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ABSTRACT

One crucial function of a classroom, and a school more
generally, is to prepare students for future learning. Students
should have the capacity to learn new information and to
acquire new skills. This ability to “learn” is a core competency
in our rapidly changing world. But how do we measure ability
to learn? And how can we measure how well a school has
prepared their students to learn? In this paper we formally
pose the problem, and introduce a grounded theory of how
to measure ability to learn. Using simulations of students
learning we provide initial evidence that this theory provides
an elegant solution to this problem. We further validate our
ideas using real world data from 70k middle-school students
and show that our theory is more accurate and interpretable
than current state-of-the-art models of learning gains. We
consider our results a modest yet interesting first step for a
novel type of test.

1. INTRODUCTION

Large-scale, standardized tests typically measure knowledge
and skills that students already possess, such as reading com-
prehension and mathematical competency. However, these
tests overlook students’ abilities to acquire new knowledge
and skills. Could we instead measure how well a student
is able to learn? Measuring how well a school system has
prepared a student for learning is a particularly hard chal-
lenge and as such it remains elusive. PISA (Programme
for International Student Assessment — an international test
run every three years to evaluate educational systems), has
made it a goal of their 2024 innovative assessment to measure
ability to learn. How could such a test be scored?

Early research has shown that measuring ability to learn is
both important and difficult. Work by Schwartz et al. [18,
17, 19] has shown that assessments of students’ ability to
learn capture important information that assessments which
simply measure what a student knows fail to capture. In these
studies, students participated in two different educational
interventions, one designed to teach students factual content

in a manner that also prepared them for future learning, and
one designed to teach students factual content using more
traditional approaches. Standard measures of knowledge
found that regardless of the intervention, students in both
groups learned the same factual content. However, a second
type of assessment designed to measure students’ ability to
learn uncovered significant predictive differences.

Despite the potential, to the best of our knowledge, there are
no large-scale assessment that have attempted to measure
students’ ability to learn. In traditional tests, students get
questions correct or incorrect — a single random variable
that is traditionally modeled using Item-Response Theory
(IRT). In a learning test, on the other hand, students work
through learning experiences which produce two measurable
values: a prior (pre) and posterior (post) ability. All
learning experiences, especially relevant authentic ones, are
impacted by what a student knows when they start. A useful
model would enable measurement of student learning across
countries, schools-districts, and millions of students as they
engage in a necessarily wide variety of learning experiences.
Without a useful model it is hard (if not impossible) to pro-
duce desired and important analyses such as: (a) inferring
ability to learn from multiple learning experiences (b) discov-
ering issues of fairness in learning experiences (c) reasoning
about mixture effects within populations.

The prior-knowledge confound: Measuring learning-ability is
particularly difficult because it requires us to reason about
the impact of prior knowledge. For example, consider two
populations where students have the exact same ability to
learn but different levels of prior knowledge. Now imagine the
two populations are given the same learning experience. Both
populations will learn (recall they have the same learning
ability) but will have different outcomes on the same exam. In
practice most people model this relationship using a “linear”
model [22]. However, research has shown that the impact
of prior ability has important non linear properties [21, 15].
This is an instance of Simpson’s Paradox.

A core insight of this paper is to think of the difference be-
tween prior and posterior ability as being governed by popu-
lation specific parametric functions which we call Learning-
Gain Functions. These learning gain functions are nat-
urally incorporated in a fully Bayesian model of student
responses on learning ability tests. The main contributions
of this paper are:

1. We formalize, parametric Learning-Gain functions as a



way to model ability-to-learn tests.

2. We introduce an interpretable single-parameter Bayesian
family of Learning-Gain functions.

3. We show that this model is able to near-perfectly re-
cover learning ability in a complex, simulated dataset.

4. We demonstrate that this model outperforms other
single- and multi-parameter models on two real-world
datasets.

5. We show the practical value of this model by com-
paring real-world schools on their “ability to learn” as
estimated by our model

This work is a first attempt at addressing the need for models
of student “ability to learn” that can be employed in large-
scale assessments such as PISA 2024. The initial results are
promising, and we hypothesize that the model will generalize
broadly to different learning tests.

1.1 Population Learning-Ability Tests
Learning-ability-tests are built to directly measure the “abil-
ity to learn” of a population. The most straightforward
format for such an exam has learners complete a set of learn-
ing tasks and for each task j, the learner 7 is given a pre and
post test — these fence-post the learning gains. We define
alpha (a;,;) to be a student’s prior ability on the task and
beta (8;,;) to be the student’s posterior ability.

We seek to measure ability-to-learn for a population (or an
individual as a singleton population) as a number, which we
call 6. This measure should generalize and explain ability-
to-learn of the population on a different learning-task. In
order to learn a generalizable § we must learn to separate
ability-to-learn from task specific effects (such as if the task
is easier for beginners to learn than for advanced students
etc). We use the notation phi (¢;) to represent task specific
parameters for task j.

We propose that when a student engages with a learning
task, the learning-ability of the student (6) interacts with
task-specific-parameters (¢;) to produce a learning-gain-
function (f;) which determines how prior-abilities will map
to post-abilities. As such a function oriented probabilistic
model of a single student, from a population with learning-
ability 6, working on a series of learning tasks would look
like the following;:
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Learning-ability tests stand in contrast to Intelligence Quo-
tient (IQ) exams as measurement takes place on either end
of a learning experience. 1Q tests on the other hand measure
aptitude, and while this often requires learners to engage in
complex tasks the goal is to measure ability on the task.

1.2 Prior work

This work builds on a rich and broad literature of work on
measuring ability-to-learn which extends for decades [5, 13,
9]. Evaluation of students’ ability to learn is often treated
as equivalent with change in knowledge over time, typically
with a pretest and posttest. Common approaches include
comparison of raw gain scores (posttest minus pretest), anal-
ysis of posttest scores with pretest scores as a covariate, and
analysis of gains scores with pretest scores as a covariate.
Each of these methods has strengths and weaknesses, al-
though there is evidence that analysis of gain scores with
pretest scores as a covariate is the best of these methods
when certain assumptions are met [6]. As such, we included
this model (Linear Multi-Theta) in our model comparison
on real-world data and find that it doesn’t fit as well. Ad-
ditionally, while the intercept and slope parameters in the
Linear Multi-Theta model can be interpreted as describing a
population’s ability to learn, it is not immediately clear how
they might be used to compare different populations. Both
the Learning-Gain-Decay and Learning-Gain-Bump models
estimate ability to learn with a single parameter, avoiding
this problem. Taken together, these factors suggest that it
would be prudent to move away from the Linear Multi-Theta
model if our goal is to estimate ability to learn.

Another approach to estimating student ability to learn is
to characterize “learning curves” [7]. This requires repeated
sampling over time so the learning rate can be determined
from the shape of the curve, where students with higher
ability to learn are characterized by steeper learning curves,
and students with lower ability to learn are characterized by
shallower curves. However, the shape of a learning curve does
not reveal the full interaction between prior and posterior
knowledge. We would expect two students with the same
ability to learn but different levels of prior knowledge to
progress at significantly different rates. Additionally, collect-
ing enough data to plot a learning curve requires repeated
measurement that is infeasible in most educational settings.

NWEA has looked into how to quantify learning gains [12, 11]
and most recently [21]. Their contemporary models project
student abilities into norm grade levels. [16, 8]. Anderman et
al make initial steps into translating learning-gain research
into a bayesian model [1]

Significant research has focused on the promise and perils of
using student gain data as an outcome—as a good indicator
of teacher effectiveness. There is a book on the subject of
evaluating teachers by measuring their value added: Evalu-
ating Value-Added Models for Teacher Accountability [10].
We remind the reader that it is necessary to be careful and
accurate in measuring student learning.

There is a rich mathematical history of reasoning about
functional mappings. This field of mathematics draws from
domains as diverse as 3D geometry [14, 3] to neocortical
circuitry [20]. This is, to the best of our knowledge, the first
use of functional maps in measuring learning.

1.3 Learning Gain Functions

In traditional IRT, each interaction between a student and a
question (aka item) produces a single number. In a learning
test, each learning-experience produces two numbers («; ;
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Figure 1: Simulations of four populations on the same task.
Each graph represents pre/post abilities for one population.
Each point represents one student. Countries in the columns
have the same learning function. L. = p post minus pre.

and (; ;). This poses a modelling challenge. How do we
model learning, in a way that elegantly considers the effect
of prior knowledge («;,;)?

We found it natural to resolve this problem by thinking of
the learning experience as being a reflection of an underlying
function which we call learning-gain-function. A learning-
gain-function is a population wide mapping of student pre-
conditions to post-conditions. In a learning-ability-test, we
would like to compare populations on their ability to learn,
and as such it seems like it would be best to compare the
countries by their functional mapping. Thinking of the
mapping of prior-ability to post-ability is incredibly useful if
we want to build a Bayesian model of learning-ability.

To articulate this point, consider the four different popula-
tions learning on the exact same learning task (Figure 1).
For all four populations we plot prior abilities and poste-
rior abilities. The two populations on the left both have
the same learning “function” on this task. If you had two
students with the same prior ability, after the learning-task
they would have (within noise) the same post ability. As
a confound, they have different prior ability distributions.
Typical measures of learning gains would compare these two
populations based on the average difference in post ability
versus pre ability (L shown on the figure). As such they
would look very different even though the two populations
have the same learning-gain-function. The same is true for
the two populations on the right. They also have the exact
same learning-gain-function, but as a result of different prior
knowledge distributions, typical metrics make them seem
quite different. By modelling a learning-gain-function we
neither benefit, nor penalize populations for having different
prior distributions. Instead we compare learning in a way
that is agnostic to previous knowledge.

The learning function f is “parameterized” by the ability-to-
learn parameter 6 and task specific parameters, ¢:

Joi0; (i) = Bij

In the case of PISA, this theta should represent “ability to
learn” for a specific population. The function, importantly,
does not have to be linear — and in fact ample evidence
shows that it should not be. Note that, a; ; and §; ; can be
estimated using standard item-response theory.

This formalization lends some insight into how we can deal
with the different levels of prior knowledge between popula-
tions. At this point we haven’t made any claims about what
the function looks like. What is an appropriate parametric
form of a learning-gain function?

2. SIMULATING LEARNING

To begin the process of understanding the family of functions
for how much students learn during a task, we built a series of
simulators in python that attempt to match as realistically as
possible the process of learning during a task. The simulator
has fake students learn through the process of working on
fake items, where the learning and progress at each minute
is governed by the interaction between a student’s prior
knowledge and the difficulty of the items (an assumption
loosely based on the zone of proximal development). This
simulation is not perfect, but it provides us with a starting
point for building a theory of ability to learn. It is simple,
and makes it possible to observe all the factors that impact
changes in knowledge, including variables which are often
unobservable like learning ability.

These simulations have the added benefit of building a falsi-
fiable condition for any model which tries to estimate ability
to learn. l.e., any good model should be able to describe
this synthetic data. While ability to describe synthetic data
is evidence in support of a theory, it is a necessary but not
sufficient condition. The final test would be to show that it
also works with real world data.

Figure 1 shows a simulation of 2,000 students learning in four
countries via a single task which is heavily biased towards
"beginners learn more”. The countries in the right column
both have the exact same learning function, but because
their students have different priors, they are very hard to
distinguish that they have the same learning ability.

The main take away at this point is to confirm what we
believed from prior work: average “ability” gain is not a
very useful metric. Even for countries with the exact same
learning rate we observe very different average gains (L)
when priors are different.

3. THEORY OF LEARNING FUNCTIONS

If we could come up with an equation for that function (aka
the form) we could formalize our measurement of ability-to-
learn. In the example from Figure 1 it feels like a “polynomial”
fits f well — but that turns out to be a bit misleading. The
learning-experience in that figure represents one where “be-
ginners learn more.” If we change the learning task to be one
where “medium level students learn more” the function is not
well fit by a polynomial.
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Figure 2: The same population on three different tasks. Left: a task on which beginner students learn more. Middle: a task on
which medium students learn more. Right: top students learn more. Points are simulations pre-vs-learn of different students.

If we revisit our simulations and consider “pre vs learn-
delta” as opposed to “pre vs post” we can gain insight into
the functional form. Here we define learn-delta to be an
individuals improvement from post to pre on the learning-
task (B8; — a;). Figure 2 shows the “pre vs learn-delta” for
three different tasks, produced by the simulation, one where
beginners learn more, one where medium students learn more,
and one where students with advanced prior knowledge learn
more.

The graph in the middle (medium students learn more) resem-
bles a “Gaussian” bump, whereas the graphs on the left and
right look like exponential decay and growth, respectively.
However, upon further inspection, we note that all of the
graphs can be represented by an equation with a Gaussian
bump. The exponential graphs could be considered to be
left and right legs of a bump.

In order to build a functional form that matches all three
scenarios (while appreciating that the “beginners learn more
is much more common”) we propose a simple parametric
form which can describe all three, the learning-gain function
family:

Learning-Gain-Bump Family: The function of a stu-
dent i from population j with learning ability 0, learning
on task k with parameters ¢ is:

_(a—op)?
fos(@)=a+06-e 2 =f

(1)

Where:

a is prior ability of student i on task k

[ is posterior ability of student ¢ on task k

0 is “ability to learn” of population j

¢ is a vector of two task k specific constants.

In this model larger values of learning-ability () scale up
the Gaussian shaped bump.

We note that in practice most learning experiences tend to
have the property that “beginners learn more” and as such an
exponential decay function should often work well in practice.
As such we also consider the Learning-Gain-Decay Family:
foola) = at(a+¢1)~" + ¢2

Inference is performed using a PyTorch implementation of
the model, and Adam optimization to minimize the Mean
Squared Error in predicting posterior (3) abilities.

4. EVALUATION

While the Learning-Gain function family seems reasonable
as a hypothesis. In order to test its utility as a basis for
item response theory on learning-ability, we evaluate on both
simulated data with known learning-abilities and real-world
data.

4.1 Simulated Evaluation

To evaluate we generated two tasks, and for each task sim-
ulated 2000 students from eight countries with a range of
parameters: most importantly a single parameter which rep-
resented the latent ability to learn of a student from that
population.

To evaluate, we build an inference algorithm to take the
observed data produced by the simulations (the pre/post
abilities of each student) and attempt to infer single value 6,
for each population j using the generative model in Equation
1. Recall that the simulations are not generated from our
assumed function, rather it is a product of a zone-of-proximal
development rather-complex simulation.

The Bayesian model, which estimates learning-ability via
learning-gain-functions, is able to perfectly back-out “popu-
lation ability to learn” from such simulated data (For both
tasks with eight countries, R* > 0.99). In contrast a linear
function was not able to fit the data nearly as well. For the
task that was good for beginners it performed reasonable
(R? = 0.92) whereas for the task that was good for medium
prior knowledge the model was predictably unable to fit the
data (R? = 0.81). While this is impressive result especially
considering the complexity of the simulation, in order to
consider this model useful we would like it to be able to make
predictions on real-world data.

4.2 Evaluation on Real-World Data

We trained the Learning-Gain-Fn model on two real-world
datasets: NWEA and ECDL. The NWEA dataset contains
69612 students from 330 schools in Grade 7 whose reading
level was assessed twice (pre test and post test) using item-
response theory, once in Winter and again in Spring 2017.
The ECDL dataset contains data from 379 undergraduate
students at the University of Alcald (Spain) [4]. Scores
for each student include four pretests and four posttests
corresponding to distinct learning modules.

We compared the Learning-Gain-Fn model to a number
of other plausible models: a linear model, a second-order
polynomial, an exponential-decay model, and a linear model



Table 1: Results on Real-World Data

Model Parameters per Population Formula NWEA Test-Set MSE ECDL Test-Set MSE
Linear 1 A; = a1 + 05 56.9 0.45
Polynomial 1 A; = ¢103 + ¢ocr; + 0, 56.0 0.47
Learning-Gain-Decay 1 Ay =0(a; + ¢1)_1 + @2 54.9 0.44

(e —1)?2
Learning-Gain-Bump 1 A;j=0;-e 72 53.1 0.44
Linear Multi-Theta 2 A = aibj, + 05, 55.1 0.44
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Figure 3: The simple model proposed by the Learning Gain
Bump Family allows for very accurate prediction of latent
ability to learn from the complex simulation.

with two parameters per population. (See Table 1 for model
details.) Our primary goal was to identify a model that could
best capture “ability to learn” in a single parameter across
a variety of populations and testing scenarios. Estimation
with a single parameter is important because it is more-
easily interpreted—a higher value corresponds to a higher
ability to learn. Each of the models we evaluated estimates
“ability to learn” with a single parameter where higher values
correspond to better learning ability. The exception to this
rule is the Linear Multi-Theta model, which estimates ability
to learn using two parameters. (See Related Work for an
explanation of why this model was included.)

To compare models, we held out 10% of the data from each
dataset and computed the mean-squared error when different

models made predictions about the missing data.

Notably, the Learning-Gain-Bump model outperforms all
models on predicting held-out data, including the Linear
Multi-Theta model. Full results are reported in Table 1. This
suggests that “ability to learn” in these two cases followed a
parametric form best explained by a more nuanced learning-
gain function. While the gains in MSE are modest, we
hypothesize that for some datasets, especially ones where
the learning tasks most benefit medium strength students,
the linear model will break down. We also note that the
Learning-Gain-Decay and the Learning-Gain-Bump function
performed very similarly — which indicates that all the tasks
in this data were ones where ones where beginners learned
the most.

Figure 4 shows the shape of the learning-gain-fn for different
grade levels in the NWEA dataset between Winter and Spring.
For every one of the 330 schools in the dataset we can now
compute the ability-to-learn (6) of the students in their
population. We note that, as shown in Figure 4(b), the
distribution of s appears to be Gaussian. Figure 4(a) also
includes the learning-gain-fn for two of the top schools in the
NWEA dataset. We note that it is impressive how much of
ability-to-learn can be explained by which school a student
went to. In the top schools (by learning-ability) students with
low, medium and high prior ability substantially improve
between the pre and post test.

These results are preliminary. The robust model of ability-
to-learn presented in this paper will open up deeper analysis
into learning in a wide range of contexts: from short tests of
learning ability to evaluations of ability-to-learn in schools.

S. LIMITATIONS

Ability to learn is unlikely to be a single parameter:
It is highly unlikely that a student’s ability to learn can
be captured in a single number. However, this simplifying
assumption proves to be convenient and useful. Often, the
amount of data available to estimate parameters is small,
making a model with few parameters attractive. Additionally,
estimating ability to learn with a single parameter results
in a model that is maximally-interpretable—the higher the
number, the better the ability to learn.

There is a three-month gap between testing periods
in the NWEA data: Our hypotheses about student ability
to learn are based on a simulation of student learning that
occurs over the course of a day. In testing these hypotheses
we relied on real-world datasets that measured learning over
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between student abilities and ability-to-learn

significantly-longer time period. For example, the two tests
in the NWEA dataset that we used to measure ability to
learn occurred approximately three months apart. Despite
this fact, our model still fit the real-world data better than
any alternative model, providing a measure of reassurance.

6. DISCUSSION

Modelling individual students’ ability to learn: The
models in this paper estimate ability to learn at the group
level. However, there are many cases where estimating in-
dividual students’ abililty to learn would be useful as well.
Due to the small number of datapoints per student, this
could prove challenging. However, a hierarchical model that
assumed individual students’ abilities to learn were governed
by a strong group-level prior could overcome this problem.

Incorporating Pre/Post Tests: Given the function, we
can incorporate this ability to learn into the traditional IRT
process before and after. Specifically, the probability that a
student ¢ gets an item k right on the pre test should be, under
the IRT-2PL: p;r = o(a; — di) where dy, is the difficulty of
item k and «; is the same alpha; that we used in our learning
model. o is the sigmoid function. Similarly the probability
that student ¢ gets a item k correct on the post test would
be: pix = o(Bi — di) where B; is the posterior ability of
the student after the learning task. In the case where pre-
post tests are real valued, we can use the logit-normal IRT
proposed by Arthurs et al [2].

Fairness and Mixture Models: A Bayesian model of
learning-gain-functions can do much more than simply infer
ability-to-learn from pre-post tests. It would also allow for
researchers to disentangle mixture distributions. This would
allow researchers to identify sub-population effects within
a larger population. Similarly, a robust model of ability-
to-learn can be the basis of ensuring that a learning-task,
and/or an education system is fair to different demographics.

Learning The Learning-Gain Function: In this paper
we have modeled ability to learn as a parameter in a family of
learning functions. This family of functions is Gaussian-like,
a choice that was informed by observing the outcomes of a
theoretically-grounded simulation. While this choice proved
to have the lowest error, it is likely that another choice could
offer improvements. Rather than trying a number of models,

each with its own assumptions, an alternative approach would
be to use a small neural network to learn the model directly
from the data.

Neural networks are universal function approximators, which
means a small neural network should be able to learn the
function family that serves as the best model that incorpo-
rates 0, ¢, and «. Fears that neural networks are black-box
algorithms that lack interpretability do not apply in this
case—since the number of parameters is small, the learned
function can be visualized directly across all values of the
parameters. This approach would combine the flexibility of
neural networks with the transparency and interpretability
of the current models.

7. CONCLUSION

“Learning how to learn” is considered an essential skill for
the 21st century [23]. Given the rapid pace of technological
development, this is one of the most valuable skills an edu-
cational system can provide for its students. In recognition
of this fact, the PISA 2024 test will contain an experimen-
tal section that has been explicitly designed to measure
students’ ability to learn. However, few assessments have
been explicitly designed to gauge this abililty, meaning that
the community lacks models that are capapble of directly
estimating this skill. In this paper we introduce a model
that estimates student ability to learn using a single param-
eter. This model is more accurate at estimating student
change in knowledge than other competing single- and multi-
parameter models on two real-world datasets. Additionally,
it is able to perfectly recover “ability to learn” from a com-
plex, theoretically-grounded simulation of student learning
over time. We present this work to demonstrate the value in
explicitly modeling this skill, and we propose this model as a
first step towards a more complete theory of understanding
ability to learn.
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