j receives a RFQ. In the

first case, a fair coin is tossed to determine which of the two chains (Yk) or (Zk) moves. In

the second case, if Yjk 6= Zjk, then a fair coin is tossed to determine whether (Yjk) or (Zjk)

receives the RFQ. If Yjk = Zjk, then a fair coin is tossed to determine whether both (Yjk)

and (Zjk) receive the RFQ, or none does. Once the two chains Yjk and Zjk collide, thereafter

they make identical moves. I let Lk = Yk − Zk and µ̂k,y be the distribution of Yk. Then

max
y∈Dϑ

||µ̂k,y − µ̂||TV ≤ max
y,z∈Dϑ

Py,z(Lk 6= 0). (58)

18Chapter 5 of Levin, Peres, and Wilmer (2009) provides relevant background for the coupling technique.
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However, the process (Lk) is not Markovian. I construct a conditional Markov chain (L̄k)

such that |L̄jk| ≥ |Ljk| almost surely for every j ∈ J and k ≥ 0. The increment L̄k+1 − L̄k
is equal to Lk+1 − Lk unless at the k’th move, (i) either Yjk or Zjk (but not both) receives

a RFQ, (ii) if Yjk receives the RFQ, then Yjk = ±x̄ϑ and the RFQ would further expand

Yjk. Likewise if Zjk receives the RFQ. If these two conditions hold, then Lk+1 − Lk = 0 by

definition. I let L̄j(k+1) − L̄jk = sgnYjk − sgnZjk. In other words, when Yjk or Zjk receives

a RFQ that would make the inventory move beyond the boundary ±x̄ϑ, the increment

L̄j(k+1)−L̄jk is determined as if the inventory did move beyond the boundary. One can verify

that |L̄jk| ≥ |Ljk| almost surely for every (j, k). I let Eh be the event that no interdealer

trade occurs up to period h. Conditional on the event Eh, each (L̄jk) for some j ∈ J is a

lazy random walk in [−2x̄ϑ, 2x̄ϑ] up to period h unless being absorbed by 0. If L̄jk 6= 0, it

remains at its current position with probability (m− 1)/m and moves as a bounded random

walk that loops at the end points ±2x̄ϑ with probability 1/m. Therefore,

P
(
L̄k = 0

)
> P

(
L̄k = 0 |Ek

)
P(Ek) = Pm

(
L̄jk = 0 |Ek

)(2(n−m)λθm
χ

)k
(59)

To calculate P
(
L̄k = 0 |Ek

)
, I consider the lazy random walk (L̃k) that starts from the same

state yj − zj as (L̄jk) and is not absorbed by 0. Then

P
(
L̄jk = 0 |Ek

)
= P

(
L̃k = 0

∣∣∣ L̃0 = yj − zj
)
.

I let τ = min{k : L̃k = 0} and f` = E
(
τ
∣∣∣ L̃0 = `

)
, then f0 = 0 and

f` =
m− 1

m
(1 + f`) +

1

2m
(1 + f`−1) +

1

2m
(1 + f`+1), 0 < |`| < 2x̄ϑ,

f2x̄ϑ =
m− 1

m
(1 + f2x̄ϑ) +

1

2m
(1 + f2x̄ϑ−1) +

1

2m
(1 + f2x̄ϑ).

One can solve the system above to obtain f` = m|`| (4x̄ϑ− |`| − 1) ≤ 2mx̄ϑ(2x̄ϑ− 1). Hence,

= P
(
τ > k

∣∣ L̃0 = yj − zj
)
<

E
(
τ
∣∣ L̃0 = yj − zj

)
k

≤ 2mx̄ϑ(2x̄ϑ − 1)

k
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It then follows from (58) and (59) that

max
y∈Dϑ

||µ̂k,y − µ̂||TV ≤ P
(
L̄k 6= 0

)
< 1−

(
1− 2mx̄ϑ(2x̄ϑ − 1)

k

)m(
2(n−m)λθm

χ

)k
The right hand side is arbitrarily close to 0 if k is appropriately chosen on the order of

O(n2/3). Hence, the mixing time of (X̂Jt) is asymptotically bounded by n−1/3.

F.2 Proof of Proposition 10

I define the long-run averages of total trade volume and volume in the interdealer market by

Vol = lim
T→∞

1

T

∑
i,j∈N

Voli,j(T ), VolID = lim
T→∞

1

T

∑
j,j′∈J

Volj,j′(T ),

where Voli,j(T ) is the total volume traded between agents i and j in the time interval [0, T ].

The Ergodic Theorem implies that

VolID = m(m− 1)ξ E(|q̂(Xj, Xj′)|) , where |q̂(Xj, Xj′)| =
∣∣∣∣Xj −Xj′

2

∣∣∣∣ .
The expectation E is taken with respect to the stationary distribution of XJ . As nλ→∞,

E(|q̂(Xj, Xj′)|) = Θ
(

(nλ)
1
3

)
, hence, VolID = Θ

(
(nλ)

1
3

)
.

Similarly, Vol = Θ(nλ) as n→∞. Therefore, VolID/Vol = Θ
(
(nλ)−2/3

)
.

F.3 Proof of Proposition 11

It follows from (48) and (53) that V̂n−m,m,P ∗(m)(0) ∼ Vn−m,m,P ∗(m)(0) as n→∞. Hence, for

every m ≤ m, Ûm ∼ Um as nλ→∞. Proposition 11 thus follows.
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