
BlueBook: A Computerized Replacement for Paper Tests in
Computer Science

Chris Piech
Stanford University

Stanford, CA
cpiech@stanford.edu

Chris Gregg
Stanford University

Stanford, CA
cgregg@stanford.edu

ABSTRACT
This paper presents BlueBook, a lightweight, cross-platform, computer-
based, open source examination environment that overcomes tra-
ditional hurdles with computerized testing for computer science
courses. As opposed to paper exam testing, BlueBook allows stu-
dents to type coding problems on their laptops in an environment
similar to their normal programming routine (e.g., with syntax
highlighting), but purposefully does not provide them the ability
to compile and/or run their code. We seamlessly transitioned from
paper exams to BlueBook and found that students appreciated the
ability to type their responses. Additionally, we are just beginning
to harness the benefits to grading by having student answers in
digital form. In the paper, we discuss the pedagogical benefits and
trade-offs to using a computerized exam format, and we argue that
both the students and the graders benefit from it.

KEYWORDS
Computerized Exam; Assessment; Pedagogy
ACM Reference Format:
Chris Piech and Chris Gregg. 2018. BlueBook: A Computerized Replacement
for Paper Tests in Computer Science. In SIGCSE ’18: SIGCSE ’18: The 49th
ACM Technical Symposium on Computer Science Education, February 21–
24, 2018, Baltimore, MD, USA. ACM, New York, NY, USA, 6 pages.
https: //doi.org/10.1145/3159450.3159587

1 INTRODUCTION
Although it is not universal, most university introductory com-
puter science courses give traditional paper exams, asking students
to hand-write code for the problems that test programming abil-
ity. Pedagogically, there are legitimate reasons for having students
hand-write code. However, hand-written code does have its down-
sides, including the tedious nature of undoing (hand-erasing) in-
correct work, messy handwriting (leading to longer grading times),
and space limitations on paper. More importantly, students who are
used to typing code for their assignments are forced to write code in
a completely different manner when taking paper-based exams, and
this can be stressful and does not necessarily assess the students
accurately. Additionally, grading handwritten exams cannot benefit
from automatic grading tools, which can be tremendously helpful
as course enrollments escalate. In this paper, we present BlueBook,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’18, February 21–24, 2018, Baltimore , MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159587

a lightweight, cross-platform, computer-based, open source exami-
nation environment that students can run on their laptops. There is
nothing particularly fancy about BlueBook (see Section 3), though
it does include public-key password-protection (so the students can
download exams), encrypted local backups, and the ability to auto-
matically submit exams to a server with a historical log of student
work during the exam. BlueBook also provides syntax highlight-
ing for code writing, but we purposely decided not to include any
ability for students to compile and/or test their code (see Section 5).

With BlueBook, we believe that we have finally reached a point
in our courses where computerized testing is a better assessment
tool than paper-based testing. Our computer science department
experimented with a computerized testing framework roughly a
decade ago and at that time we were disappointed with the results.
This was primarily due to two reasons: scaling the testing to large
classes was difficult, and allowing the students to compile and test
their code inhibited students’ ability to finish the exams.

The scaling issue was almost purely technology-limited. At that
time, not all students had laptops, and battery-technology was
also at a point where most laptops could not hold a charge for an
entire 3-hour final exam. Therefore, the tests were administered in
a computer lab on campus, and this presented logistical problems
for large classes. Now, 100% of our students have laptops, and while
there are still some battery issues, we have found that in a class
of 300 students, approximately 10% needed access to mains power,
which was easy to provide through the use of power strips and
extension cords.

The other main reason we ended the original computerized test-
ing experiment was because we found that students who were able
to compile and test their code spent too much time on getting the
code to work. They were not finishing the exam problems and were
frustrated when they could not produce fully-working solutions.
Although we would still like to explore a modified compile-and/or-
test framework, for BlueBook we decided to only allow students
rudimentary syntax highlighting, and we found that students were
able to complete the exams on time. See Section 5 for a discussion
on allowing students to compile their code.

In this paper, we demonstrate how BlueBook can be both benefi-
cial to students and graders, and we present pedagogical arguments
for the use of a computerized testing environment. We also present
evidence of our successful transition away from paper-based exams,
as well as some of the remaining challenges that can be expected
from using this type of test-taking system.

2 RELATEDWORK
Computer-based testing (especially in computer science) has a long
history of research and experimentation. The main focus of much
of the research has been regarding student performance: is there a

https://doi.org/10.1145/3159450.3159587
https://doi.org/10.1145/3159450.3159587
https://doi.org/10.1145/3159450.3159587

quantitative difference in student performance between paper ex-
ams and computerized exams? Although this paper does not focus
on that aspect particularly, we did not want to embark on our project
without understanding the potential ramifications of student per-
formance if we transitioned to computerized exams. Most of the
research indicates that student performance is comparable between
paper and computerized exams, and in many cases assessment was
improved with the use of novel computerized tests. For example,
in the early 1990s, Syang and Dale describe “Intelligent Tutoring
Systems” that uses an adaptive test to assess performance[21], and
adaptive testing is used on some prominent standardized tests, such
as the SAT and the GRE[17, 24] We wanted BlueBook to model a
paper-based exam as much as possible, though in Section 8 we
discuss modifications that will diverge from this idea. There are
also many reports on web-based testing[20, 26] and tablet-based
testing[4, 23]. Because of the limited security available with web
browsers, and because of the necessity for Internet access for web-
based tests, we did not pursue a web-based model. We also wanted
a test that was accessible by all of our students, and 100% of our stu-
dents have laptop computers, so we decided to make it a Java-based
program that could run on typical laptop computers.

Grissom et al.[8], and Lappalainen et al.[13] both reported that
computer-based alternatives to paper tests gave students a better
chance to fix errors, although in both experiments students were
allowed to compile and test their code. As we discuss in Section
5, we purposefully did not allow students to compile or test their
code, but this is a possible extension of the project.

Most of the research we have read indicates that there are no
significant differences in performance between paper and comput-
erized tests, particularly in early programming classes[3, 9, 12, 16,
19, 22, 23]. There are further studies that show distinct benefits
to computer-based testing[11, 14, 25], and others that claim com-
puterized testing has gender-equalization benefits[3, 25]. However,
there are some reports that computerized testing can be detrimental,
particularly when general access to computers (based on socioeco-
nomic and cultural factors) was taken into account[15]. Because
our students already use laptops on a daily basis, access is not an
issue, but we think more research could be done to investigate this
concern.

Another concern of ours was the student perception of a com-
puterized test versus a paper-based test. Students are used to taking
paper exams for many of their classes, but they have also taken
many computerized standardized tests in their academic path, as
well. We were also concerned about their anxiety regarding com-
puterized exams. There have been a number of studies to address
student perception and anxiety, and they predominantly show that
students prefer computer-based exams[6, 7]. Some studies show
mixed results, potentially based on gender and familiarity with
computers in general[10], but others claim that there are benefits
to taking a computerized exam for low-achieving students[18].

3 BLUEBOOK DETAILS
BlueBook is a Java program for administering exams. The program
runs in full-screen mode (to inhibit students from attempting to use
other programs, or the Internet), as can be seen in Figure 1. Students
choose from among the problems listed at the top of the screen,
and the question appears on the left side of the screen with a basic
editor for answers on the right side of the screen. The questions can
include both formatted text and graphics, and answers are typed

into the editor. Code answers can be syntax-highlighted based on
programming language. There is a count-down timer at the top of
the screen, and this can be modified for different groups of students
taking the exam (e.g., students who are allowed extra time can get
an exam with a longer timer). BlueBook can be set up to either stop
the test at the end of the timer, or it can simply act as a reminder.

Creating a BlueBook exam is straightforward, with problems
written in basic HTML and answer starter code in plain text. In-
structors run a separate Java program that creates the exam data
with a given password, time limit, and other constants (e.g., a server
address and directory location for results), and the exam data is then
packaged with the BlueBook exam program. Students can download
the exam data and BlueBook program prior to the exam. The exam
data is encrypted with a public/private key encryption that would
make it materially impossible for students to determine the ques-
tions before the exam time. Students do not need Internet access
during the exam itself, though they submit the exams at the end
via the Internet (or they can copy it to a flash drive for submission,
if necessary).

When the exam is administered, students are given a password
to begin the exam. BlueBook backs up student responses at an
instructor-defined time interval (we have found that every 30 sec-
onds provides adequate granularity), and the entire history of stu-
dent answers is uploaded to the server (see Section 8, which dis-
cusses using this historical data). The backup is also encrypted with
public key encryption.

During the exam, BlueBook keeps the computer screen max-
imized and does not allow students to exit out of the program
without closing it. We have also disabled switching to other pro-
grams, and BlueBook is the only program that can run during the
exam. That said, there are potential ways for students to break the
system (e.g., with a Virtual Machine), but we have done what we
can to mitigate the potential for cheating.

When students finish the exam, they can submit the exam to a
server automatically, which utilizes the scp protocol. Students do
need Internet access for this step, but in a class of 400+ students, we
did not find any issues with submissions. If students can’t submit
online, they can email the solutions, or provide them to us on a
flash drive. Students receive an email receipt for their submission
and the encrypted history is also kept on their laptops in the event
that the submission did not get properly saved on the server.

If BlueBook crashes while a student is taking the exam, there
is also a Crash Recovery program that can be used to retrieve the
encryped answers and return the student to the exam. This requires
an additional password that instructors or TAs type in (so the
student cannot recover the data on his or her own).

Once the answers are received on the server, instructors can
extract the data to either json or plain text format for grading.
We have created an additional utility that produces PDF files for
uploading into a grading program (e.g., Gradescope[1]).

As BlueBook is open source, features can be added or modified
as necessary, and we hope that other developers add interesting
features as the programmatures. Please email the authors for access
to the current source code.

4 PRACTICAL CONSIDERATIONS
In this section we discuss the practical reasons we have decided to
transition to BlueBook from a paper-based exam system. The initial
inspiration for BlueBook arose from the simple desire to reduce the

Figure 1: BlueBook Screenshot. The program runs in full screen mode, and prohibits students from switching between pro-
grams. Problems are stated on the left, and students answer on the right. Answers can be syntax-highlighted based on pro-
gramming language.

amount of paper being used, and to minimize the logistical issues
that using paper entails. Upon consideration of the ramifications of
a digital exam, we quickly realized that there were numerous areas
where we could benefit from the idea.

Our paper-based workflow included time consuming printing
and scanning (we use an online grading system that accepts scanned
PDF exams), and it seemed feasible to cut out the analog steps on
both ends: if producing the exams is digital, and grading the exams
is digital, we reasoned that it would be ideal to keep the exam
experience digital, as well. For a 400 student class (which is about
the average size of the introductory courses at Stanford), a 10-page,
double-sided exam produces 2000 pages (four reams!) of paper. To
physically produce an exam takes a significant amount of time,
even if the printing and copying technology works perfectly. Once
the exam is over, the scanning process involves removing staples
(and keeping track of the loose pages of the exams), and running
the exams through a scanner. Our department has an excellent
scanner, but for large classes this process can take many hours,
and getting the scanner to produce readable scans reliably often
requires fine-tuning the scanner settings and some good luck.

The exam-taking process itself can also benefit from a computer-
based exam. BlueBook is secure enough to allow students to down-
load the encrypted questions ahead of time, so students can come
into the exam, sit down, and start the exam immediately upon
receiving the password. There is no need to hand out the exam,
although we do allow students to use scratch paper, which is freely
available around the exam room. Students do need to use their
own laptops to take the exam, but we found that less than 10% of

students needed access to power-points for their computers, and
we were able to accommodate that even for very large classes. The
timing of the exam is easier to manage, as well: students who show
up a few minutes late will have their own timer on the exam and
(if allowed) can simply take the extra minutes at the end of class to
finish. This completely fixed the issue of trying to pry the exams
from students at the end of the exam. Additionally, students who
receive extra time on an exam can have their own data files that
give them a timer appropriate for their accommodations. Because
the exams are submitted wirelessly (and this is the only time stu-
dents need Internet access), there is no need to physically collect
anything at the end of the exam.

Because exam delivery is digital, we also found significant ben-
efit for students who needed to take the exam remotely. Some of
our classes have offsite students who take the exam with a local
proctor, and BlueBook significantly improved the test-taking pro-
cess for these students. The proctor simply needs to know the exam
password to give to the students at the start of the exam. Other
students who needed to take the exam remotely (e.g., traveling
athletes) benefited similarly.

By and large, the students were happy with the practical benefits
they received by using BlueBook. We heard many comments that
the experience was better than taking a paper exam, and that it
was more like their normal programming practice. See Section 6
for details on student experience.

Graders for BlueBook exams were unanimous in their support
for using the program. Issues related to reading handwriting dis-
appear with BlueBook, and grading typed text is altogether easier

than grading scanned, handwritten answers. An additional benefit
derived from our ability to have students graded anonymously. In
our pre-BlueBook grading, graders could use handwriting and a
students name to infer either the individual or demographic details
of the student they are grading. When grading digital exams we
can avoid these unmeasured and undesirable problems.

We implemented an auto-grading system that allows graders to
run student code during grading. This saved considerable time in
grading students who had correctly or almost-correctly working
code, and the only downside we noted was that virtually all student
code starts with at least some syntax errors, and correcting those
can take some time during grading. See Section 8 about ideas we
are working on to mitigate this aspect of the auto-grading, and see
Section 5 about why we don’t allow students to compile and test
their code during exams.

Practically, transitioning to a computer-based exam saves time
and physical resources (e.g., paper and toner), students like it better
than paper exams, and it opens up new grading avenues that are
not available when the exams are analog.

5 PEDAGOGY
When we created BlueBook, we were understandably concerned
about whether the idea was pedagogically sound. There is a long
history of students handwriting code (both on exams and in gen-
eral), and there are good arguments to suggest that students should
demonstrate these skills while in a CS1 or CS2 course. Some of the
arguments in favor of paper-based testing are listed below:

(1) By forcing students to write out their code, they will need
to plan it out (whether in pseudocode or another form), and
that planning is critical to being a good programmer.

(2) Many coding interviews require applicants to hand-write
code (on paper or a white board, for instance), and handwrit-
ing code for exams gives students practice in these skills.

(3) When students take computer-based exams, they write too
much code and by limiting the space on paper, they are forced
to think through their code to create concise responses.

We do not necessarily find fault in the points listed above, but
our opinion is that they are minor concerns that can be mitigated
elsewhere in the computer science curriculum (or even in CS1
and CS2 courses in different assessments). Additionally, except in
programming interviews, programmers rarely write code out by
hand. We do think that it can actually be detrimental to students to
have to hand-write programs when they are used to typing them,
and during an exam we would rather students focus on solving the
problem than potentially being distracted by a new way of writing
their programs down.

When we brought up the idea to try a computerized test in
our department, we learned that it had been tried before, with
poor results. In the previous experiment, students were expected to
write their answers and also had the ability to compile their code,
and (most importantly) to run the code through a suite of tests.
This proved disastrous, as students spent too much time trying
to get their code to pass the tests, and many students did poorly
on the overall exam because they were not willing to move to
other problems if their code was failing tests. Partially because of
this data, and particularly because we wanted BlueBook to mimic
a paper testing environment as much as possible, we made the
decision to disallow any compiling or running of code during the

exam. Although occasionally students requested those features,
the majority of students did not concern themselves with it, and
seemed more pleased with the syntax highlighting and with the
simple ability to type their answers. From a pedagogical standpoint,
disallowing compiling or running of code does force students to
think through their answers fully, and students can not simply
try different solutions until they land on one that works (as is,
unfortunately, what some students do on coding assignments).

Argument (3) discusses the limiting effect of a paper exam, to
encourage students to write concise code that fits on the paper. We
did not limit code size in BlueBook, and we did find that some stu-
dents wrote more code than was required to answer some problems.
We were initially concerned that this would be a bigger issue than
it was, and it would be easy to modify BlueBook to limit student
answer length. We also sometimes add in the problem description a
length suggestion (e.g., “the reference solution is ten lines of code”),
and this influences students to produce a similar length for their
answers. Additionally, when limiting paper answer space, students
with larger (or messier) handwriting are unfairly penalized, and
this bias is eliminated with typewritten answers.

6 STUDENT EXPERIENCES AND FEEDBACK
When we first introduced BlueBook to one CS2 class, we gave the
students a practice exam using BlueBook a few days before a nor-
mally scheduled midterm, which was to be available with both
BlueBook and on paper (student’s choice). We had roughly one
hundred students take the practice exam, and we “exit polled” them
after the exam to get their feedback and to provide beta test bug
reports for the software. The feedback was predominantly positive,
with over 95% of the students polled indicating that they would elect
to take the exam using BlueBook for the actual midterm. The fol-
lowing represents a (paraphrased) sample of the specific responses
to our questions:

• I liked the ability to type answers and to edit my responses.
• I didn’t feel as constrained with space as on a paper exam.
• The countdown timer was helpful so I could pace myself.
• I was able to answer questions faster and better because I
type faster than I write.

• My hand doesn’t feel cramped like it does after paper exams.
• I liked having the question and answer on the same page, so
I didn’t have to flip back and forth.

• The syntax highlighting was helpful.
• We’re saving the trees!

During the practice exam the program crashed for three students,
but they were able to quickly get back to the exam with the help of
a TA with the crash recovery password. No data was lost.

For the midterm and final exam for the initial CS2 class, roughly
two-thirds of the students elected to take the exam using BlueBook.
We allowed students the use of as much scratch paper as they
wanted to use, and we provided power strips for those worried
about battery life. The following is a sample of reasons students
elected to take the paper-based exam:

• My laptop can’t last for the entire exam [note: despite avail-
able power strips].

• I’m used to paper and it feels more normal.
• The font is too small on my computer [we have fixed that
issue]

After the midterm exam, we polled the class about whether they
wanted us to administer the final exam using BlueBook. There was
an overwhelming desire from the students to allow them to use it,
to the point that the course staff admitted that there would be a
great number of upset students if we didn’t have a BlueBook option.

One concern we have about the student experience is that lap-
tops, by the nature of their vertical screens, are easily viewable by
nearby students. We don’t know if there was more cheating during
BlueBook exams, but this is a downside to the format.

We have successfully used BlueBook during a subsequent CS2
offering, and we only allowed paper exams on a case-by-case basis.
We gave students practice BlueBook exams (to take on their own),
and we reminded them about having a full battery multiple times
before the exams. Less than five percent of the students ended up
taking the exam on paper (for similar reasons as above). We did not
receive any direct complaints about using BlueBook, and students
readily accepted the exams in that format.

7 GRADING BENEFITS
Although we did not initially anticipate it, we found that having
digital answers was a boon for exam grading. As discussed in Sec-
tion 4, we saved a considerable amount of time post-exam with no
need to shuffle vast amounts of paper for scanning into the online
grading program. For the final exam in the most recent course to
use BlueBook, we scheduled the grading for three hours after the
exam, and we could have cut that time down if necessary. We do
have to post-process the exams for the auto-grader and for upload-
ing to the online grading program, but we have scripted this to
streamline it.

Graders were happy that they did not have to struggle to read
handwritten code, and we also realized that we likely reduced
grading bias that might happen with neat-vs-messy handwriting.

We wrote an online auto-grader for student code that is still in
its preliminary stages but that shows great promise (see Section 8
for our anticipated future work). All code problems from BlueBook
get uploaded to an online database that is available to graders, and a
web-based front-end allows graders to compile and run student code
in a testing framework. As with any auto-grading, the specific code
tests do have to be prepared separately, and this is not necessarily
trivial. However, we found that creating the grading tests before
the exam provided a nice forcing function to ensure that the exam
questions were reasonable and that the rubric solutions worked
correctly.

Interestingly, very few student responses compile straightaway,
but the graders quickly get used to fixing syntax errors to get the
code to compile. The workflow for most graders was as follows:

(1) Scan the student response in the grading software.
(2) Switch to the auto-grader and attempt to fix syntax errors

and test.
(3) If the testing showed correct results, immediately mark the

answer as correct.
(4) If the testing showed incorrect results, revert to the grading

rubric, fixing the code to test as needed.
Graders reported that having the auto-grader was normally help-

ful, and if it did not always save time, it gave the them additional
peace-of-mind that they were grading the problems better. We fre-
quently found graders helping each other debug student code to
enhance grading.

8 FUTUREWORK
We have a number of enhancements planned for BlueBook itself,
for improving the grading after the exam has been processed, and
also for research purposes. As we mentioned before, we also hope
that by making BlueBook open source it can improve even faster.

8.1 BlueBook Enhancements
Compiling/Running Code Despite the past discouraging re-

sults of allowing students to compile and test their code, we
would like BlueBook to have the option for one or both of
those features. We think there is a the potential to allow
students to at least compile (or perform lint-like behavior)
so they can fix some of their own syntax errors (so graders
do not have to do it). We are considering allowing students
to compile only at the end of the exam for a certain amount
of time, or only to compile a fixed number of times. As dis-
cussed in Section 5, allowing testing of code during an exam
is riskier, but having the option would allow for interesting
research about how students run code in a timed testing
environment.

Live Exam Updating As every instructor knows, exams are
rarely perfect, and in-class announcements about problems
are sometimes necessary. In its current state, BlueBook does
not require Internet access during examinations, but we
would like to introduce an update functionality to allow for
tests to be updated mid-exam for typos and clarifications.
This could cut down on announcements, although there is
a concern about how the news is delivered to the students
(e.g., as a pop-up message?)

Increased Security We are confident that the current security
for BlueBook is adequate, but there is a potential for cheating
if students aren’t taking the exam at the exact same time (e.g.,
for remote students). We plan on adding a feature that logs
students when they first start the exam (which will require
temporary Internet access), so that we can track when the
exam was accessed.

Per-problem Timer Although students reported that the timer
was beneficial to their pacing of the exam, we are consid-
ering adding more granularity in the form of an individual
timer per problem that shows students how much time they
have spent on a particular problem. This could be further
expanded by providing students an “optimum response time,”
as described by Delen[5].

Graphics and Math Answers At themoment, BlueBookworks
well for plain-text and coding questions, but it is not appropri-
ate for courses where students need to answer with drawings,
or with mathematical symbols. Both of these features could
be added. Mixing text with drawing provides a challenge for
auto-grading, but that problem is not insurmountable. If we
were to add a math/equations editor, students would neces-
sarily need practice using it before it would make practical
sense to use for an exam.

8.2 Better Grading
Auto-Syntax Correction Because we now have digital exam

answers, we can use the information to better inform our
grading. We would like to enhance the auto-grader in a
couple of particular ways. The first is to attempt some basic

automatic syntax error correction. Automatic syntax error
correction is a decades-old problem (see [2], for instance),
but during grading we see regular syntax errors that we
don’t penalize students for (unless they are egregious), and
we would like to investigate fixing them automatically. Very
few student code answers compile immediately, but most
can be fixed with a small number of easy-to-see corrections.

Nearest Correct Code Another area we have started imple-
menting is to provide a “nearest correct code” window along-
side code that needs to be graded. Any code that has been
graded as correct will be flagged in the database, and as
graders are looking at an ungraded problem, the closest cor-
rect solution will be shown in an adjoining window. We are
working on a neural network that determines which of the
correct solutions is the closest. We expect that such a feature
will have the dual benefit of speeding up grading and also
helping to normalize grades for similar solutions.

8.3 Research Opportunities
Because BlueBook captures student work at an instructor-defined
frequency (we have set ours to collect responses every 30 seconds),
there is a tremendous amount of data that can be mined regarding
how students take examinations. For example, how long do students
spend on individual problems, and do they spend more or less
time on earlier problems? Do students routinely go back and make
significant changes to early problems? Do students write code all
at once, or do they make frequent pauses?

As mentioned above, there are potential research questions re-
garding allowing students to compile and/or run their code during
examinations, and once we implement these features into BlueBook,
we will be able to investigate them.

Finally, wewould like to collect data on how graders are assessing
students when they have the ability to run and test student code.
With some of the grading updates mentioned above, we can start
research in that direction.

9 SUMMARY
Our implementation and use of the BlueBook computerized exam
software has had multiple and significant benefits to our CS2 course.
It has helped streamline and improve our exam logistics both be-
fore, during, and after the exams. Students have embraced the
software and have had provided predominantly positive feedback.
Indeed, some students would have been disappointed if they were
not allowed to use BlueBook on exams. Graders were happy to im-
prove their experience with the ability to compile and test student
responses. We likely minimized bias and saved time due to hand-
writing issues. We are excited about the research avenues we are
planning based on BlueBook’s data gathering and reporting, and by
future enhancements to the software.

ACKNOWLEDGMENTS
The authors would like to thank Stanford undergraduates Ali Malik
and Brahm Capoor, who have spent countless hours helping with
the coding and roll-out of BlueBook.

REFERENCES
[1] [n. d.]. Gradescope. https://gradescope.com. ([n. d.]). Accessed: 2017-08-24.
[2] Alfred VAho and Thomas G Peterson. 1972. Aminimumdistance error-correcting

parser for context-free languages. SIAM J. Comput. 1, 4 (1972), 305–312.

[3] Eren Can AYBEK and R Nükhet DEMİRTAŞLI. 2014. A Comparison of Psychome-
tric Properties of a General Ability Test Which Administered In Paper-Pencil and
Computer Based Form. Elementary Education Online 13, 4 (2014), 1400–1413.

[4] Matthew J Cheesman, Prasad Chunduri, Mary-Louise Manchadi, Kay Colthorpe,
and Ben Matthews. 2015. Student Interaction with a Computer Tablet Exam
Application Replicating the Traditional Paper Exam. Mobile Computing 4 (2015),
10–21.

[5] Erhan Delen. 2015. Enhancing a Computer-Based Testing Environment with
Optimum Item Response Time. EURASIA Journal of Mathematics, Science and
Technology Education 11, 6 (2015), 1457–1472.

[6] Robert Deloatch, Brian P. Bailey, and Alex Kirlik. 2016. Measuring Effects of
Modality on Perceived Test Anxiety for Computer Programming Exams. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(SIGCSE ’16). ACM, New York, NY, USA, 291–296. https://doi.org/10.1145/2839509.
2844604

[7] Victor Faniran and Nurudeen Ajayi. 2016. Students’ perceptions of computer-
based assessments: A case of UKZN. In IST-Africa Week Conference, 2016. IEEE,
1–9.

[8] Scott Grissom, Laurie Murphy, Renée McCauley, and Sue Fitzgerald. 2016. Pa-
per vs. Computer-based Exams: A Study of Errors in Recursive Binary Tree
Algorithms. In Proceedings of the 47th ACM Technical Symposium on Comput-
ing Science Education (SIGCSE ’16). ACM, New York, NY, USA, 6–11. https:
//doi.org/10.1145/2839509.2844587

[9] D. Gürsoy. 2016. Assessing novice programmers’ performance in programming
exams via computer-based test. (June 2016). http://essay.utwente.nl/70114/

[10] Pari Delir Haghighi, Judy Sheard, Chee-Kit Looi, David Jonassen, and Mitsuru
Ikeda. 2005. Summative Computer Programming Assessment Using Both Paper
and Computer.. In ICCE. 67–75.

[11] Monirosadat Hosseini and Seyyed Morteza Hashemi Toroujeni. [n. d.]. Replacing
Paper-Based Testing with an Alternative for the Assessment of Iranian Under-
graduate Students: Administration Mode Effect on Testing Performance. ([n.
d.]).

[12] Hanho Jeong. 2014. A comparative study of scores on computer-based tests and
paper-based tests. Behaviour & Information Technology 33, 4 (2014), 410–422.

[13] Vesa Lappalainen, Antti-Jussi Lakanen, and Harri Högmander. 2016. Paper-
based vs Computer-based Exams in CS1. In Proceedings of the 16th Koli Calling
International Conference on Computing Education Research (Koli Calling ’16). ACM,
New York, NY, USA, 172–173. https://doi.org/10.1145/2999541.2999565

[14] Karen A Maguire, Daniel A Smith, Sara A Brallier, and Linda J Palm. 2010.
Computer-based testing: A comparison of computer-based and paper-and-pencil
assessment. Academy of Educational Leadership Journal 14, 4 (2010), 117.

[15] Óscar Marcenaro-Gutiérrez and Luis Alejandro López-Agudo. 2016. MIND THE
GAP: ANALYSING THE FACTORS BEHIND THE GAP IN STUDENTSâĂŹPER-
FORMANCE BETWEEN PENCIL AND COMPUTER BASED ASSESSMENT
METHODS. Revista de Economía Aplicada 24, 71 (2016).

[16] Alan D Mead and Fritz Drasgow. 1993. Equivalence of computerized and paper-
and-pencil cognitive ability tests: A meta-analysis. Psychological Bulletin 114, 3
(1993), 449.

[17] Craig N Mills and Manfred Steffen. 2000. The GRE computer adaptive test:
Operational issues. InComputerized adaptive testing: Theory and practice. Springer,
75–99.

[18] Stavros A Nikou and Anastasios A Economides. 2016. The impact of paper-
based, computer-based and mobile-based self-assessment on students’ science
motivation and achievement. Computers in Human Behavior 55 (2016), 1241–
1248.

[19] Jan M Noyes and Kate J Garland. 2008. Computer-vs. paper-based tasks: Are they
equivalent? Ergonomics 51, 9 (2008), 1352–1375.

[20] Sanjay Kumar Singh and Arvind Kumar Tiwari. 2016. Design and Implemen-
tation of Secure Computer Based Examination System Based On B/S Structure.
International Journal of Applied Engineering Research 11, 1 (2016), 312–318.

[21] Angel Syang and Nell B. Dale. 1993. Computerized Adaptive Testing in Computer
Science: Assessing Student Programming Abilities. SIGCSE Bull. 25, 1 (March
1993), 53–56. https://doi.org/10.1145/169073.169109

[22] Krisztina Tóth. 2015. THE COMPARATIVE ANALYSIS OF PAPER-AND-PENCIL
AND COMPUTER-BASED INDUCTIVE REASONING, PROBLEM SOLVING AND
READING COMPREHENSION TEST RESULTS OF UPPER ELEMENTARY SCHOOL
STUDENTS. Ph.D. Dissertation. szte.

[23] Andrew Valentine, Iouri Belski, andMargaret Hamilton. 2017. Developing creativ-
ity and problem-solving skills of engineering students: a comparison of web-and
pen-and-paper-based approaches. European Journal of Engineering Education
(2017), 1–21.

[24] Howard Wainer, Eric T Bradlow, and Zuru Du. 2000. Testlet response theory: An
analog for the 3PL model useful in testlet-based adaptive testing. In Computerized
adaptive testing: Theory and practice. Springer, 245–269.

[25] Patricia Wallace and Roy B Clariana. 2005. Gender differences in computer-
administered versus paper-based tests. International Journal of Instructional
Media 32, 2 (2005), 171.

[26] Yuan Zhenming, Zhang Liang, and Zhan Guohua. 2003. A novel web-based
online examination system for computer science education. In 33rd ASEE/IEEE
Frontiers in Education Conference. 5–8.

https://gradescope.com
https://doi.org/10.1145/2839509.2844604
https://doi.org/10.1145/2839509.2844604
https://doi.org/10.1145/2839509.2844587
https://doi.org/10.1145/2839509.2844587
http://essay.utwente.nl/70114/
https://doi.org/10.1145/2999541.2999565
https://doi.org/10.1145/169073.169109

	Abstract
	1 Introduction
	2 Related Work
	3 BlueBook Details
	4 Practical Considerations
	5 Pedagogy
	6 Student Experiences and Feedback
	7 Grading Benefits
	8 Future Work
	8.1 BlueBook Enhancements
	8.2 Better Grading
	8.3 Research Opportunities

	9 Summary
	Acknowledgments
	References

