1 Generalized coordination and type-shifting

Coordination combines like categories (N.B.: this is a good first pass but not unproblematic).

- Lexicon: \([\text{[and]}, (X/LX)/R-X, \lambda f_{(a,t)} \lambda g_{(a,t)} \lambda y_{a}. f(y) \land g(y)]\)

Note the use of the type variable \(\alpha\). This is called “type-polymorphism”.

GQs are \((e, t), t\); names are type \(e\). How can we get Mitka and every wolf (howled)?

Lift-NP: If \(\alpha = ([\alpha], NP, [\alpha])\), then there is a \(\beta = ([\alpha], S/R(S/LNP), \lambda P_{(e,t)}. P([\alpha]))\).

Lexicon : \([\text{[every]}, (S/R(S/LNP))/R N, \lambda P \lambda Q \forall x. P(x) \rightarrow Q(x)]\)

Lexicon : \([\text{[wolf]}, N, \text{wolf}]\)

R-Appl : \([\text{[every wolf]}, (S/R(S/LNP))/L(S/R(S/LNP)), \lambda g_{(e,t), t} \lambda y_{(e,t)}. [\lambda Q \forall x. \text{wolf}(x) \rightarrow Q(x)](y) \land g(y)]\)

Lexicon : \([\text{[and]}, (X/LX)/R-X, \lambda f_{(a,t)} \lambda g_{(a,t)} \lambda y_{a}. f(y) \land g(y)]\)

R-Appl : \([\text{[and every wolf]}, (S/R(S/LNP))/R(S/R(S/LNP)), \lambda g_{(e,t), t} \lambda y_{(e,t)}. [\lambda Q \forall x. \text{wolf}(x) \rightarrow Q(x)](y) \land g(y)]\)

β-reduction: \([\text{[and every wolf]}, (S/R(S/LNP))/L(S/R(S/LNP)), \lambda g_{(e,t), t} \lambda y_{(e,t)}. [\forall x. \text{wolf}(x) \rightarrow Q(x)](y) \land g(y)]\)

Lexicon : \([\text{[Mitka]}, NP, m]\)

Lift-NP : \([[\text{Mitka}], S/R(S/LNP), \lambda P_{(e,t)}. P(m)]\).

L-Appl : \([[\text{Mitka and every wolf}], S/R(S/LNP), [\lambda g_{(e,t), t} \lambda y_{(e,t)}. [\forall x. \text{wolf}(x) \rightarrow y(x)] \land g(y)](\lambda P_{(e,t)}. P(m))]\)

β-reduction: \([[\text{Mitka and every wolf}], S/R(S/LNP), \lambda y_{(e,t)}. [\forall x. \text{wolf}(x) \rightarrow y(x)] \land g(y)](\lambda P_{(e,t)}. P(m))]\)

β-reduction: \([[\text{Mitka and every wolf}}, S/R(S/LNP), \lambda y_{(e,t)}. [\forall x. \text{wolf}(x) \rightarrow y(x)] \land g(y)](\lambda P_{(e,t)}. P(m))]\)

Lexicon : \([[\text{howled}], S/LNP, \text{howled}]\)

R-Appl : \([[\text{Mitka and every wolf howled}}, S, \lambda y_{(e,t)}. [\forall x. \text{wolf}(x) \rightarrow y(x)] \land g(y)](\lambda P_{(e,t)}. P(m))]\)

β-reduction: \([[\text{Mitka and every wolf howled}}, S, [\forall x. \text{wolf}(x) \rightarrow \text{howled}(x)] \land \text{howled}(m)]\)
What about coordinations of names? (*Bill and Mary*)

- \[\lambda f \alpha, \lambda g \alpha, \lambda y \alpha. f(y) \land g(y) ((\lambda P(e,t). P(b))((\lambda Q(e,t). Q(m))) \]

\[\Rightarrow \lambda y(e,t). (\lambda P. P(b))(y) \land (\lambda Q. Q(m))(y) \]

\[\Rightarrow \lambda y(e,t). y(b) \land y(m) \]

This gives a reasonable interpretation for *Bill and Mary laughed*:

- \[\lambda y(e,t). y(b) \land y(m) \](laughed)

\[\Rightarrow \text{laughed}(b) \land \text{laughed}(m) \]

This is just the GQ that is the intersection of the GQs denoted by lifted Bill and lifted Mary. But, this kind of conjunction can only give us distributive interpretations:

- *Barack and Michelle like carrots* ⇔ *Barack likes carrots and Michelle likes carrots*
- *Barack and Michelle met in 1989* ⇔ *Barack met in 1989 and Michelle met in 1989*

There’s something missing in this semantics for plurals, then!

Generalizing Lift:

- **Lift-α-Left**: If \(\alpha = ([\alpha], A, [\alpha]) \), then, for any category \(B \), there is a \(\beta = ([\alpha], B/_{e,t}((B/_{L,A}) \lambda P_{(e,t)}. P([\alpha]))). \)

- **Lift-α-Right**: If \(\alpha = ([\alpha], A, [\alpha]) \), then, for any category \(B \), there is a \(\beta = ([\alpha], B/_{L}((B/_{R,A}) \lambda P_{(e,t)}. P([\alpha]))). \)

Basically, the idea is to choose the version of Lift that anticipates the slash-direction of the thing that *would have* taken \(\alpha \) as an argument, and turn \(\alpha \) into something that can take *it* as an argument without affecting other aspects of the word order. So, if VP is looking for a NP to its left, a lifted NP needs to be looking for a VP to its right.

Generalized lift predicts a lot of new readings, e.g., those generated by lifting a VP (type \((e, t) \)) to a property of GQs (type \(((e, t), t, t) \). This allows a conjunction or disjunction to take “wide scope” over GQs, as you’ll explore in your next homework.

2 Intensionality

In the last homework we encountered a problem: intensional functional application (IFA) does not do a good job of dealing with intensional contexts in general, because it applies a world-variable to the embedded clause’s denotation, yielding a truth-value. This has the effect of making the grammar unable to distinguish among sentences that are true at a given world, and among those that are false at a world. This is a problem, because the following is clearly a coherent scenario:

- It’s raining at \(w \). \(\Rightarrow \lambda w. \text{rain}(w) \)
• It’s Tuesday at \(w \). \(\rightarrow \lambda w.\text{Tuesday}(w) \)

• Bill believes at \(w \) that it’s raining.

• Bill doesn’t believe at \(w \) that it’s Tuesday.

The meanings that we want, vs. those we derive:

• Bill believes at \(w \) that it’s raining.
 – What it should denote: \(\lambda w'.\text{believe}(w')(\lambda w.\text{rain}(w))(\text{Bill}) \)
 “Bill believes that he inhabits a world in the rain-set”
 – What an IFA-only grammar predicts it should denote: \(\lambda w'.\text{believe}(w')(\text{rain}(w'))(\text{Bill}) \)
 “If it is raining, Bill believes TRUE; if isn’t, he believes FALSE”

• Bill doesn’t believe at \(w \) that it’s Tuesday.
 – What it should denote: \(\lambda w'.\text{believe}(w')(\lambda w.\text{Tuesday}(w))(\text{Bill}) \)
 “Bill believes that he inhabits a world in the Tuesday-set”
 – What an IFA-only grammar predicts it should denote: \(\lambda w'.\text{believe}(w')(\text{Tuesday}(w'))(\text{Bill}) \)
 “If it is Tuesday, Bill believes TRUE; if isn’t, he believes FALSE”

Jacobson (2014: §19) discusses two solutions:

1. push application of world-variables into the lexicon, as in Montague 1973
2. modify the application rules to make them sensitive to the semantic types of the things being combined (Klein & Sag 1985)

Let’s try them both out.

• Solution 1: both extensional and intensional expressions take intensions as arguments; they just do different things with them. To implement we have to change the application rules to the following. (The difference from before is that we don’t apply the \(w \) that’s \(\lambda \)-abstracted to the argument.)

 Right application: If \(\alpha = ([\alpha], A\mid R B, [\alpha]) \) and \(\beta = ([\beta], B, [\beta]) \), then there is a \(\gamma = ([\alpha-\beta], A, \lambda w.[\alpha](w)([\beta])) \).

 Left application: If \(\alpha = ([\alpha], A, [\alpha]) \) and \(\beta = ([\beta], B\mid L A, [\beta]) \), then there is a \(\gamma = ([\alpha-\beta], B, \lambda w.[\beta](w)([\alpha])) \).

We then have to rewrite the semantic part of our lexicon: extensional items are now distinguished by the fact that they apply the \(w \) to their argument (thus, in effect, taking its extension as an argument). For example:

\[
[saw] = \lambda w\lambda x\lambda y.\text{saw}(w)(x(w))(y(w)) \quad (\text{compare: } \lambda w\lambda x\lambda y.\text{saw}(w)(x)(y))
\]
We’d need to do some serious lexical semantics to figure out where to go from here; but
sentences with extensional verbs like “Jim ate a fairy (poor guy, there aren’t any)”,
examples like “Jim looked for a fairy (poor guy, there aren’t any)”, as opposed to nonsensical
doesn’t exist at that world. This seems like a good result in light of quite intelligible

\[\text{looked for} = \lambda w \alpha.\text{lookedFor}(w)(x)(y(w)) \]
\[\text{looked for Hulk} = \lambda w_1, [\lambda w \alpha \lambda y.\text{lookedFor}(w_1)(x)(y(w_1))](\lambda w.\text{HH})(y(w_1)) \]

We’d need to do some serious lexical semantics to figure out where to go from here; but
the key observation is that \(x \) looked for Hulk could be true at a world, for some \(x \), even if HH
doesn’t exist at that world. This seems like a good result in light of quite intelligible examples like “Jim looked for a fairy (poor guy, there aren’t any)”, as opposed to nonsensical sentences with extensional verbs like “?? Jim ate a fairy (poor guy, there aren’t any)”.

- Solution 2: Type-driven translation.
 - see: type \(\langle s, (e, (e, t)) \rangle \)
 - look for: type \(\langle s, (\langle s, e \rangle, (e, t)) \rangle \)

<table>
<thead>
<tr>
<th>Right application-Extensional: If</th>
<th>Left application-Extensional: If</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) is of type (\langle s, (\delta, \epsilon) \rangle),</td>
<td>(\alpha) is of type (\langle s, \delta \rangle),</td>
</tr>
<tr>
<td>(\alpha = ([\alpha], A/R B, [\alpha])),</td>
<td>(\alpha = ([\alpha], A, [\alpha])),</td>
</tr>
<tr>
<td>(\beta) is of type (\langle s, \delta \rangle), and</td>
<td>(\beta) is of type (\langle s, (\delta, \epsilon) \rangle), and</td>
</tr>
<tr>
<td>(\beta = ([\beta], B, [\beta])),</td>
<td>(\beta = ([\beta], B/L A, [\beta])),</td>
</tr>
<tr>
<td>then there’s a (\gamma = ([\alpha - \beta], A, \lambda w.(\alpha(\beta(w))))).</td>
<td>then there’s a (\gamma = ([\alpha - \beta], A, \lambda w.\beta(\alpha))).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Right application-Intensional: If</th>
<th>Left application-Intensional: If</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) is of type (\langle s, (\langle s, \delta \rangle, \epsilon) \rangle),</td>
<td>(\alpha) is of type (\langle s, \delta \rangle),</td>
</tr>
<tr>
<td>(\alpha = ([\alpha], A/R B, [\alpha])),</td>
<td>(\alpha = ([\alpha], A, [\alpha])),</td>
</tr>
<tr>
<td>(\beta) is of type (\langle s, \delta \rangle), and</td>
<td>(\beta) is of type (\langle s, (\langle s, \delta \rangle, \epsilon) \rangle), and</td>
</tr>
<tr>
<td>(\beta = ([\beta], B, [\beta])),</td>
<td>(\beta = ([\beta], B/L A, [\beta])),</td>
</tr>
<tr>
<td>then there’s a (\gamma = ([\alpha - \beta], A, \lambda w.(\alpha(\beta(w))))).</td>
<td>then there’s a (\gamma = ([\alpha - \beta], B, \lambda w.\beta([\alpha]))).</td>
</tr>
</tbody>
</table>
The effect is of course the same: the difference is that we can get away without manipulating \(w \)'s individually for all extensional items. Maybe this is a savings, if one or the other is the default option.

References

