
A Large Scale RCT on Effective Error Messages in CS1
Sierra Wang

sierraw@cs.stanford.edu
Stanford University

CA, USA

John Mitchell
mitchell@cs.stanford.edu

Stanford University
CA, USA

Chris Piech
piech@cs.stanford.edu
Stanford University

CA, USA

ABSTRACT
In this paper, we evaluate the most effective error message types
through a large-scale randomized controlled trial conducted in an
open-access, online introductory computer science course with
8,762 students from 146 countries. We assess existing error mes-
sage enhancement strategies, as well as two novel approaches of
our own: (1) generating error messages using OpenAI’s GPT in
real time and (2) constructing error messages that incorporate the
course discussion forum. By examining students’ direct responses
to error messages, and their behavior throughout the course, we
quantitatively evaluate the immediate and longer term efficacy of
different error message types. We find that students using GPT
generated error messages repeat an error 23.1% less often in the
subsequent attempt, and resolve an error in 34.8% fewer additional
attempts, compared to students using standard error messages. We
also perform an analysis across various demographics to understand
any disparities in the impact of different error message types. Our
results find no significant difference in the effectiveness of GPT gen-
erated error messages for students from varying socioeconomic and
demographic backgrounds. Our findings underscore GPT generated
error messages as the most helpful error message type, especially
as a universally effective intervention across demographics.

CCS CONCEPTS
• Social and professional topics→ CS1; • Computing method-
ologies → Natural language generation; • General and reference
→ Cross-computing tools and techniques.

KEYWORDS
Randomized Control Trial, Error Messages, CS1, LLM, GPT
ACM Reference Format:
Sierra Wang, John Mitchell, and Chris Piech. 2024. A Large Scale RCT on
Effective Error Messages in CS1. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (SIGCSE 2024), March 20–
23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3626252.3630764

1 INTRODUCTION
Compiler-generated error messages are designed to explain a pro-
gramming error to the programmer; however, many error messages

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03. . . $15.00
https://doi.org/10.1145/3626252.3630764

are confusing for students who are learning to code [7, 12]. Be-
cause error messages are frequently generated and read by novice
programmers, improvements in error messaging could have wide-
spread benefits for teaching and learning introductory program-
ming [3, 38, 40].

Improving error messages is challenging because there is not
an obvious connection between a student’s misconception and
the resulting compiler error; it is nontrivial to address a student’s
misunderstanding given the compiler’s output [31]. Generative
Pre-trained Transformers (GPT) offer a promising solution to this
issue since they can leverage significant context and data. Alterna-
tively, bringing students together to discuss a common error has
the potential to not only improve their understanding, but also
promote community in virtual learning contexts. To explore these
possibilities, we developed two novel error message enhancement
techniques: one with GPT generated explanations and the other
facilitating collaboration on the course discussion forum.

Factors such as a student’s background and educational environ-
ment also influence how they interpret an error message. These
nuances make it difficult to assess whether an intervention is bene-
ficial and have led to inconsistent results throughout the literature
on error message enhancements.

To investigate the limitations of prior work, and understand
the potential of GPT and collaboration based error messages, we
conducted a large scale randomized controlled trial (RCT) in an
introductory computer science course. We implemented six dif-
ferent error enhancement strategies in the course’s Python IDE,
and examined several metrics around the students’ behavior to
comprehensively assess the impact of these distinct techniques.
In this paper, we present our methodology, results, and in-depth
analysis considering the diverse backgrounds of learners. Our work
highlights how to create more helpful error messages and, fur-
thermore, establishes a comprehensive framework for evaluating
educational tools. This approach is vital in understanding the bi-
ases of AI supported technology and developing more equitable
educational interventions.

1.1 Related Work
There is considerable prior research on enhancing error messages,
illustrating the opportunity to improve learning outcomes through
more helpful messaging [24, 25]. Several studies have investigated
what makes error messages confusing and proposed guidelines,
such as readability, that would make error messages more effec-
tive [5, 15, 19, 20, 36]. There has also been significant work on
enhancing error messages, such as providing simple explanations
[27], including more detailed explanations [39], incorporating Stack
Overflow posts [41], and more [9, 13, 17, 22].

The potential of connecting students to collaborate over shared
errors is apparent.Works repeatedlymention how engineers discuss

1395

https://orcid.org/0000-0003-1376-8759
https://orcid.org/0000-0002-0024-860X
https://orcid.org/0000-0001-5140-0467
https://doi.org/10.1145/3626252.3630764
https://doi.org/10.1145/3626252.3630764
https://doi.org/10.1145/3626252.3630764
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630764&domain=pdf&date_stamp=2024-03-07

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Sierra Wang, John Mitchell, & Chris Piech

their errors using Q/A forums [41, 43], and speculate what makes
them so effective [6]. There is also substantial work on the benefits
of collaborative learning [28, 34] and the downsides when there is
no learning community in a course [21].

One technical challenge in providing helpful error messages has
been balancing specificity and accuracy in the error message ex-
planation; the more specific the explanation, the greater the risk of
being inaccurate [31]. In the past year, advancements in Large Lan-
guage Model (LLM) technology have unlocked an unprecedented
ability to utilize meaningful textual context to generate accurate
explanations for a specific error. Recently, others have explored the
possibility of utilizing LLMs to produce error messages that show
exciting potential [4, 11, 18, 29, 33, 42].

Despite numerous efforts on improving errormessages, past stud-
ies yield varied results on the effectiveness of different approaches
[8, 10, 14, 16, 32, 37]. Furthermore, prior research lacks analysis
across varying demographics, which is necessary to understand
the intervention’s impact on learners from diverse backgrounds.

In our research, we aim to answer the question: "What is the
best way to improve error messages for people learning to
program?" We present our findings in this paper.

1.2 Main Contributions
(1) Two novel techniques to generate error messages for CS1
learners: one based on GPT and the other based on linking errors
to relevant posts in the course discussion forum.
(2) A large-scale RCT to understand the efficacy of six differ-
ent types of error messages, including our two novel techniques.

• Large-scale RCT in an open-access, online CS1 course with
8,762 students from 146 countries.

• When compared to standard error messages, students given
GPT error messages repeat an error 23.1% less often in the
subsequent run, and resolve an error in 34.8% fewer addi-
tional attempts.

• Only standard error messages result in significant improve-
ment in the number of runs to resolve an error over time.

• None of the error message types affect the rate that students
make errors throughout the course.

(3) A comprehensive analysis of impact of error message
types across diverse learner backgrounds, finding these advan-
tages of GPT error messages:

• No significant difference in the number of runs it takes a
student to resolve their error, across Human Development
Index (HDI) groups and across genders.

• For students with the least prior programming experience,
significantly fewer number of runs to resolve an error com-
pared to all other message types.

2 METHODOLOGY
We compared six error message types in a randomized controlled
trial in Code in Place, an open-access, online introductory computer
science course with 8,762 students from 146 countries [2, 30, 34]. We
initially assigned the different error message types to the students
at random, allowing students to change their error message type
whenever they wished. For the integrity of the RCT, our results

Error Message Type Number of Users Number of Errors
Standard 991 86822

Long Explanation 893 72335
Forum 997 77946

Simple Explanation 918 62624
GPT - Superhero 958 53827
GPT - Default 950 53729

Total 5707 407283
Table 1: Table shows the total number of users that used each
error message type, and the number of errors made of each
error message type. This is data for users that used one error
message type for the entire course.

only include the students who used the same error message type
throughout the entire course. Table 1 shows the number of students
that used each error message type, and the number of errors that
they generated. The descriptions and an example error message for
"SyntaxError: invalid syntax," for the six error message types are:

Standard: default error messages from the Python runtime. We
modified the raw error message by eliminating any lines referenc-
ing the compiler code, but did not add any form of enhancement.
These error messages provide a baseline to compare the other en-
hancement strategies against. Example:

Traceback (most recent call last):
File "<exec>", line 1

def main()
ˆ

SyntaxError: invalid syntax

Long Explanation: error messages with a detailed error expla-
nation, often including an erroneous code example. These error
messages highlight the effect of a lengthy, detailed, error message.
We utilize David Pritchard’s work [38, 39] to provide explanations
for the most common errors, and supplement the remaining errors
with Standard error messages. Example:

(Line 1) SyntaxError: invalid syntax
This error indicates Python was unable to interpret your
code since a grammar rule was violated. Common issues
include: strings must be enclosed within quotation
marks, conditional expressions require a colon at the
end, conditional expressions involving comparisons are
== while assignments are =, and multiplication must
always be done with *. For example,

if x > 0 # needs colon at end of statement
Many issues can cause this error; be sure to also read
the lines before and after the indicated one.

Simple Explanation: error messages with a simple and concise
error explanation. Comparing these with Long Explanation error
messages, we analyze how much detail is helpful to provide in an
explanation. We utilize Tobias Kohn’s TigerPython parser [26] to

1396

A Large Scale RCT on Effective Error Messages in CS1 SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Figure 1: An example of a student asking about their error
message on the course discussion forum after being directed
here from the IDE.

implement error messages for syntax errors, and supplement the
remaining errors with Standard error messages. Example:

(Line 1) SyntaxError: invalid syntax
A colon ’:’ is required here.

Forum: error messages with a link to the course discussion forum.
If the forum contains a post that is relevant to this error, the error
message links directly to the post and suggests that the student
check it out. If no relevant post exists, the error message links to
the forum and suggests that the student make a post about the error.
Figure 1 shows an example post made by a student about their error.
This error message type is inspired by Thiselton and Treude’s work
on utilizing content from Stack Overflow [41], as well as a need
for collaborative learning and community in online education [21].
We implemented this error message type using Pritchard’s work to
detect posts about error messages [39]. We use this error message
type to investigate how to connect students who are struggling
with the same error, and whether it is helpful to do so. Example:

(Line 1) SyntaxError: invalid syntax
It looks like there is a forum post for this error,
check it out!
https://codeinplace.stanford.edu/cip3/forum?post=postId

GPT - Default: error message with an explanation generated by
GPT. When a student receives an error, we send a prompt con-
taining the student’s code and the last line of their error message
to OpenAI’s Create Completion API [1]. We use the model “text-
davinci-003”, with a temperature of 0.1, and 1000 maximum tokens.
We use a low temperature and prompt for “all the most likely
reasons,” in order to reduce the probability that the AI produces
inaccurate explanations. This results in less confident explanations

like "the reason for this error could be this, this, or this," rather
than, "the reason for the error is definitely this." We analyze this
novel error message type to explore the possibility of using GPT to
generate error messages in real time. Example:

Your code had an error so we are getting a message from
a service called GPT. It might take a second, thank
you for being patient!

(Line 1) SyntaxError: invalid syntax
This error is likely caused by a missing colon (:)
after the function definition. The correct syntax for
defining a function in Python is to use the keyword
‘def’ followed by the function name, parentheses, and
a colon.

GPT - Superhero: error message with an explanation generated
by GPT, in a superhero’s voice. We use the same process as in GPT -
Default error messages, but specifically prompt that the response be
in a superhero’s voice. With the latest advancements of generative
AI, there is significant discussion around the use of AI in education
[18]. One open question is whether AI should have a persona, and
if so, in what context and what persona. Superhero error messages
serve as an exploration of the efficacy of error messages in a char-
acter voice. We chose superhero because our preliminary testing
demonstrated the readability and positive sentiment of this persona,
which are valuable qualities in an error message [19]. Example:

It looks like you have an error, one minute while we
ask a superhero what is going on...

(Line 1) SyntaxError: invalid syntax
Oh no! It looks like you have encountered a SyntaxError!
This means that the code you have written is not in the
correct format. It could be that you have forgotten to
include a colon after the main() function definition,
or that you have forgotten to indent the print
statement. Fear not, for I am here to help! Just make
sure that your code is properly formatted and you
should be good to go!

All error messages appear in the terminal of the course’s inte-
grated development environment (IDE), shown in Figure 2 [23].

Several statistical methods were used to analyze the data. We
specifically perform a one-way analysis of variance (ANOVA) to
compare multiple groups simultaneously, and assess whether there
are significant differences among the group means. We then apply
the post-hoc Tukey test to analyze the difference between specific
groups, helping to prevent Type I errors that can arise from multi-
ple pairwise comparisons. We also perform independent t-tests to
compare means between two groups.

The source code for this experiment can be found at https://
github.com/sierrawang/cip-error-messages.git.

1397

https://github.com/sierrawang/cip-error-messages.git
https://github.com/sierrawang/cip-error-messages.git

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Sierra Wang, John Mitchell, & Chris Piech

Figure 2: The IDE used for the course. All error messages
appeared in the terminal. Users could change their error
message type by using a dropdown list at the top of the ter-
minal window.

Figure 3: This figure shows the short term effects of error
messages. The pink points illustrate the average rate that
a student repeats the exact same error in a subsequent run.
The green points illustrate the average number of runs that
it takes a student to resolve their error. Both plots show that
students with GPT based errors messages are able to resolve
their errors fastest. Note that the y-axes start based on the
lowest value for the respective data.

3 RESULTS
We examine several metrics to understand both the short and long
term effects of different error message types.

3.1 Short Term Effect
To evaluate the short term effect of an error message, we investigate
how effectively the message helps a student resolve their error.

First, we assess the rate that students do not resolve their error.
Whenever a student generates an error, we examine whether they
repeat the same error in the subsequent run. The pink data points
in Figure 3 show the average percent of runs that a student receives
the same error in the subsequent run, for each error message type.
Students repeat their errors approximately 43.8% of runs when
using Long Explanation error messages, 41.2% of runs when using
Forum, 40.8% of runs when using Standard, 37.5% of runs for Simple
Explanation, 33.4% of runs for GPT - Superhero, and 31.4% of runs
for GPT - Default. Comparing GPT - Default (best) with Standard
(baseline), and Long Explanation (worst), students repeat their error
23.1%, and 28.2%, less often in the subsequent run.

We also analyze the number of runs that it takes a student to
resolve their error after receiving an error message. The green data
points in Figure 3 show the average number of runs that it takes a
student to resolve their error, for each error message type. It takes
students the most number of runs, on average approximately 2.00
runs, when using Long Explanation error messages, 1.88 runs when
using Standard, 1.91 with Forum, 1.77 for Simple Explanation, 1.58
for GPT - Superhero, and 1.58 for GPT - Default. Note that it takes at
least one run to resolve an error, so these counts are lower bounded
by one. Thus, it takes students 34.8% fewer additional attempts
to resolve their error when using GPT - Superhero compared to
Standard, and 42.6% fewer compared to Long Explanation.

In both of these capacities, the students’ behavior varies signifi-
cantly across the different error message types, indicating the error
message’s affect on the student’s ability to understand and resolve
their coding errors. GPT generated error messages are consistently
the most effective, while Long Explanation messages are consis-
tently the least effective. We hypothesize that GPT provides the
most relevant advice on the student’s cause of error, and that Long
Explanation error messages, which often include an example of er-
roneous code that might cause the error, could often be misleading
on the precise reason for the error. This suggests the importance of
feedback that is tailored specifically to the code and error, and can
not be hard coded based on the most common reason for the error.

In both dimensions, there is no significant difference in effect of
Forum and Standard error message types. This could be because
they are equally informative on what the error is, without including
a text explanation of its cause.

3.2 Long Term Effect
To understand the long term effect of error messages, we examine
how the rate which students generate and resolve errors changes
throughout the course. These results are illustrated in Figure 4. For
clarity, we graphed Standard, Simple Explanation, andGPT -Default
error message types; however, our analysis is comprehensive of all
error message types. Our analysis begins with Week 2 of the course
because the students used a customized error message type for the
first assignment, that is not included in our experiment.

The left plot in Figure 4 shows the average rate that a student gen-
erates an error each week. For each week, we calculate the number
of times a student generates an error divided by the total number of
times that they ran their code. We use this to determine the average
error rate for a student each week, for each error message type. To
account for the fluctuating difficulty of the assignments, we plot

1398

A Large Scale RCT on Effective Error Messages in CS1 SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Figure 4: These plots illustrate students’ behavior throughout the course. The left plot illustrates the average rate that a student
generates an error each week. In order to account for fluctuating difficulty of the assignments, we look at the difference from
the overall average error rate for each week. The right plot shows the average number of runs that it takes a student to resolve
an error each week. These plots show that the benefits of GPT based error messages persist over time.

the difference from the overall average error rate for each week.
We compare the average error rate across error message types for
each week and find no consistent significant difference between
the rates. In other words, we do not detect a notable difference in
any error message type’s influence on the rate of errors that the
students made throughout the course. We do not draw conclusions
about the change in error rate within a specific error message type
because we hypothesize that the fluctuation in assignment difficulty
significantly affects this metric.

The right plot in Figure 4 shows the average number of runs
that it takes a student to resolve an error, each week. We identified
the Standard message type as the sole category in which student
performance significantly improved over time. This suggests that
Standard error messages have the most dramatic learning curve.

Overall, these results do not highlight any specific error message
type as dramatically more helpful than any other in the long term.
It is possible that a five week long introductory computing course is
not long enough to see significant effects in this domain. In future
work, we would also like to analyze the long term effects across
other dimensions, such as course enrollment and student attitude.

4 DISCUSSION
Analyzing an educational intervention across different demograph-
ics is necessary to promote equity in educational outcomes. With a
course enrollment of 8,762 students from 146 countries, we are able
to examine the influence of different error message types across
diverse learner backgrounds. In particular, we investigate any po-
tential bias of GPT through thorough comparison with other error
message types.

Figure 5 shows the average number of runs that it takes a stu-
dent to resolve their error when using each error message type,
for different demographic categories. We specifically examine the
results for different Human Development Index (HDI), gender, and
programming experience groups.

The left plot of Figure 5 displays the average number of attempts
it takes for a user to resolve their error across different HDI groups
for each error message type. We find a significant difference in num-
ber of runs across the HDI categories in the case of Standard and
Long Explanation error message types; these error message types
are not equally effective interventions for people of different socioe-
conomic backgrounds. For the Simple Explanation, Forum, GPT -
Superhero, and GPT - Default error message types, the differences
across the HDI categories are not statistically significant.

We also analyzed the effect of error message types within each
HDI category. For LowHDI, GPT generated error messages result in
a significantly lower average number of runs than Long Explanation
error message types. For all other HDI categories, GPT generated
error messages are significantly lower than both Long Explanation
and Standard error messages. We did not notice any other signif-
icant trends throughout the HDI categories. All together, these
results suggest GPT generated error messages as the most helpful
error message type across varying socioeconomic backgrounds.

The center plot of Figure 5 shows the average number of runs
that it takes a user to resolve their error for different genders, for
each error message type. In our experiment, 2,603 students identify
as male, 2,953 students identify as female, and 151 students do not
identify as either. We found no significant difference in efficacy
across genders for any error message type. For male and female stu-
dents, GPT generated error messages result in significantly fewer
runs than all other error message types. For students who do not
identify as male or female, GPT generated error messages result
in significantly fewer runs than Long Explanation and Simple Ex-
planation, and there is no significant difference between any other
error message types. This is likely because we have less data on
this demographic.

The right plot of Figure 5 shows the average number of runs
that it takes a user to resolve their error when using each error
message type, over varying levels of prior programming experience.
For the people with the least prior programming experience, GPT
generated error messages result in significantly fewer runs than

1399

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Sierra Wang, John Mitchell, & Chris Piech

Figure 5: These plots illustrate the impact of error message type across different demographic groups. In each plot, we examine
the average number of runs it takes a user to resolve their error when using different error message types. We specifically
examine the results for different Human Development Index (HDI), Gender, and Programming Experience groups.

all other error message types. For the people with the most prior
programming experience, there is no significant difference in runs
among any of the error message types.

These findings suggest that GPT generated error messages are
the most consistently helpful across various demographics com-
pared to other error messages types.

5 LIMITATIONS
In the experimental setup and analysis, we made several decisions
to ensure equitable treatment of the students and the integrity of
the study. For one, we enabled students to switch between different
error message types, ensuring that nobody was constrained to use
an error message type that proved significantly less effective. To
account for this, our analysis only includes students who used the
same error message type throughout the entire course. Second, the
Simple Explanation error messages were exclusively for syntax
errors, and Long Explanation error messages were restricted to the
errors defined by Pritchard’s work [39]. We supplemented missing
error messages for these types with Standard error messages. The
students initially received handcrafted error messages specific to
their first assignment before our error message types were intro-
duced in the second week. Our analysis, therefore, commences from
week 2. The demographics analysis was not incorporated into the
RCT since there was not a consistent recruitment process across
different global regions.

Our research also faced limitations associated with our data
collection methods. Every time a student ran their code, we logged
the code, the error produced by pyodide, the errormessage shown to
the student, the errormessage type used, and a timestamp generated
in the front-end. When evaluating the effectiveness of the error
messages, we assess both the rate that students resolve errors upon
receiving an error message and the number of attempts it takes to
resolve the error. We refrain from analyzing the effect in time units
due to the unreliability of timestamp precision. Previous research
indicates that the number of runs serves as a comparable measure
to time in this context [35]. When comparing error messages, we
parsed the messages to mitigate minor differences (such as function
names), but this process was not flawless. We do not believe that
this influences the results since the overwhelming majority of error

messages are among those we could cleanly parse. We also do not
assess the influence of error message types on student satisfaction
and performance in the course, posing areas for future research.

Finally, there is future work in further analyzing GPT’s poten-
tial, as well as its limitations and bias. We utilized OpenAI’s text-
davinci-003 to generate GPT-based error messages, chosen for its
efficient speed and cost-effectiveness. Still, there was a delay in GPT
generated errors that may have inadvertently affected student inter-
pretations, adding a confounding factor in our analysis. Although
we have substantial evidence that the benefits of GPT generated er-
rors were seen across various demographics, our analysis could be
improved with a meaningful sentiment analysis of error messages
in relation to different demographics. This is necessary to deter-
mine whether the AI is detecting different demographics through
their code and whether it provides specific feedback based on this
information. As generative AI technology continues to advance,
ongoing studies of this nature are crucial to ensure we develop
educational tools that are inclusive and beneficial for all.

6 CONCLUSION
Our research addresses the opportunity to improve learning out-
comes in computing education through more helpful error mes-
sages. Through a large-scale randomized control trial, we evaluate
the efficacy of six distinct error message enhancement strategies.
We also present novel approaches for generating error messages
with GPT in real time and constructing error messages that facilitate
communication on the course discussion forum. Our results provide
compelling evidence on the helpfulness of error messages gener-
ated by GPT, particularly for students of varying demographics.
Our methodology also serves as a useful framework for analyzing
the efficacy of error messages and ensuring that future innovations
promote equity in educational outcomes.

7 ACKNOWLEDGEMENTS
Wewould like to thank the Carina Foundation and all the wonderful
people of Code in Place for making this work possible.

REFERENCES
[1] 2021. Create Completions - API Reference. https://platform.openai.com/docs/api-

reference/completions/create. Accessed: 2023-08-17.

1400

https://platform.openai.com/docs/api-reference/completions/create
https://platform.openai.com/docs/api-reference/completions/create

A Large Scale RCT on Effective Error Messages in CS1 SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

[2] 2023. Code in Place. https://codeinplace.stanford.edu/ [Online; accessed August-
2023].

[3] Amjad Altadmri and Neil CC Brown. 2015. 37 million compilations: Investigating
novice programming mistakes in large-scale student data. In Proceedings of the
46th ACM technical symposium on computer science education. 522–527.

[4] Rishabh Balse, Bharath Valaboju, Shreya Singhal, JayakrishnanMadathilWarriem,
and Prajish Prasad. 2023. Investigating the Potential of GPT-3 in Providing
Feedback for Programming Assessments. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1. 292–298.

[5] Titus Barik. 2018. Error messages as rational reconstructions. North Carolina State
University.

[6] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How
should compilers explain problems to developers?. In Proceedings of the 2018 26th
ACM joint meeting on European software engineering conference and symposium
on the foundations of software engineering. 633–643.

[7] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emerson
Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error mes-
sages?. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). IEEE, 575–585.

[8] Brett A Becker. 2015. An exploration of the effects of enhanced compiler error
messages for computer programming novices. (2015).

[9] Brett A Becker. 2016. An effective approach to enhancing compiler error mes-
sages. In Proceedings of the 47th ACM Technical Symposium on Computing Science
Education. 126–131.

[10] Brett A Becker. 2016. A new metric to quantify repeated compiler errors for
novice programmers. In Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education. 296–301.

[11] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming is hard-or at least it
used to be: Educational opportunities and challenges of ai code generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1. 500–506.

[12] Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis J Bouvier,
Brian Harrington, Amir Kamil, Amey Karkare, Chris McDonald, Peter-Michael
Osera, et al. 2019. Compiler error messages considered unhelpful: The landscape
of text-based programming error message research. Proceedings of the working
group reports on innovation and technology in computer science education (2019),
177–210.

[13] Brett A Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle
Goslin, and Catherine Mooney. 2016. Effective compiler error message enhance-
ment for novice programming students. Computer Science Education 26, 2-3
(2016), 148–175.

[14] Brett A Becker, Kyle Goslin, and Graham Glanville. 2018. The effects of enhanced
compiler error messages on a syntax error debugging test. In Proceedings of the
49th ACM Technical Symposium on Computer Science Education. 640–645.

[15] Brett A Becker and Catherine Mooney. 2016. Categorizing compiler error mes-
sages with principal component analysis. In 12th China-Europe International
Symposium on Software Engineering Education (CEISEE 2016), Shenyang, China.
28–29.

[16] Paul Denny, Andrew Luxton-Reilly, and Dave Carpenter. 2014. Enhancing syn-
tax error messages appears ineffectual. In Proceedings of the 2014 conference on
Innovation & technology in computer science education. 273–278.

[17] Paul Denny, James Prather, and Brett A Becker. 2020. Error message readability
and novice debugging performance. In Proceedings of the 2020 ACM Conference
on Innovation and Technology in Computer Science Education. 480–486.

[18] Paul Denny, James Prather, Brett A Becker, James Finnie-Ansley, Arto Hellas,
Juho Leinonen, Andrew Luxton-Reilly, Brent N Reeves, Eddie Antonio Santos,
and Sami Sarsa. 2023. Computing Education in the Era of Generative AI. arXiv
preprint arXiv:2306.02608 (2023).

[19] Paul Denny, James Prather, Brett A Becker, Catherine Mooney, John Homer,
Zachary C Albrecht, and Garrett B Powell. 2021. On designing programming
error messages for novices: Readability and its constituent factors. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems. 1–15.

[20] Tao Dong and Kandarp Khandwala. 2019. The Impact of" Cosmetic" Changes on
the Usability of Error Messages. In Extended abstracts of the 2019 chi conference
on human factors in computing systems. 1–6.

[21] Joselyn Goopio and Catherine Cheung. 2021. The MOOC dropout phenomenon
and retention strategies. Journal of Teaching in Travel & Tourism 21, 2 (2021),
177–197.

[22] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. 2010.
What would other programmers do: suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
1019–1028.

[23] Thomas Jefferson, Chris Gregg, and Chris Piech. 2024. PyodideU: Unlocking
Python Entirely in a Browser for CS1. In Proceedings of the 55th acm technical
symposium on computer science education. in press.

[24] Tobias Kohn. 2017. Teaching Python programming to novices: Addressing miscon-
ceptions and creating a development environment. ETH Zurich.

[25] Tobias Kohn. 2019. The error behind the message: Finding the cause of error
messages in python. In Proceedings of the 50th ACM technical symposium on
computer science education. 524–530.

[26] Tobias Kohn. 2021. Tobias-Kohn/TigerPython-Parser. https://github.com/Tobias-
Kohn/TigerPython-Parser/ [Online; accessed August-2023].

[27] Tobias Kohn and Bill Manaris. 2020. Tell Me What’s Wrong: A Python IDE with
Error Messages. In Proceedings of the 51st ACM Technical Symposium on Computer
Science Education. 1054–1060.

[28] Marjan Laal and Seyed Mohammad Ghodsi. 2012. Benefits of collaborative
learning. Procedia-social and behavioral sciences 31 (2012), 486–490.

[29] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A Becker. 2023. Using large language models to enhance programming
error messages. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 563–569.

[30] Ali Malik, Juliette Woodrow, Brahm Capoor, Thomas Jefferson, Miranda Li,
Sierra Wang, Patricia Wei, Dora Demszky, Jennifer Langer-Osuna, Julie Ze-
lenski, Mehran Sahami, and Chris Piech. 2023. Code in Place 2023: Under-
standing learning and teaching at scale through a massive global classroom.
https://piechlab.stanford.edu/assets/papers/codeinplace2023.pdf.

[31] DavinMcCall andMichael Kölling. 2014. Meaningful categorisation of novice pro-
grammer errors. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.
IEEE, 1–8.

[32] Raymond S Pettit, John Homer, and Roger Gee. 2017. Do Enhanced Compiler
Error Messages Help Students? Results Inconclusive.. In Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science Education. 465–470.

[33] Tung Phung, José Cambronero, Sumit Gulwani, Tobias Kohn, Rupak Majumdar,
Adish Singla, and Gustavo Soares. 2023. Generating High-Precision Feedback
for Programming Syntax Errors using Large Language Models. arXiv preprint
arXiv:2302.04662 (2023).

[34] Christopher Piech, Ali Malik, Kylie Jue, and Mehran Sahami. 2021. Code in place:
Online section leading for scalable human-centered learning. In Proceedings of
the 52nd acm technical symposium on computer science education. 973–979.

[35] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo Blikstein.
2012. Modeling how students learn to program. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education. 153–160.

[36] James Prather, Paul Denny, Brett A Becker, Robert Nix, Brent N Reeves, Arisoa S
Randrianasolo, and Garrett Powell. 2023. First Steps Towards Predicting the
Readability of Programming Error Messages. In Proceedings of the 54th ACM
Technical Symposium on Computer Science Education V. 1. 549–555.

[37] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani Peters, John
Homer, Nevan Simone, and Maxine Cohen. 2017. On novices’ interaction with
compiler error messages: A human factors approach. In Proceedings of the 2017
ACM Conference on International Computing Education Research. 74–82.

[38] David Pritchard. 2015. Frequency distribution of error messages. In Proceedings
of the 6th Workshop on Evaluation and Usability of Programming Languages and
Tools. 1–8.

[39] David Pritchard. 2020. cemc/cscircles-wp-content. https://github.com/cemc/
cscircles-wp-content/blob/master/plugins/pybox/plugin-errorhint-en_US.php
[Online; accessed August-2023].

[40] Rebecca Smith and Scott Rixner. 2019. The error landscape: Characterizing
the mistakes of novice programmers. In Proceedings of the 50th ACM technical
symposium on computer science education. 538–544.

[41] Emillie Thiselton and Christoph Treude. 2019. Enhancing python compiler error
messages via stack. In 2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM). IEEE, 1–12.

[42] Patricia Widjojo and Christoph Treude. 2023. Addressing Compiler Errors: Stack
Overflow or Large Language Models? arXiv preprint arXiv:2307.10793 (2023).

[43] Alexander William Wong, Amir Salimi, Shaiful Chowdhury, and Abram Hindle.
2019. Syntax and Stack Overflow: Amethodology for extracting a corpus of syntax
errors and fixes. In 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 318–322.

1401

https://codeinplace.stanford.edu/
https://github.com/Tobias-Kohn/TigerPython-Parser/
https://github.com/Tobias-Kohn/TigerPython-Parser/
https://piechlab.stanford.edu/assets/papers/codeinplace2023.pdf
https://github.com/cemc/cscircles-wp-content/blob/master/plugins/pybox/plugin-errorhint-en_US.php
https://github.com/cemc/cscircles-wp-content/blob/master/plugins/pybox/plugin-errorhint-en_US.php

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Main Contributions

	2 Methodology
	3 Results
	3.1 Short Term Effect
	3.2 Long Term Effect

	4 Discussion
	5 Limitations
	6 Conclusion
	7 Acknowledgements
	References

