This file contains information about the 23 knots from Table 1: hyperbolic volume, Alexander polynomial, knot Floer homology, DT code, PD code. The hyperbolic volume was computed with SnapPy, and the knot Floer homology and related invariants with Zoltan Szabo's Knot Floer homology calculator. K1=K_B(0, 1, 0, 1, 2, -1) volume=15.4514033883 Alexander=1 Topologically slice! Ranks in Alexander, Maslov bigradings : 2 (-2,-3) 1 (-2,-2) 1 (-2,0) 4 (-1,-2) 4 (-1,-1) 2 (-1,0) 4 (-1,1) 2 (-1,2) 4 (0,-1) 7 (0,0) 4 (0,1) 6 (0,2) 4 (0,3) 4 (1,0) 4 (1,1) 2 (1,2) 4 (1,3) 2 (1,4) 2 (2,1) 1 (2,2) 1 (2,4) Total rank : 65 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 29 crossings DT[34, 48, 58, 20, 28, 24, 52, 36, -46, -56, 8, -40, 10, -42, 12, 38, -18, 4, -50, 54, -26, -22, 32, 2, -16, 14, -30, 44, 6] PD[X[34, 2, 35, 1], X[48, 3, 49, 4], X[58, 6, 1, 5], X[20, 7, 21, 8], X[28, 9, 29, 10], X[24, 11, 25, 12], X[52, 14, 53, 13], X[36, 16, 37, 15], X[17, 47, 18, 46], X[19, 57, 20, 56], X[8, 21, 9, 22], X[23, 41, 24, 40], X[10, 25, 11, 26], X[27, 43, 28, 42], X[12, 29, 13, 30], X[38, 32, 39, 31], X[33, 18, 34, 19], X[4, 36, 5, 35], X[37, 50, 38, 51], X[54, 39, 55, 40], X[41, 27, 42, 26], X[43, 23, 44, 22], X[32, 46, 33, 45], X[2, 47, 3, 48], X[49, 17, 50, 16], X[14, 52, 15, 51], X[53, 31, 54, 30], X[44, 55, 45, 56], X[6, 58, 7, 57]] K2=K_B(1,1,0,1,1,-1) volume=14.6984400947 Alexander=1 Topologically slice! Ranks in Alexander, Maslov bigradings : 2 (-2,-3) 1 (-2,-2) 1 (-2,0) 4 (-1,-2) 4 (-1,-1) 2 (-1,0) 4 (-1,1) 2 (-1,2) 4 (0,-1) 7 (0,0) 4 (0,1) 6 (0,2) 4 (0,3) 4 (1,0) 4 (1,1) 2 (1,2) 4 (1,3) 2 (1,4) 2 (2,1) 1 (2,2) 1 (2,4) Total rank : 65 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 29 crossings DT[28, 56, 18, -54, -50, -34, -24, 46, 32, -40, 6, -12, -16, 30, 2, -44, 22, 52, 48, -20, -4, -58, 26, 14, -8, 36, -10, 38, -42] PD[X[28, 2, 29, 1], X[56, 4, 57, 3], X[18, 5, 19, 6], X[7, 55, 8, 54], X[9, 51, 10, 50], X[11, 35, 12, 34], X[13, 24, 14, 25], X[46, 16, 47, 15], X[32, 18, 33, 17], X[19, 41, 20, 40], X[6, 21, 7, 22], X[23, 12, 24, 13], X[25, 16, 26, 17], X[30, 28, 31, 27], X[2, 30, 3, 29], X[31, 44, 32, 45], X[22, 34, 23, 33], X[52, 35, 53, 36], X[48, 37, 49, 38], X[39, 21, 40, 20], X[41, 5, 42, 4], X[43, 58, 44, 1], X[26, 46, 27, 45], X[14, 48, 15, 47], X[49, 9, 50, 8], X[36, 51, 37, 52], X[53, 11, 54, 10], X[38, 55, 39, 56], X[57, 42, 58, 43]] K3=K_G(1, 1, 0,-1, 1, 1) volume=20.9306588648 Alexander= 1 Topologically slice! Ranks in Alexander, Maslov bigradings : 4 (-2,-3) 4 (-2,-2) 1 (-2,-1) 2 (-2,0) 1 (-2,1) 16 (-1,-2) 18 (-1,-1) 4 (-1,0) 6 (-1,1) 4 (-1,2) 24 (0,-1) 29 (0,0) 6 (0,1) 8 (0,2) 6 (0,3) 16 (1,0) 18 (1,1) 4 (1,2) 6 (1,3) 4 (1,4) 4 (2,1) 4 (2,2) 1 (2,3) 2 (2,4) 1 (2,5) Total rank : 193 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 32 crossings DT[-54, 32, 28, -56, -50, 62, -64, 52, -30, 14, -10, 46, 44, 8, 2, -16, 4, -20, -12, 22, 24, -58, 40, -60, 26, -34, 18, -6, -48, -42, -38, 36] PD[X[1, 54, 2, 55], X[32, 4, 33, 3], X[28, 6, 29, 5], X[7, 56, 8, 57], X[9, 51, 10, 50], X[62, 11, 63, 12], X[13, 64, 14, 1], X[52, 16, 53, 15], X[17, 30, 18, 31], X[14, 20, 15, 19], X[21, 11, 22, 10], X[46, 23, 47, 24], X[44, 26, 45, 25], X[8, 28, 9, 27], X[2, 30, 3, 29], X[31, 16, 32, 17], X[4, 34, 5, 33], X[35, 20, 36, 21], X[37, 13, 38, 12], X[22, 39, 23, 40], X[24, 42, 25, 41], X[43, 58, 44, 59], X[40, 46, 41, 45], X[47, 61, 48, 60], X[26, 49, 27, 50], X[51, 34, 52, 35], X[18, 54, 19, 53], X[55, 6, 56, 7], X[57, 49, 58, 48], X[59, 42, 60, 43], X[61, 39, 62, 38], X[36, 64, 37, 63]] K4=K_B(2, 1, -1, 1, 1, -1) volume=15.552102256 Alexander=1 topologically slice! Ranks in Alexander, Maslov bigradings : 1 (-2,-4) 1 (-2,-2) 2 (-2,-1) 2 (-1,-4) 4 (-1,-3) 2 (-1,-2) 4 (-1,-1) 4 (-1,0) 4 (0,-3) 6 (0,-2) 4 (0,-1) 7 (0,0) 4 (0,1) 2 (1,-2) 4 (1,-1) 2 (1,0) 4 (1,1) 4 (1,2) 1 (2,0) 1 (2,2) 2 (2,3) Total rank : 65 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 29 crossings DT[-16, -12, 26, 38, -40, 28, -32, 30, -2, 56, -36, 52, -48, 46, 18, 58, -20, 42, -24, -50, -54, 34, -10, -4, 6, -8, 22, -44, 14] PD[X[1, 16, 2, 17], X[3, 12, 4, 13], X[26, 5, 27, 6], X[38, 7, 39, 8], X[9, 40, 10, 41], X[28, 12, 29, 11], X[13, 33, 14, 32], X[30, 16, 31, 15], X[17, 2, 18, 3], X[56, 19, 57, 20], X[21, 37, 22, 36], X[52, 23, 53, 24], X[25, 48, 26, 49], X[46, 27, 47, 28], X[18, 30, 19, 29], X[58, 31, 1, 32], X[33, 21, 34, 20], X[42, 35, 43, 36], X[37, 25, 38, 24], X[39, 50, 40, 51], X[41, 55, 42, 54], X[34, 43, 35, 44], X[45, 10, 46, 11], X[47, 5, 48, 4], X[6, 50, 7, 49], X[51, 9, 52, 8], X[22, 53, 23, 54], X[55, 45, 56, 44], X[14, 57, 15, 58]] K5=K_G(2, 1, -1, -1, 1, 1) volume=21.8888925537 Alexander=1 Topologically slice! Ranks in Alexander, Maslov bigradings : 4 (-2,-3) 4 (-2,-2) 1 (-2,-1) 2 (-2,0) 1 (-2,1) 16 (-1,-2) 18 (-1,-1) 4 (-1,0) 6 (-1,1) 4 (-1,2) 24 (0,-1) 29 (0,0) 6 (0,1) 8 (0,2) 6 (0,3) 16 (1,0) 18 (1,1) 4 (1,2) 6 (1,3) 4 (1,4) 4 (2,1) 4 (2,2) 1 (2,3) 2 (2,4) 1 (2,5) Total rank : 193 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 32 crossings DT[14, -50, 36, -22, 4, -30, 60, -44, 32, -34, 52, -6, 54, -10, 48, -42, 40, -26, 8, -56, -18, 58, -2, -62, 28, -38, 24, 20, -16, 64, -46, 12] PD[X[14, 2, 15, 1], X[3, 50, 4, 51], X[36, 6, 37, 5], X[7, 22, 8, 23], X[4, 10, 5, 9], X[11, 30, 12, 31], X[60, 13, 61, 14], X[15, 45, 16, 44], X[32, 17, 33, 18], X[19, 34, 20, 35], X[52, 22, 53, 21], X[23, 6, 24, 7], X[54, 26, 55, 25], X[27, 10, 28, 11], X[48, 30, 49, 29], X[31, 43, 32, 42], X[40, 34, 41, 33], X[35, 26, 36, 27], X[8, 38, 9, 37], X[39, 56, 40, 57], X[41, 19, 42, 18], X[58, 43, 59, 44], X[45, 2, 46, 3], X[47, 63, 48, 62], X[28, 50, 29, 49], X[51, 38, 52, 39], X[24, 54, 25, 53], X[20, 56, 21, 55], X[57, 17, 58, 16], X[64, 60, 1, 59], X[61, 47, 62, 46], X[12, 63, 13, 64]] K6=K_B(1, 1, -1, 1, 2, -1) volume=16.5836034527 Alexander=3 + 1/t^2 - 2/t - 2 t + t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 2 (-2,-3) 2 (-2,-2) 1 (-2,0) 4 (-1,-2) 6 (-1,-1) 2 (-1,0) 4 (-1,1) 2 (-1,2) 4 (0,-1) 9 (0,0) 4 (0,1) 6 (0,2) 4 (0,3) 4 (1,0) 6 (1,1) 2 (1,2) 4 (1,3) 2 (1,4) 2 (2,1) 2 (2,2) 1 (2,4) Total rank : 73 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 29 crossings DT[-46, -42, -24, 38, -54, 18, 44, -28, 12, -56, 34, 40, -4, 58, -16, 22, -52, 20, 10, -50, 26, 48, 14, -2, 6, -32, -8, -36, 30] PD[X[1, 46, 2, 47], X[3, 43, 4, 42], X[5, 25, 6, 24], X[38, 8, 39, 7], X[9, 54, 10, 55], X[18, 12, 19, 11], X[44, 14, 45, 13], X[15, 28, 16, 29], X[12, 18, 13, 17], X[19, 57, 20, 56], X[34, 21, 35, 22], X[40, 23, 41, 24], X[25, 5, 26, 4], X[58, 28, 1, 27], X[29, 16, 30, 17], X[22, 31, 23, 32], X[33, 53, 34, 52], X[20, 35, 21, 36], X[10, 38, 11, 37], X[39, 51, 40, 50], X[26, 41, 27, 42], X[48, 44, 49, 43], X[14, 46, 15, 45], X[47, 2, 48, 3], X[6, 49, 7, 50], X[51, 33, 52, 32], X[53, 8, 54, 9], X[55, 37, 56, 36], X[30, 58, 31, 57]] K7=K_B(1, 1, 1, 1, 0, -1) volume=18.6947596757 Alexander=11 + 1/t^2 - 6/t - 6 t + t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 2 (-2,-3) 2 (-2,-2) 1 (-2,0) 4 (-1,-2) 10 (-1,-1) 2 (-1,0) 4 (-1,1) 2 (-1,2) 4 (0,-1) 17 (0,0) 4 (0,1) 6 (0,2) 4 (0,3) 4 (1,0) 10 (1,1) 2 (1,2) 4 (1,3) 2 (1,4) 2 (2,1) 2 (2,2) 1 (2,4) Total rank : 89 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 31 crossings DT[-18, 32, -60, 22, -40, 58, 26, 50, -4, -46, 6, 54, 12, -52, 36, 2, 30, -48, -16, -56, 24, -20, 62, -34, -28, 14, -42, -8, 10, -38, 44] PD[X[1, 18, 2, 19], X[32, 4, 33, 3], X[5, 61, 6, 60], X[22, 7, 23, 8], X[9, 41, 10, 40], X[58, 12, 59, 11], X[26, 13, 27, 14], X[50, 16, 51, 15], X[17, 4, 18, 5], X[19, 47, 20, 46], X[6, 21, 7, 22], X[54, 24, 55, 23], X[12, 25, 13, 26], X[27, 53, 28, 52], X[36, 30, 37, 29], X[2, 32, 3, 31], X[30, 34, 31, 33], X[35, 48, 36, 49], X[37, 17, 38, 16], X[39, 56, 40, 57], X[24, 42, 25, 41], X[43, 21, 44, 20], X[62, 45, 1, 46], X[47, 34, 48, 35], X[49, 29, 50, 28], X[14, 52, 15, 51], X[53, 42, 54, 43], X[55, 9, 56, 8], X[10, 58, 11, 57], X[59, 38, 60, 39], X[44, 61, 45, 62]] K8 = K_B(1, 1, 2, 1, -1, -1) volume=21.7686512156 Alexander=33 + 4/t^2 - 20/t - 20 t + 4 t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 1 (-2,-4) 5 (-2,-2) 2 (-2,-1) 2 (-1,-4) 4 (-1,-3) 2 (-1,-2) 24 (-1,-1) 4 (-1,0) 4 (0,-3) 6 (0,-2) 4 (0,-1) 39 (0,0) 4 (0,1) 2 (1,-2) 4 (1,-1) 2 (1,0) 24 (1,1) 4 (1,2) 1 (2,0) 5 (2,2) 2 (2,3) Total rank : 145 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 36 crossings DT[60, 34, 56, -62, 64, -26, -42, 72, -58, 36, 2, -68, -12, 44, -50, -10, 6, 20, 18, -16, -70, 24, 30, 66, -28, 46, 8, -32, 4, 38, -22, 54, -52, 48, 14, -40] PD[X[60, 2, 61, 1], X[34, 3, 35, 4], X[56, 6, 57, 5], X[7, 63, 8, 62], X[64, 10, 65, 9], X[11, 26, 12, 27], X[13, 42, 14, 43], X[72, 16, 1, 15], X[17, 58, 18, 59], X[36, 19, 37, 20], X[2, 21, 3, 22], X[23, 68, 24, 69], X[25, 12, 26, 13], X[44, 28, 45, 27], X[29, 51, 30, 50], X[31, 10, 32, 11], X[6, 33, 7, 34], X[20, 35, 21, 36], X[18, 37, 19, 38], X[39, 16, 40, 17], X[41, 70, 42, 71], X[24, 44, 25, 43], X[30, 46, 31, 45], X[66, 47, 67, 48], X[49, 29, 50, 28], X[46, 51, 47, 52], X[8, 54, 9, 53], X[55, 33, 56, 32], X[4, 58, 5, 57], X[38, 60, 39, 59], X[61, 22, 62, 23], X[54, 63, 55, 64], X[65, 52, 66, 53], X[48, 67, 49, 68], X[14, 70, 15, 69], X[71, 40, 72, 41]] K9=K_G(1, 1, -1, -1, 2, 1) volume=21.917877366 Alexander=3 + 1/t^2 - 2/t - 2 t + t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 1 (-2,-5) 2 (-2,-4) 1 (-2,-3) 5 (-2,-2) 4 (-2,-1) 4 (-1,-4) 6 (-1,-3) 4 (-1,-2) 20 (-1,-1) 16 (-1,0) 6 (0,-3) 8 (0,-2) 6 (0,-1) 31 (0,0) 24 (0,1) 4 (1,-2) 6 (1,-1) 4 (1,0) 20 (1,1) 16 (1,2) 1 (2,-1) 2 (2,0) 1 (2,1) 5 (2,2) 4 (2,3) Total rank : 201 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 32 crossings DT[52, -32, 16, -28, 56, -26, 22, 38, -50, 30, 36, -46, -42, -8, 48, -64, -4, 20, -62, 44, -24, 58, 60, 12, -54, 2, -18, 6, 10, 40, -14, -34] PD[X[52, 2, 53, 1], X[3, 32, 4, 33], X[16, 6, 17, 5], X[7, 28, 8, 29], X[56, 10, 57, 9], X[11, 26, 12, 27], X[22, 13, 23, 14], X[38, 15, 39, 16], X[17, 50, 18, 51], X[30, 20, 31, 19], X[36, 22, 37, 21], X[23, 47, 24, 46], X[25, 42, 26, 43], X[27, 8, 28, 9], X[48, 30, 49, 29], X[31, 64, 32, 1], X[33, 4, 34, 5], X[20, 36, 21, 35], X[37, 62, 38, 63], X[44, 39, 45, 40], X[41, 24, 42, 25], X[58, 44, 59, 43], X[60, 45, 61, 46], X[12, 47, 13, 48], X[49, 54, 50, 55], X[2, 52, 3, 51], X[53, 18, 54, 19], X[6, 56, 7, 55], X[10, 58, 11, 57], X[40, 60, 41, 59], X[61, 15, 62, 14], X[63, 34, 64, 35]] K10=K_G(1,1,1,-1,0,1) volume=23.2764525218 Alexander=11 + 1/t^2 - 6/t - 6 t + t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 1 (-2,-5) 2 (-2,-4) 1 (-2,-3) 5 (-2,-2) 4 (-2,-1) 4 (-1,-4) 6 (-1,-3) 4 (-1,-2) 24 (-1,-1) 16 (-1,0) 6 (0,-3) 8 (0,-2) 6 (0,-1) 39 (0,0) 24 (0,1) 4 (1,-2) 6 (1,-1) 4 (1,0) 24 (1,1) 16 (1,2) 1 (2,-1) 2 (2,0) 1 (2,1) 5 (2,2) 4 (2,3) Total rank : 217 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 32 crossings DT[44, 28, -48, 54, -38, 4, -62, -2, 32, -56, 10, -52, 6, -12, 16, -42, 20, -8, 50, -34, 58, -30, 60, 26, -22, 36, -24, 40, -18, 64, -14, 46] PD[X[44, 2, 45, 1], X[28, 3, 29, 4], X[5, 49, 6, 48], X[54, 8, 55, 7], X[9, 38, 10, 39], X[4, 11, 5, 12], X[13, 63, 14, 62], X[15, 2, 16, 3], X[32, 18, 33, 17], X[19, 56, 20, 57], X[10, 22, 11, 21], X[23, 52, 24, 53], X[6, 25, 7, 26], X[27, 13, 28, 12], X[16, 30, 17, 29], X[31, 42, 32, 43], X[20, 34, 21, 33], X[35, 8, 36, 9], X[50, 38, 51, 37], X[39, 34, 40, 35], X[58, 42, 59, 41], X[43, 30, 44, 31], X[60, 45, 61, 46], X[26, 47, 27, 48], X[49, 22, 50, 23], X[36, 52, 37, 51], X[53, 24, 54, 25], X[40, 56, 41, 55], X[57, 18, 58, 19], X[64, 59, 1, 60], X[61, 15, 62, 14], X[46, 63, 47, 64]] K11= K_G(1, 1, 2, -1, -1, 1) volume=25.7209232640 Alexander=33 + 4/t^2 - 20/t - 20 t + 4 t^2 satisfies Fox-Milnor, same Alexander as K1 Ranks in Alexander, Maslov bigradings : 1 (-2,-5) 2 (-2,-4) 1 (-2,-3) 8 (-2,-2) 4 (-2,-1) 4 (-1,-4) 6 (-1,-3) 4 (-1,-2) 38 (-1,-1) 16 (-1,0) 6 (0,-3) 8 (0,-2) 6 (0,-1) 61 (0,0) 24 (0,1) 4 (1,-2) 6 (1,-1) 4 (1,0) 38 (1,1) 16 (1,2) 1 (2,-1) 2 (2,0) 1 (2,1) 8 (2,2) 4 (2,3) Total rank : 273 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 41 crossings [20, -40, -64, -74, 32, -60, 58, -28, 26, 82, -38, 70, -46, 48, 54, -76, -62, 6, -24, -2, 68, -4, -18, 16, -80, -12, -78, 30, -52, 50, -10, -34, 72, 42, 22, 66, -36, -8, -56, 14, -44] PD[X[20, 2, 21, 1], X[3, 40, 4, 41], X[5, 64, 6, 65], X[7, 75, 8, 74], X[32, 9, 33, 10], X[11, 60, 12, 61], X[58, 13, 59, 14], X[15, 28, 16, 29], X[26, 17, 27, 18], X[82, 20, 1, 19], X[21, 39, 22, 38], X[70, 23, 71, 24], X[25, 47, 26, 46], X[48, 28, 49, 27], X[54, 29, 55, 30], X[31, 76, 32, 77], X[33, 63, 34, 62], X[6, 35, 7, 36], X[37, 25, 38, 24], X[39, 2, 40, 3], X[68, 42, 69, 41], X[43, 4, 44, 5], X[45, 19, 46, 18], X[16, 48, 17, 47], X[49, 80, 50, 81], X[51, 13, 52, 12], X[53, 79, 54, 78], X[30, 55, 31, 56], X[57, 52, 58, 53], X[50, 59, 51, 60], X[61, 10, 62, 11], X[63, 35, 64, 34], X[72, 65, 73, 66], X[42, 68, 43, 67], X[22, 69, 23, 70], X[66, 71, 67, 72], X[73, 36, 74, 37], X[75, 9, 76, 8], X[77, 57, 78, 56], X[14, 80, 15, 79], X[81, 44, 82, 45]] K12=K_G(1, 1, 2, 0, -1, 1) volume=20.032239211 Alexander=21 + 2/t^2 - 12/t - 12 t + 2 t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 4 (-2,-2) 2 (-2,-1) 20 (-1,-1) 8 (-1,0) 33 (0,0) 12 (0,1) 20 (1,1) 8 (1,2) 4 (2,2) 2 (2,3) Total rank : 113 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 20 crossings DT [6, 20, 18, -38, 36, 34, 24, 22, -30, 4, 2, 14, 12, -8, -16, -40, -28, 10, 26, -32] PD[X[6, 2, 7, 1], X[20, 3, 21, 4], X[18, 5, 19, 6], X[7, 38, 8, 39], X[36, 9, 37, 10], X[34, 11, 35, 12], X[24, 14, 25, 13], X[22, 16, 23, 15], X[17, 30, 18, 31], X[4, 19, 5, 20], X[2, 21, 3, 22], X[14, 24, 15, 23], X[12, 26, 13, 25], X[27, 9, 28, 8], X[29, 16, 30, 17], X[31, 1, 32, 40], X[33, 28, 34, 29], X[10, 35, 11, 36], X[26, 37, 27, 38], X[39, 33, 40, 32]] K13=K_B(2, 1,-2, 1, 2, -1) volume=18.6239839821 Alexander=9 + 2/t^2 - 6/t - 6 t + 2 t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 2 (-2,-3) 3 (-2,-2) 1 (-2,0) 4 (-1,-2) 10 (-1,-1) 2 (-1,0) 4 (-1,1) 2 (-1,2) 4 (0,-1) 15 (0,0) 4 (0,1) 6 (0,2) 4 (0,3) 4 (1,0) 10 (1,1) 2 (1,2) 4 (1,3) 2 (1,4) 2 (2,1) 3 (2,2) 1 (2,4) Total rank : 89 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 35 crossings DT[-54, 46, -58, -44, -22, -64, 34, -52, -68, -66, 62, -8, 40, 6, -4, 48, 16, 12, -20, 26, -60, 24, -56, 70, 32, -14, -50, -2, -28, -38, -42, -10, 36, -18, -30] PD[X[1, 54, 2, 55], X[46, 4, 47, 3], X[5, 58, 6, 59], X[7, 45, 8, 44], X[9, 23, 10, 22], X[11, 64, 12, 65], X[34, 13, 35, 14], X[15, 53, 16, 52], X[17, 69, 18, 68], X[19, 67, 20, 66], X[62, 22, 63, 21], X[23, 9, 24, 8], X[40, 25, 41, 26], X[6, 28, 7, 27], X[29, 5, 30, 4], X[48, 31, 49, 32], X[16, 33, 17, 34], X[12, 35, 13, 36], X[37, 20, 38, 21], X[26, 39, 27, 40], X[41, 61, 42, 60], X[24, 43, 25, 44], X[45, 57, 46, 56], X[70, 48, 1, 47], X[32, 49, 33, 50], X[51, 15, 52, 14], X[53, 51, 54, 50], X[55, 2, 56, 3], X[57, 28, 58, 29], X[59, 39, 60, 38], X[61, 43, 62, 42], X[63, 10, 64, 11], X[36, 66, 37, 65], X[67, 19, 68, 18], X[69, 31, 70, 30]] K14=K_B(2, 1, 0, 1, 0, -1) volume=16.662235002 Alexander=5 - 2/t - 2 t satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 1 (-2,-4) 1 (-2,-2) 2 (-2,-1) 2 (-1,-4) 4 (-1,-3) 2 (-1,-2) 6 (-1,-1) 4 (-1,0) 4 (0,-3) 6 (0,-2) 4 (0,-1) 11 (0,0) 4 (0,1) 2 (1,-2) 4 (1,-1) 2 (1,0) 6 (1,1) 4 (1,2) 1 (2,0) 1 (2,2) 2 (2,3) Total rank : 73 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 31 crossings DT[48, -14, -52, 26, -32, -60, 18, -46, -62, 10, -34, -42, -38, 6, -44, -4, 58, -22, 54, -24, 56, -28, -50, 2, -16, 30, -8, 40, 36, -20, -12] PD[X[48, 2, 49, 1], X[3, 14, 4, 15], X[5, 53, 6, 52], X[26, 7, 27, 8], X[9, 32, 10, 33], X[11, 61, 12, 60], X[18, 13, 19, 14], X[15, 46, 16, 47], X[17, 62, 18, 1], X[10, 19, 11, 20], X[21, 35, 22, 34], X[23, 43, 24, 42], X[25, 39, 26, 38], X[6, 27, 7, 28], X[29, 45, 30, 44], X[31, 4, 32, 5], X[58, 33, 59, 34], X[35, 23, 36, 22], X[54, 37, 55, 38], X[39, 25, 40, 24], X[56, 41, 57, 42], X[43, 29, 44, 28], X[45, 50, 46, 51], X[2, 48, 3, 47], X[49, 16, 50, 17], X[30, 51, 31, 52], X[53, 9, 54, 8], X[40, 55, 41, 56], X[36, 57, 37, 58], X[59, 20, 60, 21], X[61, 13, 62, 12]] K15=K_B(2, 1, 1, 1, -1, -1) volume=20.5051019337 Alexander=21 + 2/t^2 - 12/t - 12 t + 2 t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 2 (-2,-3) 3 (-2,-2) 1 (-2,0) 4 (-1,-2) 16 (-1,-1) 2 (-1,0) 4 (-1,1) 2 (-1,2) 4 (0,-1) 27 (0,0) 4 (0,1) 6 (0,2) 4 (0,3) 4 (1,0) 16 (1,1) 2 (1,2) 4 (1,3) 2 (1,4) 2 (2,1) 3 (2,2) 1 (2,4) Total rank : 113 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 33 crossings DT[22, -46, -16, -56, 30, 42, -28, 54, -4, 64, -50, 48, 2, -62, 58, 8, -14, 18, -20, 26, -60, 12, -40, 24, -66, 38, -34, -6, 32, -10, 44, -52, -36] PD[X[22, 2, 23, 1], X[3, 46, 4, 47], X[5, 17, 6, 16], X[7, 56, 8, 57], X[30, 9, 31, 10], X[42, 12, 43, 11], X[13, 28, 14, 29], X[54, 16, 55, 15], X[17, 5, 18, 4], X[64, 20, 65, 19], X[21, 51, 22, 50], X[48, 24, 49, 23], X[2, 26, 3, 25], X[27, 63, 28, 62], X[58, 30, 59, 29], X[8, 31, 9, 32], X[33, 14, 34, 15], X[18, 35, 19, 36], X[37, 20, 38, 21], X[26, 39, 27, 40], X[41, 61, 42, 60], X[12, 44, 13, 43], X[45, 41, 46, 40], X[24, 48, 25, 47], X[49, 66, 50, 1], X[38, 52, 39, 51], X[53, 35, 54, 34], X[55, 6, 56, 7], X[32, 58, 33, 57], X[59, 10, 60, 11], X[44, 61, 45, 62], X[63, 52, 64, 53], X[65, 37, 66, 36]] K16=K_B(2, 1, 2, 1, -2, -1) volume=22.9190981777 Alexander=49 + 6/t^2 - 30/t - 30 t + 6 t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 2 (-2,-3) 7 (-2,-2) 1 (-2,0) 4 (-1,-2) 34 (-1,-1) 2 (-1,0) 4 (-1,1) 2 (-1,2) 4 (0,-1) 55 (0,0) 4 (0,1) 6 (0,2) 4 (0,3) 4 (1,0) 34 (1,1) 2 (1,2) 4 (1,3) 2 (1,4) 2 (2,1) 7 (2,2) 1 (2,4) Total rank : 185 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 37 crossings DT[22, -56, 18, -16, 34, 32, 48, -50, 36, -38, 72, 2, -54, 52, 14, 64, 10, -62, 6, 60, -20, -70, 28, -66, 30, -44, -68, -24, -74, 40, -4, 8, -12, -46, 26, -42, -58] PD[X[22, 2, 23, 1], X[3, 56, 4, 57], X[18, 6, 19, 5], X[7, 17, 8, 16], X[34, 9, 35, 10], X[32, 11, 33, 12], X[48, 14, 49, 13], X[15, 51, 16, 50], X[36, 17, 37, 18], X[19, 38, 20, 39], X[72, 22, 73, 21], X[2, 24, 3, 23], X[25, 55, 26, 54], X[52, 28, 53, 27], X[14, 29, 15, 30], X[64, 32, 65, 31], X[10, 33, 11, 34], X[35, 63, 36, 62], X[6, 37, 7, 38], X[60, 40, 61, 39], X[41, 20, 42, 21], X[43, 71, 44, 70], X[28, 45, 29, 46], X[47, 67, 48, 66], X[30, 50, 31, 49], X[51, 45, 52, 44], X[53, 68, 54, 69], X[55, 25, 56, 24], X[57, 74, 58, 1], X[40, 60, 41, 59], X[61, 4, 62, 5], X[8, 63, 9, 64], X[65, 12, 66, 13], X[67, 47, 68, 46], X[26, 70, 27, 69], X[71, 43, 72, 42], X[73, 58, 74, 59]] K17=K_G(2,1,-2,-1,2,1) volume=23.396805316 Alexander=9 + 2/t^2 - 6/t - 6 t + 2 t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 1 (-2,-5) 2 (-2,-4) 1 (-2,-3) 6 (-2,-2) 4 (-2,-1) 4 (-1,-4) 6 (-1,-3) 4 (-1,-2) 24 (-1,-1) 16 (-1,0) 6 (0,-3) 8 (0,-2) 6 (0,-1) 37 (0,0) 24 (0,1) 4 (1,-2) 6 (1,-1) 4 (1,0) 24 (1,1) 16 (1,2) 1 (2,-1) 2 (2,0) 1 (2,1) 6 (2,2) 4 (2,3) Total rank : 217 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 37 crossings DT[20, 52, -46, -28, 42, -66, 64, 44, -68, 72, -34, 6, -14, 12, -22, 48, -54, -74, -18, -58, 16, 10, -62, 30, -4, 56, -32, 2, 50, 70, -40, 24, -26, -8, 60, 38, -36] PD[X[20, 2, 21, 1], X[52, 4, 53, 3], X[5, 46, 6, 47], X[7, 28, 8, 29], X[42, 9, 43, 10], X[11, 67, 12, 66], X[64, 14, 65, 13], X[44, 15, 45, 16], X[17, 69, 18, 68], X[72, 20, 73, 19], X[21, 34, 22, 35], X[6, 24, 7, 23], X[25, 15, 26, 14], X[12, 28, 13, 27], X[29, 22, 30, 23], X[48, 32, 49, 31], X[33, 54, 34, 55], X[35, 74, 36, 1], X[37, 18, 38, 19], X[39, 59, 40, 58], X[16, 41, 17, 42], X[10, 43, 11, 44], X[45, 63, 46, 62], X[30, 48, 31, 47], X[49, 4, 50, 5], X[56, 51, 57, 52], X[53, 32, 54, 33], X[2, 56, 3, 55], X[50, 57, 51, 58], X[70, 59, 71, 60], X[61, 41, 62, 40], X[24, 63, 25, 64], X[65, 26, 66, 27], X[67, 9, 68, 8], X[60, 69, 61, 70], X[38, 71, 39, 72], X[73, 36, 74, 37]] K18=K_G(2,1,-2,0,2,1) volume=17.009749601 Jones = -4 + 1/t^3 - 2/t^2 + 3/t + 5 t - 4 t^2 + 2 t^3 + t^4 - 4 t^5 + 6 t^6 - 6 t^7 + 6 t^8 - 4 t^9 + 2 t^10 - t^11 Alexander=3 + 1/t^2 - 2/t - 2 t + t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 3 (-2,-2) 2 (-2,-1) 10 (-1,-1) 8 (-1,0) 15 (0,0) 12 (0,1) 10 (1,1) 8 (1,2) 3 (2,2) 2 (2,3) Total rank : 73 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 16 crossings DT[22, -20, -18, 30, 28, 24, 2, -4, -26, -14, 12, 32, -16, 10, 8, 6] PD[X[22, 2, 23, 1], X[3, 21, 4, 20], X[5, 18, 6, 19], X[30, 7, 31, 8], X[28, 9, 29, 10], X[24, 11, 25, 12], X[2, 13, 3, 14], X[15, 4, 16, 5], X[17, 27, 18, 26], X[19, 14, 20, 15], X[12, 21, 13, 22], X[32, 24, 1, 23], X[25, 17, 26, 16], X[10, 27, 11, 28], X[8, 29, 9, 30], X[6, 31, 7, 32]] K19=K_G(2, 1, 0, -1, 0, 1) volume=22.384645541 Alexander=5 - 2/t - 2 t satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 1 (-2,-5) 2 (-2,-4) 1 (-2,-3) 4 (-2,-2) 4 (-2,-1) 4 (-1,-4) 6 (-1,-3) 4 (-1,-2) 20 (-1,-1) 16 (-1,0) 6 (0,-3) 8 (0,-2) 6 (0,-1) 33 (0,0) 24 (0,1) 4 (1,-2) 6 (1,-1) 4 (1,0) 20 (1,1) 16 (1,2) 1 (2,-1) 2 (2,0) 1 (2,1) 4 (2,2) 4 (2,3) Total rank : 201 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 34 crossings DT[46, -28, -50, 36, -20, 4, -66, -2, 60, -34, 52, -54, 56, -10, 12, -44, -16, 42, 24, -22, 8, -58, 62, 64, -30, 26, -40, 38, -6, 18, -32, 68, -14, 48] PD[X[46, 2, 47, 1], X[3, 28, 4, 29], X[5, 51, 6, 50], X[36, 7, 37, 8], X[9, 21, 10, 20], X[4, 11, 5, 12], X[13, 67, 14, 66], X[15, 2, 16, 3], X[60, 17, 61, 18], X[19, 35, 20, 34], X[52, 21, 53, 22], X[23, 54, 24, 55], X[56, 25, 57, 26], X[27, 11, 28, 10], X[12, 30, 13, 29], X[31, 44, 32, 45], X[33, 17, 34, 16], X[42, 35, 43, 36], X[24, 37, 25, 38], X[39, 22, 40, 23], X[8, 41, 9, 42], X[43, 59, 44, 58], X[62, 46, 63, 45], X[64, 47, 65, 48], X[49, 30, 50, 31], X[26, 51, 27, 52], X[53, 41, 54, 40], X[38, 56, 39, 55], X[57, 7, 58, 6], X[18, 59, 19, 60], X[61, 33, 62, 32], X[68, 63, 1, 64], X[65, 15, 66, 14], X[48, 67, 49, 68]] K20=K_G(2, 1, 1, -1, -1, 1) volume=24.655381040 Alexander=21 + 2/t^2 - 12/t - 12 t + 2 t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 4 (-2,-3) 6 (-2,-2) 1 (-2,-1) 2 (-2,0) 1 (-2,1) 16 (-1,-2) 30 (-1,-1) 4 (-1,0) 6 (-1,1) 4 (-1,2) 24 (0,-1) 49 (0,0) 6 (0,1) 8 (0,2) 6 (0,3) 16 (1,0) 30 (1,1) 4 (1,2) 6 (1,3) 4 (1,4) 4 (2,1) 6 (2,2) 1 (2,3) 2 (2,4) 1 (2,5) Total rank : 241 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 36 crossings DT[16, 48, -52, 38, 56, -24, 6, 68, -46, 64, -36, 54, -58, -12, 4, -2, 18, -20, 44, 60, 10, -62, 66, 32, -30, -70, 28, -42, 40, -26, -8, 22, 34, 72, -50, 14] PD[X[16, 2, 17, 1], X[48, 3, 49, 4], X[5, 52, 6, 53], X[38, 8, 39, 7], X[56, 10, 57, 9], X[11, 24, 12, 25], X[6, 14, 7, 13], X[68, 15, 69, 16], X[17, 47, 18, 46], X[64, 20, 65, 19], X[21, 36, 22, 37], X[54, 24, 55, 23], X[25, 59, 26, 58], X[27, 12, 28, 13], X[4, 30, 5, 29], X[31, 3, 32, 2], X[18, 33, 19, 34], X[35, 20, 36, 21], X[44, 38, 45, 37], X[60, 39, 61, 40], X[10, 42, 11, 41], X[43, 62, 44, 63], X[66, 45, 67, 46], X[32, 48, 33, 47], X[49, 31, 50, 30], X[51, 71, 52, 70], X[28, 54, 29, 53], X[55, 42, 56, 43], X[40, 57, 41, 58], X[59, 27, 60, 26], X[61, 8, 62, 9], X[22, 64, 23, 63], X[34, 65, 35, 66], X[72, 68, 1, 67], X[69, 51, 70, 50], X[14, 71, 15, 72]] K21=K_G(2, 1, 2, -1, -2, 1) volume=26.731842490 Alexander=21 + 2/t^2 - 12/t - 12 t + 2 t^2 satisfies Fox-Milnor Ranks in Alexander, Maslov bigradings : 4 (-2,-3) 10 (-2,-2) 1 (-2,-1) 2 (-2,0) 1 (-2,1) 16 (-1,-2) 48 (-1,-1) 4 (-1,0) 6 (-1,1) 4 (-1,2) 24 (0,-1) 77 (0,0) 6 (0,1) 8 (0,2) 6 (0,3) 16 (1,0) 48 (1,1) 4 (1,2) 6 (1,3) 4 (1,4) 4 (2,1) 10 (2,2) 1 (2,3) 2 (2,4) 1 (2,5) Total rank : 313 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 42 crossings DT[36, -30, 72, 26, -62, -46, 4, -80, -32, -84, 50, -38, -64, 40, -12, -58, 54, -18, 48, -6, -70, -68, -66, 60, -74, 76, 34, 78, 14, 2, -10, -24, 8, -44, -42, -28, 22, -20, 82, -16, 56, 52] PD[X[36, 2, 37, 1], X[3, 31, 4, 30], X[72, 5, 73, 6], X[26, 8, 27, 7], X[9, 63, 10, 62], X[11, 47, 12, 46], X[4, 14, 5, 13], X[15, 80, 16, 81], X[17, 32, 18, 33], X[19, 1, 20, 84], X[50, 22, 51, 21], X[23, 38, 24, 39], X[25, 65, 26, 64], X[40, 27, 41, 28], X[29, 12, 30, 13], X[31, 59, 32, 58], X[54, 34, 55, 33], X[35, 18, 36, 19], X[48, 38, 49, 37], X[39, 7, 40, 6], X[41, 70, 42, 71], X[43, 68, 44, 69], X[45, 66, 46, 67], X[60, 47, 61, 48], X[49, 74, 50, 75], X[76, 51, 77, 52], X[34, 54, 35, 53], X[78, 56, 79, 55], X[14, 58, 15, 57], X[2, 59, 3, 60], X[61, 11, 62, 10], X[63, 25, 64, 24], X[8, 65, 9, 66], X[67, 44, 68, 45], X[69, 42, 70, 43], X[71, 29, 72, 28], X[22, 74, 23, 73], X[75, 21, 76, 20], X[82, 78, 83, 77], X[79, 16, 80, 17], X[56, 82, 57, 81], X[52, 83, 53, 84]] K22=K_G(2, 1, 1, 0, -1, 1) volume=19.113083865 Alexander=15 + 1/t^2 - 8/t - 8 t + t^2 does not satisfy Fox-Milnor Ranks in Alexander, Maslov bigradings : 2 (-2,-3) 3 (-2,-2) 8 (-1,-2) 16 (-1,-1) 12 (0,-1) 27 (0,0) 8 (1,0) 16 (1,1) 2 (2,1) 3 (2,2) Total rank : 97 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 18 crossings DT[16, -28, -26, -24, -34, -32, 18, 2, 22, 12, 30, 14, -6, -4, -36, 20, -10, -8] PD[X[16, 2, 17, 1], X[3, 29, 4, 28], X[5, 27, 6, 26], X[7, 25, 8, 24], X[9, 34, 10, 35], X[11, 32, 12, 33], X[18, 14, 19, 13], X[2, 16, 3, 15], X[22, 17, 23, 18], X[12, 20, 13, 19], X[30, 22, 31, 21], X[14, 23, 15, 24], X[25, 7, 26, 6], X[27, 5, 28, 4], X[29, 1, 30, 36], X[20, 32, 21, 31], X[33, 10, 34, 11], X[35, 8, 36, 9]] K23=K_G(2, 1, 2, 0, -2, 1) volume=21.642574192 Alexander=43 + 5/t^2 - 26/t - 26 t + 5 t^2 does not satisfy Fox-Milnor Ranks in Alexander, Maslov bigradings : 2 (-2,-3) 7 (-2,-2) 8 (-1,-2) 34 (-1,-1) 12 (0,-1) 55 (0,0) 8 (1,0) 34 (1,1) 2 (2,1) 7 (2,2) Total rank : 169 Seifert genus : 2 Fibered : No L-space knot : No Tau : 0 Nu : 0 Epsilon : 0 after simplification it has 22 crossings DT[18, -32, -30, -28, -42, -40, -38, 20, 2, 26, 14, 36, 34, 16, -6, -4, -44, 24, 22, -12, -10, -8] PD[X[18, 2, 19, 1], X[3, 33, 4, 32], X[5, 31, 6, 30], X[7, 29, 8, 28], X[9, 42, 10, 43], X[11, 40, 12, 41], X[13, 38, 14, 39], X[20, 16, 21, 15], X[2, 18, 3, 17], X[26, 19, 27, 20], X[14, 22, 15, 21], X[36, 24, 37, 23], X[34, 26, 35, 25], X[16, 27, 17, 28], X[29, 7, 30, 6], X[31, 5, 32, 4], X[33, 1, 34, 44], X[24, 36, 25, 35], X[22, 38, 23, 37], X[39, 12, 40, 13], X[41, 10, 42, 11], X[43, 8, 44, 9]]