LAWRENCE S. Moss The Soundness of
Internalized Polarity
Marking

Abstract. This paper provides a foundation for the polarity marking technique intro-
duced by David Dowty [3] in connection with monotonicity reasoning in natural language
and in linguistic analyses of negative polarity items based on categorial grammar. Dowty’s
work is an alternative to the better-known algorithmic approach first proposed by Johan
van Benthem [11], and elaborated by Victor Sdnchez Valencia [10]. Dowty’s system in-
ternalized the monotonicity /polarity markings by generating strings using a categorial
grammar whose categories already contain the markings that the earlier system would
obtain by separate steps working on an already-derived string. Despite the linguistic ad-
vantages of the internalized system, no soundness proof has yet been given for it. This
paper offers an account. The leading mathematical idea is to interpret categorial types
as preorders (in order to talk about monotonicity in the first place), and then to add a
primitive operation to the type hierarchy of taking the opposite of a preorder (in order to
capture monotone decreasing functions). At the same time, the use of internalized cate-
gories also raises issues. Although these will not be addressed in full, the paper points out
possible approaches to them.

1. Introduction

One enterprise at the border of logic and linguistics is the crafting of logical
systems which capture aspects of inference in natural language. The ultimate
goal is a logical system which is strong enough to represent the most common
inferential phenomena in language and yet is weak enough to be decidable.
Another goal would be to use representations which are as close as possible
to the surface forms. This second goal is likely to be unobtainable, and when
one backs off to consider structured representations, it is natural to turn to
those suggested by linguistic formalisms of one form or another.

The particular strand of this enterprise that concerns us in this paper is
the natural logic program initiated by Johan van Benthem [11, 12], and elab-
orated in Victor Sdnchez Valencia [10]. As mentioned in van Benthem [13],
the “proposed ingredients” of a logical system to satisfy the goals would
consist of several “modules”:

Presented by Name of Editor; Received December 1, 2005

Studia Logica (2006) 82: 1-22 © Springer 2006

2 Lawrence S. Moss

(a) Monotonicity Reasoning, i.e., Predicate Replacement,
(b) Conservativity, i.e., Predicate Restriction, and also

(c) Algebraic Laws for inferential features of specific lexical items.

We are only concerned with (a) in this paper, and we are mainly concerned
with an alternative to van Benthem’s seminal proposal.

There are several reasons why monotonicity is worthy of study on its
own: it is arguably tied up with linguistic phenomena, it is a pervasive phe-
nomenon in actual reasoning, and finds its way into computational systems
for linguistic processing (cf. Nairn, Condoravdi and Karttunen [8] and Mac-
Cartney and Manning [6]). The leading idea in van Benthem’s work is to
develop a formal approach to monotonicity on top of categorial grammar
(CG). This makes sense because the semantics of CG is given in terms of
functions, and monotonicity in the semantic sense is all about functions.
The success story of the natural logic program is given by the monotonicity
calculus, a way of determining the polarity of words in a given sentence.
Before turning to it, we should explain the difference between monotonicity
and polarity. We follow the usage of Bernardi [1], Section 4.1:

The differences between monotonicity and polarity could be summa-
rized in a few words by saying that monotonicity is a property of
functions On the other hand, polarity is a static syntactic no-
tion which can be computed for all positions in a given formula. This
connection between the semantic notion of monotonicity and the syn-
tactic one of polarity is what one needs to reach a proof theoretical
account of natural reasoning and build a natural logic.

This point might be clarified with an example of the monotonicity cal-
culus. Consider the sentence No dog chased every cat. The sentence is to
be derived in some categorial grammar, and to be brief we suppress all the
details on this except to say that a derivation would look like the first two
trees in Figure 1, except without the + and — marks. Given the derivation,
one would first add some notations to indicate that the interpretation of
every, as a function from noun meanings, is monotone decreasing but results
in a function that is monotone increasing. Also, the interpretation of no, as
a function from noun meanings, is monotone decreasing and again results in
a function that is monotone decreasing.

In the topmost derivation, the tree is decorated by monotonicity mark-
ings which were propagated from the information about every and no accord-
ing to a rule which need not concern us. One then turns the Monotonicity

The Soundness of Internalized Polarity Marking

-1oded sty ut pezdTeue se pue [¢] Lymoq £q pesodoid se swetds Sursrewr A)rejod POZITRUISIUT ST} SMOYS TUOIJRATIIP
[euy o], '] UOI}09G Ul PassnIsIp oIk £oY) {[g] ‘IT] sn[Noed A}10TI0JOUOUT S, WIS URA 9)RIIS[[T SUOTIRALIOD OM) ISI O], ‘T 2InSI

901], POZI[RUIOIU] AN OYT,

7 (((43e2) _A19n9) taseyo)(_8op) ou
ad— Q.Emuv |>Lw>mv|mem;u (7 ad—) : A|m03+o:
(73— ‘ud—) : (,382) _KIana (ud—*(3—‘ud—)) : teseyp ud—: _Sop ((7‘ud—)‘ud—): jou
ad : 3ed ((2— ‘ud—) ‘ud) : _Ksons

UOIRUTULION(] AJLIe[oq

7: 1 (((3e2)K13n3)3seyd)(Sop)ou
ad @ _((182)AK19ns)sseyd (7°ud) : +Aono:
(2°4d) : _(3e2)Kians (ad*(p'ad)) = ,oseyds ud: _Bop ((3‘ud) ud): Lou
ad : | 3ed ((2°4d) ‘ud) : _K1ons

SU{IRI] A}IDIUOJOUOTA

7: 4 (((3e2)K19n3)3seyd)(Sop)ou
ad 2 _((1e2)K19ns)sseyd (2°ud) : .lmoEo:

(24d) = | (3€2)K13n (ad*(p'ad)) = joseys ud: _Bop ((3‘ud) ud): jou

ad : _3ed ((3°ud) ‘ud) | Kisns

4 Lawrence S. Moss

Marking tree into the Polarity Determination tree, the second tree on the
page. The rule is: for each node, count the number of — signs from it to
the root of the tree (at the bottom). Then put a + on the node if the count
is an even number, and — if the count is odd. This changes the signs for
every, cat, and every cat. The resulting signs are the polarities. For example,
there is a + marking on cat. This indicates that this occurrence of cat might
be replaced by a word with a “larger” value. For example, replacing cat
with animal gives a valid inference: No dog chased every cat implies No dog
chased every animal *. On the other hand, dog is marked —, corresponding
to the fact that replacement inferences with it go in the opposite direction.
So replacing dog with animal would not give a validity; instead, replace with
the “smaller” phrase old dog.

As Dowty [3] mentions, “The goal [in his paper] is to ‘collapse’ the inde-
pendent steps of Monotonicity Marking and Polarity Determination into the
syntactic derivation itself, so that words and constituents are generated with
the markings already in place that they would receive in Sanchez’ polarity
” His motivation is mainly linguistic rather than logical: “the
format of Sanchez’ system ... is no doubt highly appropriate for the logical
studies he developed it for, it is unsuitable for the linguistics applications
I am interested in.” For this reason, he gave an “alternative formulation.”
This system is “almost certainly equivalent to Sanchez’,” but he lacked a
proof. Bernardi [1] also notes that while her system and Sénchez’ “are
proven to be sound, no analogous result is known for” the system proposed
by Dowty. However her presentation makes it clear that there are advan-
tages to the internalization of polarity markers. Others who use a system
inspired by [3] include Christodoulopoulos [2].

The purpose of this short paper is to offer a soundness proof for inter-
nalized monotonicity markings, and to discuss related issues. The first of
these issues has to do with a choice in the overall categorial architecture. We
wish to take seriously the idea that syntactic categories might be interpreted
in ordered settings. Given two types ¢ and 7, we want to consider two re-
sulting types: the upward monotone functions and the downward monotone
functions. The first alternative is to generate types as follows: begin with a
set Ty of basic types, and then build the smallest set 77 O Ty closed in the
following way:

summaries.

If 0,7 € T1, then also (o,7)" € T; and (0,7)” € T7.

ncidentally, we are taking this sentence and others like it in the subject wide-scope
reading: there is no dog with the property that it chases every cat.

The Soundness of Internalized Polarity Marking)

This would seem to be the most straightforward way to proceed, and it actu-
ally seems to be close to the way that is presented in the literature?. Indeed,
we worked out the theory this way before deciding to rewrite this paper
based on a second alternative. This second way is based on the observation
that a downward monotone function from a preorder P to a preorder @) is
the same thing as an upward monotone function from P to the opposite or-
der —(@Q. This order —(Q has the same points as @), but the order is “upside
down.” The suggestion is that we generate types a little differently. We take
smallest set 77 D Ty closed in the following way:

If 0,7 € T1, then also (o,7) € T3.
If 0 € T4, then also —o € T7.

We shall call this the fully internalized scheme. This includes copies of the
types done the first way, by viewing (o, 7)" as (¢,7) and (0,7)” as (o, —7).
It is a strictly bigger set, since —o for the basic types enters into the fully
internalized hierarchy but not the lesser one.

2. Background: Preorders and their Opposites

For the work in this paper we need to use preorders. Our goal in this section
is to state the facts which are needed in as compact a manner as possible,
and also to mention a few examples that will be used in the sequel.

A preorder is a pair P = (P, <) consisting of a set P together with a
relation < which is reflezive and transitive. This means that the following
hold:

1. p<pforallpe P.
2. If p<gand qg<r, then p <r.

Frequently one assumes that the order has additional properties: it may
be also anti-symmetric, or a lattice order, etc. For most of what we are
doing, no extra assumptions are needed. Indeed, the specific results do
not use the preorder properties very much, and some of the work in this
section goes through for absolutely arbitrary relations. However, since the
intended application is to a setting in which the relation represents some
kind of inference, it makes sense to state the results for the weakest class

2For example, Dowty [3] states his category formation rules in this way, adding direc-
tional versions. But shortly thereafter he mentions that lexical items will “be entered in
two categories.” Adding downward-marked versions of the base categories is tantamount
to what we call the fully internalized scheme.

6 Lawrence S. Moss

of mathematical objects that has something that looks like “inference,” and
this seems to be preorders.

EXAMPLE 2.1. For any set X, we have a preorder X = (X, <), where x <y
iff x = y. This is called the flat preorder on X. More interestingly, for any
set X we have a preorder P(X) whose set part is the set of subsets of X,
and where p < ¢ iff p is a subset of q. Another preorder is 2 = {F, T} with
F<T.

The natural class of maps between preorders P and @) is the set of
monotone functions: the functions f : P — @ with the property that if
p < qin P, then f(p) < f(q) in Q. When we write f : P — Q in this paper,
we mean that f is monotone. We write [P, Q)] for the set of monotone
functions from P to Q. [P, Q)] is itself a preorder, with the pointwise order:

f<gin[P,Q] iff forallpeP, f(p) <g(p) in Q

Let IP and @Q be preorders. The product preorder IP x QQ is the preorder
whose universe is the cartesian product P x @, and with (p,q) < (p/,¢) iff
p<p inP and ¢ < ¢ in Q.

Preorders IP and Q) are isomorphic if there is a function f : P — () which
is bijective (one-to-one and maps P onto @) and also has the property that
p < piff f(p) < f(p'). We write P = Q. We also identify isomorphic
preorders, and so we even write P = QQ to make this point.

PROPOSITION 2.2. For all preorders P, Q, and R, and all sets X :

1. For each p € P, the function app, : [P, Q] — Q given by app,(f) = f(p)
is an element of [P, Q], Q).

2. [P x Q,R] [P, [Q,R]).
3. [X,2] = P(X).

PRrROOF. For part (1), let f < g in [P, Q]. Then app,(f) = f(p) < g(p) =
appp(g)-

In the second part, let f : [P x Q,R] — [P,[Q,R]] be f(a)(p)(q) =
a(p, q). It is routine to check that f is an isomorphism.

In part (3), the isomorphism is ¢ : [X, 2] — P(X) given by ¢o(f) = {p €
P:f(p)=T} u

The Soundness of Internalized Polarity Marking 7

Antitone functions and opposites of preorders We are also going
to be interested in antitone functions from a preorder P to a preorder Q.
These are the functions f : P —) with the property that if p < ¢ in P,
then f(q) < f(p) in Q. We can express things in a more elegant way using
the concept of the opposite preorder —IP of a given preorder IP. This is the
preorder with the same set part, but with the opposite order. Formally,

-P = P

p<gqin —P iff qg<pinP
ExaMPLE 2.3. One example is the negation operation on truth values: — :
2 — —2. For another, let P be any preorder, and let Q be P(P), the power
set preorder on the underlying set P of P. Let T: P — —(be defined by
T(p) ={p € P:p <p inP}. Since p < p' in P implies T(p) 21(p’), we
indeed see that T: P — —Q.

We collect the most important facts on this operation below.

PROPOSITION 2.4. For all preorders P,), and R, and all sets X :

1. —(-P)="P.

2. [P,—Q] = —[-P,).

5. [-P,~@Q - - [P, @)

4. If f:P->Qandg: Q >R, theng-f: P — R.

5. If f:P—-—-Qandg: Q — —R, theng- f: P — R.
6. —(PxQ)=-Px—-Q.

7. X~ -X.

8. —[IX,P]| =X, -P].

PROOF. For part (1), recall first that P and —IP have the same underlying
set. It follows that P and —(—P) also have this the same underlying set.
Concerning the order: <y inPiff y <z in —P iff x <y in —(—P).

For (2), suppose that f : P — —@Q. Then f is a set function from P to
Q. To see that f is a monotone function from —IP to Q), let x < y in —IP.
Then y < z in P. So f(y) < f(x) in —Q. And thus f(z) < f(y) in Q,
as desired. This verifies that as sets, [P, —Q] = [P, Q]. To show that as
preorders [P, —Q] = —[-P, Q], we must check that if f < g in the order on
[P, —@®)], then g < f in the order on [-PP, Q)] as well. For this, let p € —P;
sop € P. Then f(p) < g(p) in —Q. Thus ¢g(p) < f(p) in Q. This for all
p € P shows that ¢ < f in [-P, Q).

8 Lawrence S. Moss

Part (3) follows from parts (1) and (2).

For part (4), assume z < y. Then f(z) < f(y), and so g(f(x)) < g(f(v)).

For part (5), note that by part (2), g : —Q — R. So by part (4),
g-f:P—R.

Continuing with part (6), note first that —(P x Q) and —P x —QQ have
the same elements. To check that the orders are appropriately related, note
that the following are equivalent: (p,q) < (p',¢') in —(PxQ); (¢, ¢") < (p,q)
in(PxQ);p <pinPandq¢ <¢ginQ;p<p in —P and ¢ < ¢ in —-Q;
(p.q) < (0,¢) in =P x —Q.

For part (7), we verify that the identity map on P is an isomorphism
from P to —IP. If p < ¢ in P, then clearly ¢ < p in —P. And if ¢ < p in
—IP, then since P is flat, p = ¢. Thus p < ¢ in P.

The last part comes from parts (3) and (8). []

EXAMPLE 2.5. Part (3) in Proposition 2.4 is illustrated by considering [2, 2]
and [—2, —2]. Let ¢ be the constant function T, let d be the constant function
F, and let i be the identity. Then [2,2]isd < i < ¢, and [-2, —-2]isc < i < d.

EXAMPLE 2.6. The material conditional — gives a monotone function from
-2 x 2 to 2. Since [—2 x 2,2] = [-2,[2, 2]], this gives

if € [-2,]2,2]].

This same function belongs to the opposite preorder, and so we could just
as well write

ife —[-2,12,2]] = [2,—-[2,2] = [2,]-2,-2].

ExAMPLE 2.7. Let X be any set. We use letters like p and ¢ to denote
elements of [X, 2]. Please keep in mind that the set of (monotone) functions
from X to 2 is in one-to-one correspondence with the set of subsets of X
(see Part (3) of Proposition 2.2). Define

every € [_[Xv 2]7 [[X’ 2]7 2“
some € [[X,2],[[X, 2], 2]]
no € [_[Xv 2]7 [_[Xa 2]7 2”

The Soundness of Internalized Polarity Marking 9

in the standard way:

T ifp<gq
F otherwise

every(p)(q) = {

some(p)(q) = —every(p)(—-q)

no(p)(g) = —some(p)(q)

It is routine to verify that these functions really belong to the sets mentioned
above. And as in Example 2.6, each of these functions belongs to the opposite
preorder as well, and we therefore have

every € [[Xv Q], [_[Xv 2]7 _QH
some € [-[X,2],[-[X,2],-2]]
no € [X,2],[[X,2], 2]

Summary The main point of this section is the fact mentioned in Propo-
sition 2.4, part (3). In words, the monotone functions from —P to —Q are
exactly the same as the monotone functions from P to QQ, but as preordered
sets themselves, [P, —Q)] and [P, Q] are opposite orders. A simple illus-
tration of the opposite orders was presented in Example 2.5. This fact, and
also part (2) of Proposition 2.4, is important in the linguistic examples be-
cause it justifies why lexical items are typically assigned two categories. For
example, if we interpret a common noun by an element f of a preorder of
the form [X, 2], then the same f is an element of —[X, 2], so we might as
well declare our noun to also have some typing which calls for an element
of —[X,2]. And in general, if we type a lexical item w with a type (o, 7)
corresponding to an element of some preorder [P, @], then we might as well
endow w with the type (—o, —7) with the very same interpretation function.

3. Higher-order Terms over Preorders

The centerpiece of this note is a presentation of the fully internalized type
scheme. This section presents the details, aimed at readers familiar with
categorical type logics (see Moortgat [7] for background). We should mention
at the outset that what we are generalizing are the applicative (Ajdukiewicz-
Bar Hillel) categorial grammars. However, everything we do extends to the
more useful class of categorial grammars, as we shall see.

10 Lawrence S. Moss

Fix a set Ty of basic types. Let T be the smallest superset of Ty closed

in the following way:

If o,7 € T1, then also (o,7) € T7.

If 0 € T4, then also —o € T3.
Let = be the smallest equivalence relation on T; such that the following
hold:

1. —(—0)=o0.

2. —(o,7) = (—0,—7).

3. If o = ¢/, then also —0 = —0¢’.
4.

If c =0’ and 7 = 7/, then (0,7) = (¢/, 7).

Definition T = T7/=. This is the set of types over Ty.

The operations o — —o and 0,7 +— (0,7) are well-defined on T. We
always use letters like o and 7 to denote elements of T, as opposed to writing
[o] and [r]. That is, we simply work with the elements of T3, but identify
equivalent types.

Definition Let Ty be a set of basic types. A typed language over Ty is
a collection of typed variables v : o and typed constants ¢ : o, where o
in each of these is an element of T. We generally assume that the set of
typed variables includes infinitely many of each type. But there might be no
constants whatsoever. We use L to denote a typed language in this sense.

Let £ be a typed language. We form typed terms t : o as follows:
1. If v : o (as a typed variable), then v : o (as a typed term).

2. If ¢: o (as a typed constant), then ¢ : o (as a typed term).
3. If t: (0,7) and u : o, then t(u) : 7.

Frequently we do not display the types of our terms.

3.1. Semantics

For the semantics of our higher-order language L we use models M of the
following form. M consists of an assignment of preorders ¢ — P, on Ty,

The Soundness of Internalized Polarity Marking 11

together with some data which we shall mention shortly. Before this, extend
the assignment o — P, to J1 by

]P(U,T) = []Pav]PT]
r., = -P,
An easy induction shows that if ¢ = 7, then P, = P.. So we have P, for
o € T. We use P, to denote the set underlying the preorder IP,.
The rest of the structure of a model M consists of an assignment [c] € P,

for each constant ¢ : o, and also a typed map f; this is just a map which to
a typed variable v : o gives some f(v) € P,.

3.2. Ground terms and contexts

A ground term is a term with no free variables. Each ground term ¢ : o has
a denotation [t] € P, defined in the obvious way:

[c] = is given at the outset for constants c¢: o

[t)] = [E(u])

A contezt is a typed term with exactly one variable, z. (This variable may
be of any type.) We write ¢ for a context, or sometimes ¢(z) to emphasize the
variable. We'll be interested in contexts of the form t(u). Note that if ¢(u)
is a context and if x appears in u, then ¢ is a ground term; and vice-versa.

In the definition below, we remind you that subterms are not necessarily
proper. That, is a variable z is a subterm of itself.

Definition Fix a model M for L. Let = : p, and let ¢t : o be a context. We
associate to t a set function

ft . Pp — Pa
in the following way:

1. If t = x, so that ¢ = p, then f, : P, — P, is the identity.
2. If t is u(v) with w : (7,0) and v : 7, and if x is a subterm of u, then f; is
appy] - fu. That is, ft(u) is

a € P,— fyla)([v]) .

3. If t is w(v) with w : (7,0) and v : 7, and if is a subterm of v, then f; is
[u] - fo. That is, f; is

a € Py — [u](fu(a)) -

12 Lawrence S. Moss

The idea of f; is that as a ranges over its interpretation space P,, fi(a)
would be the result of substituting various values of this space in for the
variable, and then evaluating the result.

PROPOSITION 3.1. For all contexts t(x) with t : o and x : p, and all ground
terms s : p,

filllsl) = [tz < 9)l;

where t(x < u) is the result of substituting s for x in t.

PROOF. By induction on ¢t. If ¢ = x, the result is trivial. Suppose that
t = u(v) with = appearing in v. Then t(z « s) is u(x < s)(v), and

fi(ls]) = fullsD(Iv]) = [u(z = w)]([v]) = [u(z < w)(v)] = [t(z — s)]

Finally, if ¢ = u(v) with x appearing in v, then t(x < s) is u(v(x < s)), and

flsD) = [ul(f(s]) = [ulw(@<s)] = [Hz<s)]
In both calculations, we used the induction hypothesis. [|

Notice that we defined f; as a set function and wrote f; : P, — F; instead
of fi : P, — P,. The reason why we did this is that it is not immediately
clear that f; is monotone. This is the content of the following result.

LEMMA 3.2 (Context Lemma). Let t be a context, where t : o and x : p.
Then f; is element of [P,,Ps].

PrOOF. By induction on . In the case that ¢ is a type variable x : o, then
fz is the identity on P,, and indeed the identity is a monotone function on
any preorder.

Next, assume that x occurs in u. By induction hypothesis, f,, belongs to
[Py, Py = [Pp, [Pr,Ps]]. The function apppy, belongs to [[Pr,Ps], Py]
by Proposition 2.2, part (1), and so f; belongs to [IP,, P,] by Proposition 2.4,
part (4).

Finally, assume that = occurs in v. By induction hypothesis, f, : P, —
P;. And [u] € P(; 4y, so that [u] : P, — P,. By Proposition 2.4, part (4),
[u] - fo is an element of [P, — P,]. |

This Context Lemma implies that the idea of internalized polarity mark-
ers works. We’ll see some examples in the next section which clarify this
point. Notice also that it is a very general result: the only facts about
preorders were the very general results in Section 2.

The Soundness of Internalized Polarity Marking 13

The Context Lemma also allows one to generalize our work from the
applicative (AB) grammars to the setting of CG using the Lambek Calculus.
In detail, one generalizes the notion of a context to one which allows more
than one free variable but requires that all variables which occur free have
only one free occurrence. Suppose that z1 : p1,...,z, : pp are the free
variables in such a generalized context t(z1,...,x,) : 0. Then t defines
a set function a set function f; : [[, P,, — P,. A generalization of the
Context Lemma then shows that f; is monotone as a function from the
product preorder [[; P,,. So functions given by lambda abstraction on each
of the variables are also monotone, and this amounts to the soundness of the
introduction rules of the Lambek Calculus in the internalized setting.

This point an advantage of the internalized system in comparison to the
monotonicity calculus: in the latter approach, the results of polarity deter-
mination become side conditions on the introduction rules for the lambda
operator.

3.3. Logic

Figure 2 several sound logical principles. These are implicit in Fyodorov,
Winter, and Francez [4]; see also Zamansky, Francez, and Winter [14] for a
more developed proposal. The rules are the reflexive and transitive proper-
ties of the preorder, the fact that all function types are interpreted by sets
of monotone functions, and the pointwise definition of the order on function
sets. The rules in Figure 2 define a logical system whose assertions order
statements such as v : 0 < v : o; then the statements such as u : ¢ become
side conditions on the rules. (For simplicity, we are only dealing with ground
terms u and v, but it is not hard to generalize the treatment to allow vari-
ables.) The logic thus defines a relation I' - ¢ on order statements. Given a
model M and an order statement 1 of the form u: o < v : o, we say that M
satisfies ¢ iff Ju] < [v] in P,. The soundness of the logic is the statement
that every model M satisfying all of the sentences in I' also satisfies ¢.

The Context Lemma then gives another sound principle:

z:o0in thecontextt w:o<wv:o
tu): 7 <t(v):1 (1)

However, all instances of (1) are already provable in the logic as we have
defined it. This is an easy inductive argument on the context ¢.

14 Lawrence S. Moss

t:o<u:0 u:0<v:0
t:o0<t:o t:o<wv:o
u:o<v:oc t:(o,T1) u:(o,7)<wv:(o,7) t:o
tu): 7 <t(v):1 u(t): 7 <o(t): 7

Figure 2. Monotonicity Principles

4. Examples and Discussion

We present a small example to illustrate the ideas. It is a version of the lan-
guage R* from Pratt-Hartmann and Moss [9]. We also take the opportunity
to discuss internalized marking in a general way. We have a few comments
on the challenges of building a logic based on internalized markings. And
we also have a discussion of the word any and how it might be treated.

First, we describe a language L corresponding to this vocabulary. Let’s
take our set Ty of basic types to be {t,pr}. (These stand for truth value
and property. In more traditional presentations, the type pr might be (e, t),
where e is a type of entities.)

Here are the constants of the language £ and their types:

1. We have typed constants

every™ (—pr, (pr,t)) every” (pr, (—pr, —t))
some™ : (pr,(pr,t)) some™ : (—pr,(—pr,—t))
no* (=pr, (—pr,1)) no~ (pr, (pr, —t))
any* (—pr, (pr,t)) any” (=pr, (=pr, —t))

2. We fix a set of unary atoms corresponding to some plural nouns and
lexical verb phrases in English. For definiteness, we take cat, dog, animal,
runs, sleeps. Each unary atom p gives two typed constants: p* : pr and

p~: —pr.
3. We also fix a set of binary atoms corresponding to some transitive verbs

in English. To be definite, we take chase, see. Every binary atom r gives
four type constants:

rf o ((prt),pr) ry o ((=pr,t),pr)
rl_ : ((—pT‘,—t),—pT) r2_ : ((pr,—t),—pr)

This completes the definition of our typed language L.

The Soundness of Internalized Polarity Marking 15

We might mention that the superscripts + and — on the constants c: o
of L are exactly the polarities pol(c) of the associated types. (We shall
define the polarity function in the next section.) These notations + and —
are mnemonic; we could do without them.

As always with categorial grammars, a lexicon is a set of pairs consisting
of words in a natural language together with terms. We have been writing
the words in the target language in italics, and then terms for them are
written in sans serif. It is very important that the lexicon allows a given
word to appear with many terms. As we have seen, we need every to appear
with every™ and every™, for example. We still are only concerned with the
syntax at this point, and the semantics will enter once we have seen some
examples.

Examples of typed terms and contexts Here are a few examples of
typed terms along with their derivations. First, the bottommost derivation
in Figure 1 is a derivation of the term corresponding to the English sen-
tence No dog chases every cat. One should compare this treatment with
what we saw of the same sentence in the Introduction, indicated in the top
two derivations in the figure. The internalized setting does not have steps
of Monotonicity Marking and Polarity Determination. It only involves a
derivation in the applicative CG at hand. Please also keep in mind that the
superscripts + and — above are from the lexicon, not from any additional
process, and that the lexicon could have been formulated without those su-
perscripts. They are in fact the polarities of the attendant categories.
We similarly have the following terms:

some™ (dog™)(chase (every™ (cat™))) : ¢t
some™ (dog™)(chase; (not(cat™))) : ¢
not (dog™)(chase; (no™(cat™))) : ¢

The point here is that all four different typings of the transitive verbs are
needed to represent sentences of English. I do not believe that this point has
been noticed about the internalized scheme before. It raises an issue that
we shall take up in the next subsection: how would a grammar writer come
up with all of the needed categories?

Here is an example of a context:
(

u(z) = not(z:—pr)(chase] (every (cat™))) : t.

In any model, this context gives a function f, from interpretations of type
—pr to those of type t. The Context Lemma would tell us that this function

16 Lawrence S. Moss

is a monotone function:
Ju: Iprr — Py

By Proposition 2.4, part (3), we can also write
Ju: IPpr — P

In other words, the interpretation of the function is an antitone function
from property interpretations to truth value interpretations.

Any The internalized approach enables a treatment of any that has it any
mean the same thing as every when it has positive polarity, and the same
thing as some when it has negative polarity. For example, here is a sentence
intended to mean everything which sees any cat runs:

every™ (see, (any” (cat™))(runst) : ¢

The natural reading is for any to have an existential reading. Another
context for existential readings of any is in the antecedent of a conditional.
In the other direction, consider

any™ (cat™)(see; (any™ (dog™))) : t.

The natural reading of both occurrences is universal.

4.1. Standard models

Up until now, we have only given one example of a typed language L. Now
we describe a family of models for this language. The family is based on sets
with interpretations of the unary and binary atoms. To make this precise,
let us call a pre-model a structure My consisting of a set M together with
subsets [p] € M for unary atoms p and relations [r] C M x M for binary
atoms r.

Every pre-model Mg now gives a bona fide model M of L in the following
way. The underlying universe M gives a flat preorder M. We take P, =
[M, 2] = P(M). We also take P; = 2.

We interpret the typed constants p™ : pr corresponding to unary atoms
by

[p*Im) =T iff m e [pl.

(On the right we use the interpretation of p in the model M.) Usually we
write pT instead of [p].

The Soundness of Internalized Polarity Marking 17

The constants p~ : —pr are interpreted by the same functions.

The interpretations of every™, some™, and no™ are given in Example 2.7
(taking the set X to be the universe M of M). And the interpretations of
every™, some™, and no~ are the same functions.

We interpret any™ the same way as every™, and any™ the same way as
some™. It is important at this point to check that this interpretation respects
the types. That is,

any™ = every® € [-[M, 2], —[[M,2],2]] = P

9 —P7"7(P7"»t))
any~ = some~ € [[M, 2]7 [M, 2]7 _QH =P

(pr,(pn—t))

Some calculations relevant to these typings were given in Example 2.7.
Recall that the binary atom r gives four typed constants rf, rs r; , and
ry . These are all interpreted in model in the same way, by

(@)(m) = q{m € M:[r](m,m")})

It is clear that for all ¢ € P(,, ;) = [[M, 2], 2], r.(q) is a function from M to
{T,F}. The monotonicity of this function is trivial, since M is flat.

We do need to check that all of the interpretations of the constants are
correctly typed. This is important, and it raises a general issue.

Issue 1: What are the sources of the multiple typings of the lexical
items? As this short paper draws to a close, we wish to identify some
issues with the internalized scheme of polarity marking. Here is the first:
The scheme requires many entries for each lexical item, usually with the
same semantics in every model. These amount to multiple typings of the
same function. What is the source of these multiple typings, and can they
be automatically inferred?

The principal source for multiple typings is the fact noted in Proposi-
tion 2.4, part (3): [-P,—Q] = —[P,Q]. That is, we have two (opposite)
order relations on the same set, and so it makes sense that we should type
an element of that set in two ways. This accounts for the multiple typings
of nouns and determiners in our example, but not for transitive verbs. For
them, and for all categories in more complicated languages, we suspect that
there is no simple answer. Perhaps the best one could hope for would be
a formal system in which to derive the various typings. In the same way
that one could propose logical systems which process inferences in parallel
with syntactic derivations, one could hope to do the same thing for order
statements. Here is our vision of a what a derivation might look like in such

18 Lawrence S. Moss

a system. Let us write ¢(m,r) for {m’ € M : [r](m,m')}. A justification for
the typing r; : [[[M, 2], —2], [M, —2]] could be the derivation below:
q<¢ in[[M,2],-2] ¢é(m,r) € [M,2]
ry (@) = q(d(m, 1)) < ¢'(d(m,r)) =1y (¢)) in —2
ry (¢) <1y (¢) in [M, —2]
ry < [[[M, 2], =2}, [M, —2]]

The challenge would be to propose a system which is small enough to be
decidable, and yet big enough to allow us to use the notation ¢(m,r) as we
have done it.

Here is a related point. As Dowty [3] notes, the parsing problem for
internalized grammars is no harder than that of CG in the first place. In
fact, the work for internalized grammars is a special case, since they are CGs
with nothing extra. However, this could be a misleading comparison: if one
is given a CG § and some additional information (for example, the intended
meanings of the constants corresponding to determiners), one would need
to convert this to an internalized grammar G*. It may be that the size of
the lexicon of §* is exponential in the size of the lexicon of §. The fact that
in our small grammar we need four typings for the verbs makes one worry.
And in the worst case, the internalized scheme would be less attractive for
computational purposes.

Issue 2: what is the relation of polarity and monotonicity? It is
“well-known” in this area that negative polarity items are those which must
occur, or usually occur in “downward monotone positions” in a given sen-
tence. But without saying what the orders are on the semantic spaces, this
point could be confusing. For example, suppose one has a reason to assume
that the order on truth values is T < F rather than F < T. In this case, the
notions of upward monotone positions and downward monotone ones would
switch. More seriously, given a complicated function type (o, —7), it is not
so clear whether this should be recast as —(—o, 7). In this case, it would
not be so clear what the upward and downward monotone positions are in
a sentence.

This matter might be clarified by looking at no vs. at most one in a
sentence such as No dog chases every cat. As we have seen, our treatment
suggests that the occurrence of no is in a positive position, and so we expect
it to be monotone increasing. We would like to say that no < at most one,
since this is the verdict from generalized quantifier theory. Indeed, the in-
terpretations functions no and at most one are taken to be functions of type

The Soundness of Internalized Polarity Marking 19

((M,2),((M,2),2)), and then the order on this space is taken to be ul-
timately determined by the last “2”. However, we do not have a single
function no but rather two functions, no™ and no~. These are not quite re-
strictions of no and at most one. For that matter, why exactly do we say that
no™ is monotone increasing? It’s type was (—pr, (—pr,t)), after all. What
seems to be going on here is that in a curried form, we have (—pr x —pr,t).
When curried like this, no™ and no~ are restrictions of no and at most one.
Moreover, the order on on a product space is determined by the codomain
order, forgetting the domain order. Also, the “meaning space” in a model
for types pr and —pr are the same. Taken together, this means that no™
indeed corresponds to a monotone function and no™ to an antitone function.

Here is a general definition of the polarity of a type. Define pol(o) : T1 —
{+,—} as follows:

1. If 0 € To, then pol(c) = +.
2. pol((o,7)) = pol(r).
3. pol(—o) = —pol(o).

It is easy to check that if o = 7, then pol(o) = pol(7). (It is enough to show
that pol(—(—oc)) = pol(c), and also that pol(—(o,7)) = pol((—a,—7)).)
This allows us define pol on the quotient set, T7 /=, our set T of types.

The definition of the pol function gives an algorithm to calculate pol(o).
Another way to do this would be to: (1) put ¢ in “negation normal form”,
by driving the - signs through function spaces so that there are no function
types inside the scope of any — sign; (2) remove an even number of — signs
from basic types, so that the remaining basic types have either zero or one —
sign in front; (3), finally, starting at the top, proceed “to the right” through
the term until one reaches either a basic type or its negation.

For example, every™ is of type (pr,(—pr,—t)), and the polarity of its
occurrence in our example sentence No dog chases every cat (or in any term
derived in our grammar), is —.

Let u be a subterm occurrence in the term ¢. Then there is a unique
context t'(z) such that ¢t = ¢'[u « z]. Let o be the type of = in ¢. We say
that u has positive polarity if pol(z) = +, and that u has negative polarity
if pol(z) = —.

We naturally would like to say that if an occurrence u has positive po-
larity in ¢, then that occurrence is in a monotone increasing position, and
if the occurrence has negative polarity, then it is in a monotone decreasing
position.

20 Lawrence S. Moss

Issue 3: how can we build a logic to reason about classes of stan-
dard models? Our last issue concerns the contribution of the types in an
internalized CG to a natural logic. The matter is illustrated by a discussion
concerning the example language L presented at the beginning of Section 4.
Suppose we are given entailment relations concerning the unary and binary
atoms of L. For unary atoms, these take the form p = q, where p and q are
unary atoms. For binary atoms, entailment relations look similar: r = s.
(Incidentally, one is also interested in exclusion relations: see MacCartney
and Manning [6] for applications, and Icard [5] for theory behind this.)

These entailment relations correspond to semantic restrictions on stan-
dard models. The first corresponds to the requirement that [p] C [q], and
the second to the parallel requirement that [r] C [s]. Working with entail-
ment relations in this way means restricting attention to standard models
which conform to the restrictions. It is natural to then look for additional ax-
ioms and/or rules of inference in the logical system that would give a sound
and complete logic for these models. The entailment relations correspond to
axioms of the sentential kind, and also on the orders. The sentential axioms
can be stated only for the unary atoms, and they would be sentences like
(every™(p~))q~. For the binary atoms, the statements are more involved.
To state one on an informal level, suppose one wants to model a fact such
as kissing (r) entails touching (s) using an entailment fact of the form r = s.
Then a logical system should contain an axiom corresponding to a sentence
such as Fveryone who kisses some baby touches some baby. Turning to ax-
ioms on the orders, our entailment relations give us the following:

pt <qT in pr r; <si in ((—pr,—t),—pr)
q- <p in —pr r; < s;r in ((—pr,t),pr)
ri <si in ((pr,t),pr) ry <s, in ((pr,—t), —pr)

However, even adopting both kinds of axioms on top of the logical principles
we saw in Section 3.3 would not result in a complete logical system, so it
would fall short of what we want in a natural logic. One source of problems
was noted in Zamansky, Francez, and Winter [14]: the system would not have
any way to derive principles corresponding to de Morgan’s laws. Another
problem for us would be even more basic. The resulting logic does not appear
to be strong enough to derive the sound sentences of the form every X is an
X. To be sure, there are unsound sentences of this form in the logic, due to
the typing. For example, the way we are doing things, every dog who chases
any cat chases any cat is not a logical validity at all, since the first any is
to be interpreted existentially and the second universally. (I first heard an
example of this type in a lecture of Barbara Partee.) But without any, we

The Soundness of Internalized Polarity Marking 21

would like to derive, for example
every ' (see; (every (cat™)))(see] (every™ (cat™)))

At this point, I can merely speculate and offer a suggestion. My feeling
is that one should look to logics with individual variables, and then the
properties of the individual words become rules of inference in the logic.
Specifically, it should be the case that if x is an individual or NP-level
variable, then one should be able to infer cat™(x) from cat™ (z), and vice-
versa. Logics of this type have been proposed in the literature, but they
do not build on the framework of categorial grammar and therefore have
nothing to say about polarity and monotonicity. Integrating the work there
with the proposal in this paper is the most important open issue in work on
this topic.

Conclusion This paper explores what happens to CG if we adopt the
idea that interpretation should take place in ordered domains, especially
if we add to the type formation rules a construction for the opposite order.
Doing this gives a Context Lemma in a straightforward way, and the Context
Lemma is tantamount to the soundness of the internalized polarity marking
scheme proposed by Dowty [3] as a modification of the earlier ideas of van
Benthem [11], and Sénchez Valencia [10]. The types in the internalized
scheme are more plentiful than in ordinary CG, and this is a source of issues
as well as possibilities. The issues concern how the new typings are to be
generated, and how they are to interact with each other in proof-theoretic
settings. There certainly is more to do on this matter, and this paper has
only provided the groundwork. With some additional work, one could easily
imagine that the internalized scheme will be an important contribution to
the research agenda of natural logic.

Acknowledgements. My thanks to Thomas Icard and to Yoad Winter
for their comments on an earlier draft of this paper.

References

[1] Raffaella Bernardi. Reasoning with Polarity in Categorial Type Logic.
PhD thesis, University of Utrecht, 2002.

[2] Christos Christodoulopoulos. Creating a natural logic inference system
with combinatory categorial grammar. Master’s thesis, University of
Edinburgh, 2008.

22

[3]

[14]

Lawrence S. Moss

David Dowty. The role of negative polarity and concord marking in
natural language reasoning. In Proceedings of SALT IV, page 114144.
Cornell University, Ithaca, NY, 1994.

Yaroslav Fyodorov, Yoad Winter, and Nissim Francez. Order-based
inference in natural logic. Log. J. IGPL, 11(4):385-417, 2003. Inference
in computational semantics: the 2000 Dagstuhl Workshop.

Thomas Icard. Exclusion and containment in natural language. ms.,
Stanford University, 2010.

Bill MacCartney and Christopher D. Manning. An extended model of
natural logic. In Proceedings of the Fighth International Conference on
Computational Semantics (IWCS-8), Tilburg, Netherlands, 2009.

Michael Moortgat. Categorial type logics. In Handbook of Logic and
Language, pages 93-178. MIT Press, Cambridge, MA, 1997.

Rowan Nairn, Cleo Condoravdi, and Lauri Karttunen. Computing rel-
ative polarity for textual inference. In Proceedings of IC0S-5 (Inference
in Computational Semantics), Buxton, UK, 2006.

Tan Pratt-Hartmann and Lawrence S. Moss. Logics for the relational
syllogistic. Review of Symbolic Logic, 2(4):647-683, 2009.

Victor M. Sanchez Valencia. Studies on natural logic and categorical
grammar. PhD thesis, University of Amsterdam, 1991.

Johan van Benthem. Fssays in Logical Semantics, volume 29 of Studies
in Linguistics and Philosophy. D. Reidel Publishing Co., Dordrecht,
1986.

Johan van Benthem. Language in Action, volume 130 of Studies in Logic
and the Foundations of Mathematics. North Holland, Amsterdam, 1991.

Johan van Benthem. A brief history of natural logic. In M. Chakraborty,
B. Lowe, M. Nath Mitra, and S. Sarukkai, editors, Logic, Navya-Nyaya
and Applications, Homage to Bimal Krishna Matilal. College Publica-
tions, London, 2008.

Anna Zamansky, Nissim Francez, and Yoad Winter. A ‘natural logic’ in-
ference system using the Lambek calculus. J. Log. Lang. Inf., 15(3):273—
295, 2006.

