Testing for racial bias in searches of motor vehicles

Camelia Simoiu

With Sam Corbett-Davies and Sharad Goel

Stanford University

Traffic stops

- Traffic stops are the primary way in which the public interacts with law enforcement
- Widespread concern of racial bias in police actions
- Seemingly reasonable tests of discrimination can give misleading results

Our contribution

- Novel test for discrimination, "threshold test" to measure racial bias in officers' decision to search
- Are minorities subjected to a search on the basis of less evidence than whites?
- Bayesian hierarchical latent variable model

North Carolina Data Set

- 4.5 million stops
- 6 year observation period: 2009-2014
- Largest 100 local police departments
 - account for 90% of local stops
- 4 race groups (White, Black, Hispanic, Asian)

Standard Tests of Discrimination

Benchmarking Test

Compare likelihood of being searched across race groups

Outcome Test [Becker 1957, 1992]

Compare the search success (hit) rate across race groups

Race	Hit Rate
White	36%
Black	32%
Hispanic	23%
Asian	29%

Problem of infra-marginality [Ayers, 2002]

It is possible to find lower hit rates and higher search rates for minorities in the presence of no discrimination.

- Two types of white drivers: 5% or 75% chance of carrying contraband
- Two types of black drivers: 5% or 50% chance of carrying contraband
- If officers search drivers who are at least 10% likely to be carrying contraband
 - White hit rate: 75%
 - Black hit rate: 50%

Threshold Model

Modeling a Traffic Stop

- Officer in department d stops a driver of race r
- Officer observes a random signal: $x_i \sim Beta(\Phi_{rd}, \lambda_{rd})$

Likelihood of possessing contraband

Modeling a Traffic Stop

- Officer in department d stops a driver of race r
- Officer observes a random signal: $x_i \sim Beta(\Phi_{rd}, \lambda_{rd})$
- Deterministically conduct search $S_i = 1$ iff $x_i > t_{rd}$
- If $S_i = 1$: $H_i \sim Bernoulli(x_i)$
- Lower t_{rd} indicate discrimination

Likelihood of possessing contraband

Problem of infra-marginality [Ayers, 2002]

Likelihood of possessing contraband

Discrimination against Blue by construction.

Benchmark and outcome tests fail to identify discrimination against Blue.

	Red	Blue	
Search rate	71%	64%	
Hit rate	39%	44%	

Parametrizing the Signal Distribution

$$x \sim Beta(\Phi_{rd}, \lambda_{rd})$$

$$\Phi_{rd} \sim logit^{-1}(\Phi_r + \Phi_d)$$

Probability that a driver is carrying contraband

$$\lambda_{rd} \sim \exp(\lambda_r + \lambda_d)$$

Difficulty in distinguishing between guilty and innocent drivers

Simplifying inference

Likelihood of possessing contraband

For a given department *d*, race *r*

Observe N_{rd} stops

$$x_{rd} \sim Beta (\Phi_{rd}, \lambda_{rd})$$

$$\delta_{rd} = P (x_{rd} > t_{rd}; \Phi_{rd}, \lambda_{rd})$$

$$\gamma_{rd} = E (x_{rd} | x_{rd} > t_{rd}; \Phi_{rd}, \lambda_{rd})$$

$$S_{rd}$$
 = Binomial(δ_{rd} , N_{rd})

$$H_{rd}$$
 = Binomial(γ_{rd} , S_{rd})

Graphical Model Representation

Race parameters

 $\Phi_{r} \sim N(0,2)$ $\lambda_{r} \sim N(0,2)$

Department Parameters

$$\Phi_d \sim N(\mu_d, \sigma_d)$$

$$\begin{array}{l} \mu_{d} \; \sim N(0,\!2) \\ \sigma_{d} \; \sim N_{_{+}}\!(0,\!2) \end{array} \label{eq:mu_def}$$

(same for
$$\lambda_d$$
)

Threshold Parameter

$$t_{rd} \sim logit^{-1}(N(\mu_{trd}, \sigma_{trd}))$$

$$\begin{array}{l} \mu_{trd} \ \sim N(0,2) \\ \sigma_{trd} \ \sim N_{+}(0,2) \end{array}$$

$$\sigma_{trd}^{\sigma} \sim N_{+}(0,2)$$

Performing Inference

- No-U-Turn Sampler (NUTS) in Stan [Hoffman and Gelman, 2014]
- An extension of Hamiltonian Monte Carlo (HMC) that retains efficiency and requires no hand-tuning

Assessing convergence

- Simulate 5 independent Markov chains
- 5,000 iterations (2,500 warmup, 2,500 sampling)
- Inspect potential scale reduction factor R, and effective sample size

Results

Results

Results

Race	Search Threshold	95% CI
White	19%	(18%, 21%)
Black	5%	(2%, 8%)
Hispanic	8%	(6%, 10%)
Asian	17%	(14%, 19%)

Likelihood of carrying contraband

Posterior Predictive Check

RMS prediction error 0.2%

RMS prediction error 2.7%

Infra-marginality in the wild: Raleigh, NC

Black drivers:

- Higher search rate than whites (5.7% vs. 2.4%)
- Higher hit rate than whites (19% vs. 15%)

Race	Hit Rate	Search Threshold
White	15%	10%
Black	19%	5%
Hispanic	10%	5%
Asian	11%	91%

Likelihood of carrying contraband

Conclusions

- Bayesian latent variable model allows for direct estimation of thresholds, overcoming the problems of omitted-variable bias and infra-marginality
- Find unjustified disparate impact against black and Hispanic drivers in North Carolina
- Had the white search threshold been applied, 30,000 fewer searches of black drivers and 8,000 fewer searches of Hispanic drivers
- Cannot prove biased intent, but we can shift the burden of proof

Questions?

Omitted Variable Test

Testing for heterogeneity in the thresholds

