3 Parabolic induction and supercuspidal

Let us briefly recall some representation theory. Our representations will always be on vector spaces over \(\mathbb{C} \), despite that we remark all theory actually stays the same if we work on vector spaces over \(\bar{\mathbb{Q}}_\ell \). Recall that a vector \(v \) in a representation of \(G(F) \) is called smooth if there exists an open subgroup \(K \subset G(F) \) (by shrinking we may and always assume \(K \) compact) such that \(v \) is fixed by \(K \). A representation \(\pi \) is called smooth if all vectors are smooth. Write \(\pi^K \) those vectors fixed by \(K \). Then \(\pi \) is smooth iff \(\pi = \sum \pi^K \) where \(K \) runs over compact open subgroups of \(G(F) \). We say \(\pi \) is admissible if for any open compact subgroup, \(\dim_\mathbb{C} \pi^K \) is finite.

Now we are ready to come back to the question: Let \(G \) be a connected reductive group over \(F \), our fixed non-archimedean local field. We assume the residual characteristic \(p \) does not divided the Weyl group of \(G \otimes F^{sep} \). Given \(\rho : W_F \to L^G \) which factors as \(l: j : L^S \to L^G \) and \(\rho_S : W_F \to L^S \). By local Langlands for tori we have from \(\rho_S \) a character \(\chi : S(F) \to \mathbb{C}^\times \), and we will like to “induce” \(\chi \) to an irreducible admissible representation of \(G(F) \), or rather a finite number (could be zero) of representations of \(G(F) \).

Recall that by the construction of \(L^G = G^\vee \rtimes \text{Gal}(E/F) \), we have \(T^\vee \subset B^\vee \subset G^\vee \) and \(\text{Gal}(E/F) \) acts on \(G^\vee \) by stabilizing a pinning associated to \((G^\vee, B^\vee, T^\vee) \). A simpler case of our scenario will be if \(L^S \subset L^T := T^\vee \rtimes \text{Gal}(E/F) \). Note that from our definition of \(L^T \) we have a torus \(T \) defined over \(F \). This torus can be identified with a maximal torus contained a Borel of \(G^* \). In fact, if \(G^* \) is split, then \(T \) is split and having an embedding \(T \hookrightarrow G \) will imply \(G = G^* \) and \(T \) is a maximal split torus in \(G \).

Lemma 3.1. Suppose there is an embedding \(T \subset G \). Then \(G \) has a Borel \(B \supset T \) that is defined over \(F \). In particular, \(G \) is quasi-split.

We now suppose \(G = G^* \), and \(T \subset B \subset G^* \) are defined over \(F \). We are at the question that given a character \(\chi : T(F) \to \mathbb{C}^* \), how should we construct a representation of \(G(F) \)? We may inflate \(\chi \) to a character of \(B(F) \) and define

\[
\text{Ind}_B^G \chi := \{ f : G(F) \to \mathbb{C} \mid f(bg) = \chi(b)f(g), \forall t \in T(F), g \in G(F) \}
\]

While this looks very nice at the first glance, examples in \(GL_2 \) (if you have been to Zev’s talk on 1/17) tells us that we need a shift. Let \(\Delta_B \) be the modulus character of \(B(F) \), i.e. \(\mu(bEb^{-1}) = \Delta_B(b)\mu(E) \) for any either left or right Haar measure \(\mu \) on \(B \), any \(b \in B(F) \), and any measurable subset \(E \subset B(F) \). Let \(U \) be the unipotent radical of \(B \) and identify \(T = B/U \). We also have \(T(F) = B(F)/U(F) \) as e.g. \(H^1(F, U) = 0 \). A Haar measure on \(T(F) \) can be realized as the quotient measure of a (left or right) Haar measure on \(B(F) \) by another on \(U(F) \). Since \(T \) is unimodular, we have \(\mu(bE_Eb^{-1}) = \Delta_B(b)\mu(E_U) \) also for any Haar measure on \(U \) and measurable subset \(E_U \subset U(F) \). One has a \(B \)-stable filtration of \(U = U_n \supset U_{n-1} \supset ... \supset U_0 = 1 \) such that each \(U_n/U_{n-1} \) is a product of \(\mathbb{G}_a \), and \(B \) acts on
each U_i/U_{i-1} through T via some positive roots, so that each positive root appears in some U_i/U_{i-1} exactly once.

This implies the following: Let δ be the sum of all positive roots; in particular $\delta : T \to \mathbb{G}_m$ is a character, which we pull back to B also. We have

$$\Delta_B(b) = |\delta(b)|.$$

In any case, we now define

$$\iota^G_B(\chi) := \text{Ind}^G_B(\chi \otimes \Delta_B^{1/2})$$

Let $W := N_{G(F)}(T)/T(F)$ be the relative Weyl group. Apparently W acts on the set of characters of $T(F)$. The big theorem is

Theorem 3.2. (Bernstein-Zelevinsky) The induction $\iota^G_B(\chi)$ always have finite length. For two characters $\chi_1, \chi_2 : T(F) \to \mathbb{C}^\times$, the composition series of $\iota^G_B(\chi_1)$ and that of $\iota^G_B(\chi_2)$ have a common factor if and only if χ_1 and χ_2 can be conjugate to each other by W. If this is the case, then they have the same Jordan-Hölder constituents with the same multiplicities, and $\text{Hom}(\iota^G_B(\chi_1), \iota^G_B(\chi_2)) \neq 0$.

We briefly describe the idea of Bernstein and Zelevinsky. Recall that Frobenius reciprocity says

$$\text{Hom}_{G(F)}(\pi, \text{Ind}^G_B \chi) = \text{Hom}_{B(F)}(\pi, \chi).$$

In particular

$$\text{Hom}_{G(F)}(\text{Ind}^G_B \chi_1, \text{Ind}^G_B \chi_2) = \text{Hom}_{B(F)}(\text{Res}^G_B \text{Ind}^G_B \chi_1, \chi_2).$$ \hspace{1cm} (1)

By definition χ_2 is inflated from a character from $T(F)$. On the RHS of (1), we can pass it to $\text{Hom}_{T(F)}$ by taking the $U(F)$-coinvariant of $\text{Res}^G_B \text{Ind}^G_B$; for λ any representation of $B(F)$, let $J_U(\lambda)$ be the representation of $T(F)$ whose underlying vector space is the space of $U(F)$-coinvariants. Then we have

$$\text{Hom}_{B(F)}(\text{Res}^G_B \text{Ind}^G_B \chi_1, \chi_2) = \text{Hom}_{T(F)}(J_U(\text{Res}^G_B \text{Ind}^G_B \chi_1), \chi_2).$$

In fact, let $r^G_B \pi := J_U(\text{Res}^G_B(\pi) \otimes \Delta^{-1/2}_B)$. Then we have r^G_B is left adjoint to ι^G_B. In particular

$$\text{Hom}_{G(F)}(\iota^G_B \chi_1, \iota^G_B \chi_2) = \text{Hom}_{T(F)}(r^G_B \iota^G_B \chi_1, \chi_2).$$

When $G = \text{GL}_2$, one may do a bit of brute force and check that

$$\iota^G_B \iota^G_B \chi = \chi_1 \oplus \chi^w$$

where w is the non-trivial element in $N_{G(F)}(T)/T(F)$, unless $\chi = \chi^w$. In the case $\chi = \chi^w$ things become trickier to check, and in fact $r^G_B \iota^G_B \chi$ will turns out to be a non-trivial extension of χ by itself. In the case where G is a general quasi-split group, we have

$$r^G_B \iota^G_B \chi$$ has a composition series given by some permutation of $\{\chi^w \mid w \in W\}$.

2