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DETERMINATION, UNIFORMITY, AND RELEVANCE:
NORMATIVE CRITERIA FOR GENERALIZATION
AND REASONING BY ANALOGY

INTRODUCTION: THE IMPORTANCE OF PRIOR KNOWLEDGE
IN REASONING AND LEARNING FROM INSTANCES

If an agent is to apply knowledge from its past experience to a present
episode, it must know what properties of the past situation can justifi-
ably be projected onto the present on the basis of the known similarity
between the situations. The problem of specifying when to generalize or
reason by analogy, and when not to, therefore looms large for the
designer of a learning system. One would like to be able to program
into the system a set of criteria for rule formation from which the
system can correctly generalize from data as they are received. Other-
wise, all of the necessary rules the agent or system uses must be
programmed in ahead of time, so that they are either explicitly repre-
sented in the knowledge base or derivable from it.

Much of the resedrch in machine learning, from the early days when
the robot Shakey was learning macro-operators for action (Nilsson,
1984) to more recent work on chunking (Rosenbloom and Newell,
1986) and explanation-based generalization (Mitchell et al., 1986), has
involved getting systems to learn and represent explicitly rules and
relations between concepts that could have been derived from the start.
In Shakey’s case, for example, the planning algorithm and knowledge
about operators in STRIPS were jointly sufficient for deriving a plan to
achieve a given goal. To say that Shakey “learned” a specific sequence
of actions for achieving the goal means only that the plan was not
derived until the goal first arose. Likewise, in explanation-based
generalization (EBG), explaining why the training example is an
instance of a concept requires knowing beforechand that the instance
embodies a set of conditions sufficient for the concept to apply, and
chunking, despite its power to simplify knowledge at the appropriate
level, does not in the logician’s terms add knowledge to the system.

The desire to automate the acquisition of rules, without programming
them into the system either implicitly or explicitly, has led to a good
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deal of the rest of the work in symbolic learning. Without attempting a
real summary of this work, it can be said that much of it has involved
defining heuristics for inferring general rules and for drawing conclu-
sions by analogy. For example, Patrick Winston's program for learning
and reasoning by analogy (Winston, 1980) attempted to measure how
similar a source and target case were by counting equivalent corre-
sponding attributes in a frame, and then projected an attribute from the
source to the target if the count was large enough. In a similar vein, a
popular criterion for enumerative induction of a general rule from
instances is the number of times the rule has been observed to hold.
Both types of inference, although they are undoubtedly part of the story
for how people reason inductively and are good heuristic methods for a
naive system,' are nonetheless frought with logical (and practical) peril.
In reasoning by analogy, for example, a large number of similarities
between two children does not justify the conclusion that one child is
named “Skippy” just because the other one is. First names are not
properties that can be projected with any plausibility based on the
similarity in the childrens’ appearance, although shirt size, if the right
similarities are involved, can be. In enumerative induction, likewise, the
formation of a general rule from a number of instances of co-occur-
rence may or may not be justified, as Nelson Goodman’s well-known
unprojectible predicate “grue” makes very clear (Goodman, 1983). So
in generalizing and reasoning by analogy we must bring a good deal of
prior knowledge to the situation to tell us whether the conclusions we
might draw are justified. Tom Mitchell has called the effects of this
prior knowledge in guiding inference the inductive “bias” (Mitchell,
1980).

A LOGICAL FORMULATION OF THE PROBLEM OF ANALOGY

Reasoning by analogy may be defined as the process of inferring that a
conclusion property Q holds of a particular situation or object T (the
target) from the fact that 7 shares a property or set of properties P
with another situation/object S (the source) which has property Q. The
set of common properties P is the similarity between S and T, and the
conclusion property Q is projected from § onto T. The process may be
summarized schematically as follows:
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P(S) A Q(S)
P(T)

o(T).

The form of argument defined above is nondeductive, in that its
conclusion does not follow syntactically just from its premises. Instances
of this argument form vary greatly in cogency. As an example, Bob’s
car and Sue’s car share the property of being 1982 Mustang GLX V6
hatchbacks, but we could not infer that Bob’s car is painted red just
because Sue’s car is painted red. The fact that Sue's car is worth about
$3500 is, however, a good indication that Bob’s car is worth about
$3500. In the former example, the inference is not compelling; in the
latter it is very probable, but the premises are true in both examples.
Clearly the plausibility of the conclusion depends on information that is
not provided in the premises. So the justification aspect of the logical
problem of analogy, which has been much studied in the field of
philosophy (see, e.g. Carnap, 1963; Hesse, 1966; Leblanc, 1969;
Wilson, 1964), may be defined as follows.

THE JUSTIFICATION PROBLEM:

Find a criterion which, if satisfied by any particular analo-
gical inference, sufficiently establishes the truth of the
projected conclusion for the target case.

Specifically, this may be taken to be the task of specifying background
knowledge that, when added to the premises of the analogy, makes the
conclusion follow soundly.

It might be noticed that the analogy process defined above can be
broken down into a two-step argument as follows: (1) From the first
premise P(S) A Q(S), conclude the generalization Vx P(x) = Q(x),
and (2) instantiate the generalization to T and apply modus ponens
to get the conclusion Q(T). In this process, only the first step is
nondeductive, so it looks as if the problem of justifying the analogy has
been reduced to the problem of justifying a single-instance inductive
generalization. This will in fact be the assumption henceforth — that the
criteria for reasoning by analogy can be identified with those for the
induction of a rule from one example. This amounts to the assumption
that a set of similarities judged sufficient for projecting conclusions
from the source to the target would remain sufficient for such a
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projection to any target case with the same set of similarities to the
source. There are clearly differences in plausibility among different
single-instance generalizations that should be revealed by correct
criteria. For example, if inspection of a red robin reveals that its legs
are longer than its beak, a projection of this conclusion onto unseen red
robins is plausible, but projecting that the scratch on the first bird’s
beak will be observed on a second red robin is implausible. However,
the criteria that allow us to distinguish between good and bad gener-
alizations from one instance cannot do so on the basis of many of the
considerations one would use for enumerative induction, when the
number of cases is greater than one. The criteria for enumerative
induction include (1) whether or not the conclusion property taken as a
predicate is “entrenched” (unlike ‘grue’, for instance) (Goodman, 1983),
(2) how many instances have confirmed the generalization, (3) whether
or not there are any known counterexamples to the rule that is to be
inferred, and (4) how much variety there is in the confirming instances
on dimensions other than those represented in the rule’s antecedent
(Thagard and Nisbett, 1982). When we have information about only a
single instance of a property pertinent to its association with another,
then none of the above criteria will provide us with a way to tell
whether the generalization is a good one. Criteria for generalizing from
a single instance, or for reasoning by analogy, must therefore be simpler
than those required for general enumerative induction. Identifying those
more specialized criteria thus seems like a good place to start in
elucidating precise rules for induction.

One approach to the analogy problem has been to regard the
conclusion as plausible in proportion to the amount of similarity that
exists between the target and the source (see Mill, 1900). Heuristic
variants of this have been popular in research on analogy in artificial
intelligence (Al) (see, e.g. Carbonell, 1983; Winston, 1980). Insofar as
these “similarity-based” methods and theories of analogy rely upon a
measure over the two cases that is independent of the conclusion to be
projected, it is easy to see that they fail to account for the differences in
plausibility among many analogical arguments. For example, in the
problem of inferring properties of an unseen red robin from those of
one already studied, the amount of similarity is fixed, namely that both
things are red robins, but we are much happier to infer that the bodily
proportions will be the same in both cases than to infer that the unseen
robin will also have a scratched beak. It is worth emphasizing that this

CRITERIA FOR GENERALIZATION 231

is true no matter how well constructed the similarity metric is. Partly in
response to this problem, researchers studying analogy have recently
adverted to relevance as an important condition on the relation
between the similarity and the conclusion (Kedar-Cabelli, 1985; Shaw
and Ashley, 1983). However, to be a useful criterion, the condition of
the similarity P being relevant to the conclusion Q needs to be weaker
than the inheritance rule Vx P(x) = Q(x), for then the conclusion in
plausible analogies would always follow just by application of the rule
to the target. Inspection of the source would then be redundant. So a
solution to the logical problem of analogy must, in addition to provid-
ing a justification for the conclusion, also ensure that the information
provided by the source instance is used in the inference. We therefore
have the following.

THE NONREDUNDANCY PROBLEM:

The background knowledge that justifies an analogy or
single-instance generalization should be insufficient to imply
the conclusion given information only about the target. The
source instance should provide new information about the
conclusion.

This condition rules out trivial solutions to the justification problem. in
particular, although the additional premise Vx P(x) = Q(x) is suffi-
cient for the validity of the inference, it does not solve the nonredun-
dancy problem and is therefore inadequate as a general solution to the
logical problem of analogy. To return to the example of Bob’s and Sue’s
cars, the nonredundancy requirement stipulates that it should not be
possible, merely from knowing that Bob’s car is a 1982 Mustang GLX
V6 hatchback, and having some rules for calculating current value, to
conclude that the value of Bob’s car is about $3500 — for then it would
be unnecessary to invoke the information that Sue’s car is worth that
amount. The role of the source analogue (or instance) would in that
case be just to point to a conclusion which could then be verified
independently by applying general knowledge directly to Bob’s car. The
nonredundancy requirement assumes, by contrast, that the information
provided by the source instance is not implicit in other knowledge. This
requirement is important if reasoning from instances is to provide us
with any conclusions that could not be inferred otherwise. As was
noted above, the rules formed in EBG-like systems are justified, but the
instance information is redundant, whereas in systems that use heu-



232 T.R. DAVIES

ristics based on similarity to reason analogically, the conclusion is not
inferrable from prior knowledge but is also not justified after an
examination of the source.

There has been a good deal of fruitful work on different methods for
learning by analogy (e.g., Burstein, 1983; Carbonell, 1983, 1986:;
Greiner, 1985; Kedar-Cabelli, 1985; Winston, 1980) in which the
logical problem is of secondary importance to the empirical usefulness
of the methods for particular domains. Similarity measures, for
instance, can prove to be a successful guide to analogizing when precise
relevance information is unavailable, and the value of learning by
chunking, EBG, and related methods should not be underestimated
either. The wealth of engineering problems to which these methods and
theories have been applied, as well as the psychological data they
appear to explain, all attest to their importance for AL In part, the
current project can be seen as an attempt to fill the gap between
similarity-based and explanation-based learning, by providing a way to
infer conclusions whose justifications go beyond mere similarity but do
not rely on the generalization being implicit in prior knowledge. In that
respect, there will be suggestions of methods for doing analogical
reasoning. The other, perhaps more important, goal of this research has
been to provide an underlying normative justification for the plausi-
bility of analogy from a logical and probabilistic perspective, and in so
doing to provide a general form for the background knowledge that is
sufficient for drawing reliable, nonredundant analogical inferences,
regardless of the method used. The approach is intended to comple-
ment, rather than to compete with, other approaches. In particular is
not intended to provide a descriptive account of how people reason by
analogy or generalize from cases, in contrast to much of the work in
cognitive psychology to date (e.g., Gentner, 1983; Gick and Holyoak,
1983). Descriptive theories may also involve techniques that are not
logically or statistically sound. The hope is that, by elucidating what
conclusions are justified, it will become easier to analyze descriptive
and heuristic techniques to see why they work and when they fail.

DETERMINATION RULES FOR GENERALIZATION
AND ANALOGICAL INFERENCE

Intuitively, it seems that a criterion that simultaneously solves both
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the justification problem and the nonredundancy problem should be
possible to give. As an example, consider again the two car owners,
Bob and Sue, who both own 1982 Mustang GLX V6 hatchbacks in
good condition. Bob talks to Sue and finds out that Sue has been
offered $3500 on a trade-in for her car. Bob therefore reasons that he
too could get about $3500 if he were to trade in his car. Now if we
think about Bob’s state of knowledge before he talked to Sue, we can
imagine that Bob did not know and could not calculate how much his
car was worth. So Sue’s information was not redundant to Bob. At the
same time, there seemed to be a prior expectation on Bob’s part that,
since Sue’s car was also a 1982 Mustang GLX V6 hatchback in good
condition, he could be relatively sure that whatever Sue had had offered
to her, that would be about the value of his (Bob’s) car as well, and
indeed of any 1982 Mustang GLX V6 hatchback in good condition.
What Bob knew prior to examining the instance (Sue’s car) was some
very general but powerful knowledge in a form of a determination
relation, which turns out to be a solution to the justification and
nonredundancy problems in reasoning by analogy. Specifically, Bob
knew that the make, model, design, engine-type, condition and year of
a car determine its trade-in value. With knowledge of a single deter-
mination rule such as this one, Bob does not have to memorize (or
even consult) the Blue Book, or learn a complicated set of rules for
calculating car values. A single example will tell him the value for all
cars of a particular make, model, engine, condition, and year.

In the above example, Bob’s knowledge, that the make, model,
design, engine, condition, and year determine the value of a car,
expresses a determination relation between functions, and is therefore
equivalent to what would be called a “functional dependency” in
database theory (Ullman, 1983). The logical definition for function G
being functionally dependent on another function F is the following
(Vardi, 1982):

() Vo yF(x)=F@y) = Gx)=G(y)

In this case, we say that a function (or set of functions) F functionally
determines the value of function(s) G because the value assignment for
F is associated with a unique value assignment for G. We may know
this to be true without knowing exactly which value for G goes with a
particular value for F. If the example of Bob’s and Sue’s cars (Cary and
Carg respectively) from above is written in functional terms, as follows:



234 T. R. DAVIES

Make(Carg) = Ford Make(Carg) = Ford
Model(Cars) = Mustang Model(Carg) = Mustang
Design(Carg) = GLX Design(Carg)= GLX
Engine(Cars)= V6 Engine(Carg) = V6
Condition(Carg) = Good Condition(Carg) = Good
Year(Cars) = 1982 Year(Carg) = 1982

Value(Carg) = $3500
Value(Carg) = $3500

then knowing that the make, model, design, engine,condition, and year
determine value thus makes the conclusion valid.

Another form of determination rule expresses the relation of one
predicate deciding the truth value of another, which can be written as:

(*) (VxP(x)= Q(x)) V (Vx P(x) = - Q(x)).

This says that either all P’s are Q’s, or none of them are. Having this
assumption in a background theory is sufficient to guarantee the truth
of the conclusion Q(T) from P(S) A P(T) A Q(S), while at the
same time requiring an inspection of the source case S to rule out one
of the disjuncts. It is therefore a solution to both the justification
problem and the nonredundancy problem. We often have knowledge of
the form “P decides whether Q applies™. Such rules express our belief
in the rule-like relation between two properties, prior to knowledge of
the direction of the relation. For example, we might assume that either
all of the cars leaving San Francisco on the Golden Gate Bridge have to
pay a toll, or none of them do.

Other, more complicated formulas expressing determination rela-
tions can be represented. It is interesting to note that determination
cannot be formulated as a connective, i.e. a relation between proposi-
tions or closed formulas. Instead it should be thought of as a relation
between predicate schemata, or open formulas. In the semantics of
determination presented in the next section, even the truth value of a
predicate or schema is allowed to be a variable. Determination is then
defined as a relation between a determinant schema and its resultant
schema, and the free variables that occur only in the determinant are
viewed as the predictors of the free variables that occur only in the
resultant (the response variables). It is worth noting that there may be
more than one determinant for any given resultant. For example, one's
zip code and capital city are each individually sufficient to determine
one’s state. In our generalized logical definition of determination (see

CRITERIA FOR GENERALIZATION 235

the section on “Representation and Semantics”), the forms (x) and (++)
are subsumed as special cases of a single relation “P determines Q7,
writtenas P > Q.

Assertions of the form “P determines Q” are actually quite common
in ordinary language. When we say “The IRS decides whether you get a
tax refund,” or “What school you attend determines what courses are
available,” we are expressing an invariant relation that reflects a causal
theory. At the same time, we are expressing weaker information than is
contained in the statement that P formally implies? Q. If P implies Q
then P determines Q, but the reverse is not true, so the inheritance
relation falls out as a special case of determination. That knowledge of
a determination rule or of “relevance” underlies preferred analogical
inferences seems transparent when one has considered the shortcom-
ings of alternative criteria like how similar the two cases are, or whether
the similarity together with our background knowledge logically imply
the conclusion. It is therefore surprising that even among very astute
philosophers working on the logical justifications of analogy and induc-
tion, so much emphasis has until recently been placed on probabilistic
analyses based on numbers of properties (Camap, 1963), or on
accounts that conclude that the analogue is redundant in any sound
analogical argument (e.g., Copi, 1972). Paul Thagard and Richard
Nisbett (Thagard and Nisbett, 1982) speculate that the difficulty in
specifying the principles that describe and justify inductive practice has
resulted from an expectation on the part of philosophers that inductive
principles would be like deductive ones in being capable of being
formulated in terms of the syntactic structure of the premises and
conclusions of inductive inferences. When, in 1953—54 Nelson Good-
man (Goodman, 1983) made his forceful argument for the importance
of background knowledge in generalization, the Carnapian program of
inductive logic began to look less attractive. Goodman was perhaps the
first to take seriously the role and form of semantically-grounded
background criteria (called by him “overhypotheses”) for inductive
inferences. The possibility of valid analogical reasoning was recognized
by Julian Weitzenfeld (Weitzenfeld, 1984), and Thagard and Nisbett
(Thagard and Nisbett, 1982) made the strong case for semantic (as
opposed to syntactic, similarity- or numerically-based) criteria for
generalization. In the process both they and Weitzenfeld anticipated the
argument made herein concerning determination rules. The history of
Al approaches to analogy and induction has largely recapitulated the
stages that were exhibited in philosophy. But the precision required for
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making computational use of determination, and for applying related
statistical ideas, gives rise to questions about the scope and meaning of
the concepts that seem to demand a slightly more formal analysis than
has appeared in the philosophical literature. In the next section, a
general form is given for representing determination rules in first order
logic. The probabilistic analogue of determination, herein called
“uniformity”, is then defined in the following section, and finally the two
notions — logical and statistical — are used in providing definitions of
the relation of “relevance” for both the logical and the probabilistic
cases.

THE REPRESENTATION AND SEMANTICS OF DETERMINATION

To define the general logical form for determination in predicate logic,
we need a representation that covers (1) determination of the truth
value or polarity of an expression, as in example cases of the form
“P(x) decides whether or not Q(x)” (formula (++) from previous
section), (2) functional determination rules like () above, and (3) other
cases in which one expression in first order logic determines another.
Rules of the first form require us to extend the notion of a first order
predicate schema in the following way. Because the truth value of a first
order formula cannot be a defined function within the language, let us
introduce the concept of a polar variable which can be placed at the
beginning of an expression to denote that its truth value is not being
specified by the expression. For example, the notation “ iP(x)” can be
read “whether or not P(x)”, and it can appear on either side of the
determination relation sign “ > in a determination rule, as in

Pi(x) A i Py(x) > i, O (x).
This would be read, “P,(x) and whether or not P,(x) together jointly
determine whether or not Q (x)”, where i; and i, are polar variables.

As was mentioned above, the determination relation cannot be
formulated as a connective, i.e. a relation between propositions or
closed formulas. Instead, it should be thought of as a relation between
predicate schemata, or open formulas with polar variables. For a first
order language L, the set of predicate schemata for the language may be
characterized as follows. If S is a sentence (closed formula or wff) of L,
then the following operations may be applied, in order, to S to generate
a predicate schema:
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(1) Polar variables may be placed in front of any wiffs that are
contained as strings in S,

(2) Any object variables in § may be unbound (made free) by
removing quantification for part of §, and

(3) Any object constants in S may be replaced by object variables.

All of and only the expressions generated by these rules are schemata
of L.

To motivate the definition of determination, let us turn to some
example pairs of schemata for which the determination relation holds.
As an example of the use of polar variables, consider the rule that,
being a student athlete, one’s school, year, sport, and whether one is
female determine who one’s coach is and whether or not one has to do
sit-ups. This can be represented as follows:

EXAMPLE 1:
(Athlete(x) A\ Student(x) A School(x)=s
A Year(x)=y A Sport(x)=z A i Female(x))
> (Coach(x)= ¢ N §,Sit — ups(x)).

As a second example, to illustrate that the component schemata may
contain quantified variables, consider the rule that, not having any
deductions, having all your income from a corporate employer, and
one’s income determine one’s tax rate:

EXAMPLE 2:
(Taxpayer(x) A Citizen(x, US) A
(~3d Deductions(x, d)) A (Vilncome(i, x) =
Corporate(i)y N\ Personal Income(x) = p)
>(Tax Rale(x)=r).

In each of the above examples, the free variables in the component
schemata may be divided, relative to the determination rule, into a case
set x of those that appear free in both the determinant (left-hand side)
and the resultant (right-hand side), a predictor set y of those that
appear only in the determinant schema, and a response set z of those
that appear only in the resultant. These sets are uniquely defined for
each determination rule. In particular, for example 1 they are x = {x},
y=1{s ¥ 2z i}, and z = {¢, i,}; and for example 2 they are x = {x},
y= {p}, z = {r}. In general, for a predicate schema X with free
variables x and y, and a predicate schema X with free variables x
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(shared with X) and z (unshared), whether the determination relation
holds is defined as follows:

Z[x y] > X[x, z]
iff

Vy,z(@x Z[x, y] A X[x,z]) = (Vx Z[x,y] = X][x,z]).

For interpreting the right-hand side of this formula, quantified polar
variables range over the unary Boolean operators (negation and affir-
qlation) as their domain of constants, and the standard Tarskian seman-
tics is applied in evaluating truth in the usual way (see Genesereth and
Nilsson, 1987). This definition covers the full range of determination
rules expressible in first order logic, and is therefore more expressive
tt_lan the set of rules restricted to dependencies between frame slots,
given a fixed vocabulary of constants. Nonetheless, one way to view a

predicate schema is as a frame, with slots corresponding to the free
variables.

USING DETERMINATION RULES IN DEDUCTIVE SYSTEMS

Determination rules can provide the knowledge necessary for an agent
or system to reason by analogy from case to case. This is desirable
when the system builds up a memory of specific cases over time. If
the case descriptions are thought of as conjunctions of well-formed
formulas in predicate logic, for instance, then questions about the target
case in such a system can be answered as follows:

(1) Identify a resultant schema corresponding to the question being
asked. The free variables in the schema are the ones to be bound
(the response variables z).

(2) Find a determination rule for the resultant schema, such that the
determinant schema is instantiated in the target case.

(3) Find a source case, in which the bindings for the predictor
variables y in the determinant schema are identical to the
bindings in the target case for the same variables.

(4) If the resultant schema is instantiated in the source case, then
bind the shared free variables x of the resultant schema to their
values in the target case’s instantiation of the determinant
schema, and bind the response variables to their values in the
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source case’s instantiation of the resultant schema. The well-
formed formula thus produced is a sound conclusion for the
target case.

Such a system might start out with a knowledge base consisting only of
determination rules that tell it what information it needs to know in
order to project conclusions by analogy, and as it acquires a larger and
larger database of cases, the system can draw more and more conclu-
sions based on its previous experience. The determination rule also
provides a matching constraint in searching for a source case. Rather
than seeking to maximize the similarity between the source and the
target, a system using determination rules looks for a case that matches
the target on predictor bindings for a determinant schema, which may
or may not involve a long list of features that the two cases must have
in common.

A second use of determination rules is in the learning of generaliza-
tions. A single such rule, for example that one’s species determines
whether one can fly or not, can generate a potentially infinite number of
more specific rules about which species can fly and which cannot, just
from collecting case data on individual organisms that includes in each
description the species and whether that individual can fly. So the
suggestion for machine learning systems that grows out of this work is
that systems be programmed with knowledge about determination
rules, from which they can form more specific rules of the form Vx P(x,
Y) = Q(x, Z). Determination rules are a very common form of
knowledge, perhaps even more so than knowledge about strict implica-
tion relationships. We know that whether you can carry a thing is
determined by its size and weight, that a student athlete’s coach is
determined by his or her school, year, sport, and sex. In short, for
many, possibly most, outcomes about which we are in doubt, we can
name a set of functions or variables that jointly determine it, even
though we often cannot predict the outcome from just these values.

Some recent Al systems can be seen to embody the use of knowl-
edge about determination relationships (e.g., see Baker and Burstein,
1987: Carbonell, 1986; Rissland and Ashley, 1986). For example,
Edwina Rissland and Kevin Ashley’s program for reasoning from
hypothetical cases in law represents cases along dimensions which are,
in a loose sense, determinants of the verdicts. Likewise, research in the
psychology and theory of induction and analogy (see, e.g. Nisbett et al.,
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1983) has postulated the existence of knowledge about the “homo-
geneity” of populations along different dimensions. In all of this work,
the reality that full, indefeasible determination rules cannot be specified
for complicated outcomes, and that many of the determination rules we
can think of have exceptions to them, has prompted a view toward
weaker relations of a partial or statistical nature (Russell, 1986), and to
determination rules that have the character of defaults (Russell and
Grosof, 1987). The extension of the determination relation to the
statistical case is discussed in the next section on uniformity.

A third use of determination rules is the representation of knowledge
in a more compact and general form than is possible with inheritance
rules. A single determination rule of the form P(x, y) > Q(x, z) can
replace any number of rules of the form Vx P(x, Y) = Q(x, Z) with
different constants Y and Z. Instead of saying, for instance, “Donkeys
can’t fly,” “Hummingbirds can fly,” “Giraffes can’t fly,” and so forth,
we can say “One’s species determines whether or not one can fly,” and
allow cases to build up over time to construct the more specific rules.
This should ease the knowledge acquisition task by making it more
hierarchical.

UNIFORMITY: THE STATISTICAL ANALOGUE
OF DETERMINATION

The problem of finding a determining set of variables for predicting the
value of another variable is similar to the problem faced by the applied
statistician in search of a predictive model. Multiple regression, analysis
of variance, and analysis of covariance techniques all involve the
attempt to fit an equational model for the effects of a given set of
independent (predictor) variables on a dependent (response) variable
or vector (see Johnson and Wichern, 1982; Montgomery and Peck,
1982). In each case some statistic can be defined which summarizes
that proportion of the variance in the response that is explained by the
model (e.g. multiple R?, @?). In regression, this statistic is the square of
the correlation between the observed and model-predicted values of the
response variables, and is, in fact, often referred to as the “coefficient of
determination” (Johnson and Wickern, 1982). When the value of such a
statistic is 1, the predictor variables clearly amount to a determinant for
the response variable. They are, in such cases, exhaustively relevant to
determining its value in the same sense in which a particular schema
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determines a resultant in the logical case. But when the proportion of
the variance explained by the model is less than 1, it is often difficult to
say whether the imperfection of the model is that there are more
variables that need to be added to determine the response, or that the
equational form chosen (linear, logistic, etc.) is simply the wrong one. In
low dimensions (one or two predictors), a residual plot may reveal
structure not captured in the model, but at higher dimensions this is not
really possible, and the appearance of randomness in the residual plot
is no guarantee in any case. So, importantly, the coefficient of deter-
mination and its analogues measure not the predictiveness of the
independent variables for the dependents, but rather the predictiveness
of the model. This seems to be an inherent problem with quantitative
variables.

If one considers only categorical data, then it is possible to assess the
predictiveness of one set of variables for determining another. However
there are multiple possibilities for such a so-called “association meas-
ure”. In the statistics literature one finds three types of proposals for
such a measure, that is, a measure of the dependence between variables
in a k-way contingency table of count data. Firstly, there are what have
been termed “symmetric measures” (see Haberman, 1982; Hays and
Winkler, 1970) that quantify the degree of dependence between two
variables, such as Pearson’s index of mean square contingency (Hays
and Winkler, 1970). Secondly, there are “predictiveness” measures,
such as Goodman and Kruskal's A (Goodman and Kruskal, 1979),
which quantify the proportional reduction in the probability of error, in
estimating the value of one variable (or function) of an individual, that
is afforded by knowing the value of another. And thirdly, there are
information theoretic measures (e.g. Theil, 1970) that quantify the
average reduction in uncertainty in one variable given another, and can
be intepreted similarly to the predictive measures (Hays and Winkler,
1970). In searching for a statistic that will play the rule in probabilistic
inference that is played by determination in logic, none of these three
types of association measure appear to be what we are looking for. The
symmetric measures can be ruled out immediately, since determination
is not a symmetric relation. The predictive and information theoretic
measures quantify how determined a variable is by another relative to
prior knowledge about the value of the dependent variable. While this
is a useful thing to know, it corresponds more closely to what in this
paper is termed “relevance” (see mext section), or the value of the
information provided by a variable relative to what we already know.
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Logical determination has the property that a schema can contain some
superfluous information and still be a determinant for a given outcome;
that is, information added to our knowledge when something is deter-
mined does not change the fact that it is determined, and this seems to
be a useful property for the statistical analogue of determination to
have.

So a review of existing statistical measures apparently reveals no
suitable candidates for what will hereinafter be called the uniformity of
one variable or function given the value of another, or the statistical
version of the determination relation. Initially we might be led simply to
identify the uniformity of a function G given another function F with
the conditional probability:

PriG(x)=G )| F(x)=F(y)}
for randomly select pairs x and y in our population. Similarly, the

uniformity of G given a particular value (property or category) P might
defined as:

Pr{G(x)=Gy)|P(x) A P(y)},

and permutations of values and variables in the arguments to the
uniformity function could be defined along similar lines. This possibility
is adverted to by Thagard and Nisbett (Thagard and Nisbett, 1982),
though they are not concerned with exploring the possibility seriously.
If the uniformity statistic is to underlie our confidence in a particular
value of G being shared by additional instances that share a particular
value of F, where this latter value is newly observed in our experience,
then it seems that we will be better off, in calculating the uniformity of
G given F, if we conditionalize on randomly chosen values of F, and
then measure the probability of a match in values for G, rather than
asking what is the probability of a match on G given a match on F for
a randomly chosen pair of elements in our past experience, or in a
population.

An example should illustrate this distinction and its importance. If
we are on a desert island and run across a bird of a species unfamiliar
to us (say, “shreebles,” to use Thagard and Nisbett’s term) and we
further observe that this bird is green, we want the uniformity statistic
to tell us, based on our past experience or knowledge of birds, how
likely it is that the next shreeble we see will also be green. Let us say,
for illustration, that we have experience with ten other species of birds,
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and that among these species nine of them are highly uniform with
respect to color, but the other is highly varying. Moreover, let us
assume that we have had far greater numerical exposure to this tenth,
highly variable species, than to the others, or that this species (call them
“variabirds”) is a lot more numerous generally. Then if we were to
define uniformity as was first suggested, sampling at random from our
population of birds, we would attain a much lower value for uniformity
than if we average over species instead, for in the latter case we would
have high uniformities for all but one of our known species and
therefore the high relative population of variabirds would not skew our
estimate. Intuitively the latter measure, based on averaging over species
rather than individuals in the conditional, provides a better estimate for
the probability that the next shreeble we see will be green. The
important point to realize is that there are multiple possibilities for such
a statistic, and we should choose the one that is most appropriate for
what we want to know. For instance, if the problem is to find the
probability of a match on color given a match on species for randomly
selected pairs of birds, then the former measure would clearly be better.
Another factor that plays in the calculation when we average over
species is the relative confidence we have in the quality of each sample,
i.e. the sample size for each value of F. We would want to weigh more
heavily (by some procedure that is still to be specified) those values for
which we have a good sample. Thus the uniformity statistic for esti-
mating the probability of a match given a new value of F would be the
weighted average,

UG|F)= % é w; Pr{G(x)= G(y)| F(x)=F(y)= P},

where p is the number of values P; of F for which we have observed
instances and also know their values for G. In the absence of informa-
tion about the relative quality of the samples for different values of F,
all of the weights w; would equal 1.

How might we make use of such a statistic ir learning and reason-
ing? Its value is that, under the assumption that the uniformity of the
function given another can be inferred by sampling, we can examine a
relatively small sample of a population, tabulate data on the subsets of
values appearing in the sample for the functions in question, and
compute an estimate of the extent to which the value of one function is
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determined by the other. This will in turn tell us what confidence we
can have in a generalization or inference by analogy based on a value
for a predictor function (variable) co-occurring with a value for a
response function, when either or both have not been observed before.
The experience of most people in meeting speakers of foreign languages
provides a good example. In the beginning, we might think, based on
our early data, that one’s nationality determines one’s native language.
But then we come across exceptions — Switzerland, India, Canada. We
still think that native language is highly wuniform given nationality,
however, because its conditional uniformity is high. So in coming across
someone from a country with which we are not familiar, we can assume
that the probability is reasonably high that whatever language he or she
speaks is likely to be the language that a randomly selected other
person from that country speaks.?

RELEVANCE: LOGICAL AND STATISTICAL DEFINITIONS
FOR THE VALUE OF INFORMATION

The concepts of determination and uniformity defined above can be
used to help answer another common question in learning and problem
solving. Specifically, the question is, how should an agent decide
whether to pay attention to a given variable? A first answer might be
that one ought to attend to variables that determine or suggest high
uniformity for a given outcome of interest. The problem is that both
determination and uniformity fail to tell us whether a given variable is
necessary for determining the outcome. For instance, the color of
Smirdley’s shirt determines how many steps the Status of Liberty has,
as determination has been defined, because the number of steps
presumably does not change over time. As another example, one’s zip
code and how nice one’s neighbors are determine what state one lives
in, because zip code determines state. This property for determination
and uniformity is useful because it ensures that superfluous facts will
not get in the way of a sound inference. But when one’s concern is what
information needs to be sought or taken into account in determining an
outcome, the limits of resource and time dictate that one should pay
attention only to those variables that are relevant to determining it.

The logical relation of relevance between two functions F and G
may be loosely defined as follows: F is relevant to determining G if and
only if Fis a necessary part of some determinant of G. In particular, let
us say that
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F is relevant to determining G iff there is some set of
functions D such that (1) F €D, (2) D > G, and (3) D —
{F} does not determine G.*

We can now ask, for a given determinant of a function, which part of it
is truly relevant to the determination, and which part gives us no
additional information. Whether or not a given function has value®
to us in a given situation can thus be answered from information
about whether it is relevant to a particular goal. Relevance as here
defined is a special case of the more general notion because we have
used only functional determination in defining it. Nonetheless, this
restricted version captures the important properties of relevance. Devika
Subramanian and Michael Genesereth (1987) have recently done work
demonstrating that knowledge about the irrelevance of, in their exam-
ples, a particular proposition, to the solution of a logical problem, is
useful in reformulating the problem to a more workable version in
which only the aspects of the problem description that are necessary to
solve it are represented. In a similar vein, Michael Georgeff has shown
that knowledge about independence among subprocesses can eliminate
the frame problem in modeling an unfolding process for planning
(Georgeff, 1987). Irrelevance and determination are dual concepts, and
it is interesting that knowledge in both forms is important in reasoning.

Irrelevance in the statistical case can, on reflection, be seen to be
related to the concept of probabilistic independence. In probability
theory, an event A is said to be independent of an event B iff the
conditional probability of A given B is the same as the marginal
probability of A. The relation is symmetric. The statistical concept of
irrelevance is a symmetric relation as defined in this paper. The
definition is the following:

F is (statistically) irrelevant to determining G iff
U{G(x)=G)IF(x)=F(y)}=Pr{G(x)=GW)
That is, F is irrelevant to G if it provides no information about the

value of G. For cases when irrelevance does not hold, one way to
define the relevance of F to G is as follows:

R(F, G)=|U{G(x)= G| F(x)=F(y)} — PriG(x) =
Gl

That is, relevance is the absolute value of the change in one’s informa-
tion about the value of G afforded by specifying the value of F. Clearly,
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if the value of G is known with probability 1 prior to inspection of F
then F cannot provide any information and is irrelevant. If the prior is
between 0 and 1, however, the value of F may be highly relevant to
determining the value of G. It should be noted that relevance has been
defined in terms of uniformity in the statistical case, just as it was
defined in terms of determination in the logical case. The statistic of
relevance is more similar to the predictive association measures men-
tioned in the last section for categorical data than is the uniformity
statistic. As such it may be taken as another proposal for such a
measure. Relevance in the statistical case gives us a continuous measure
of the value of knowing a particular function, or set of functions, or of
knowing that a property holds of an individual, for purposes of
determining another variable of interest. Knowledge about the relevance
of variables can be highly useful in reasoning. In particular, coming up
with a set of relevant functions, variables, or values for determining an
outcome with high conditional uniformity should be the goal of an agent
when the value of the outcome must be assessed indirectly.

CONCLUSION

The theory presented here is intended to provide normative justifica-
tions for conclusions projected by analogy from one case to another,
and for generalization from a case to a rule. The lesson is not that
techniques for reasoning by analogy must involve sentential representa-
tions of these criteria in order to draw reasonable conclusions. Rather it
is that the soundness of such conclusions, in either a logical or a
probabilistic sense, can be identified with the extent to which the
corresponding criteria (determination and uniformity) actually hold for
the features being related. As such it attempts to answer what has to be
true of the world in order for generalizations and analogical projections
to be reliable, irrespective of the techniques used for deriving them.
That the use of determination rules without substantial heuristic control
knowledge may be intractable for systems with large case libraries does
not therefore mean that determination or uniformity criteria are of no
use in designing such systems. Rather, these criteria provide a standard
against which practical techniques can be judged on normative grounds.
At the same time, knowledge about what information is relevant for
drawing a conclusion, either by satisfying the logical relation of rele-
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vance or by being significantly relevant in the probabilistic sense, can
be used to prune the factors that are examined in attempting to
generalize or reason by analogy.

As was mentioned earlier, logic does not prescribe what techniques
will be most useful for building systems that reason by analogy and
generalize successfully from instances, but it does tell us what problem
such techniques should solve in a tractable way. As such, it gives us
what David Marr (1982) called a “computational theory” of case-based
reasoning, that can be applied irrespective of whether the (in Marr’s
terms) “algorithmic” or “implementational” theory involves theorem
proving over sentences (Davies and Russell, 1987) or not. A full
understanding of how analogical inference and generalization can be
performed by computers as well as it is performed by human beings
will surely require further investigations into how we measure simi-
larity, how situations and rules are encoded and retrieved, and what
heuristics can be used in projecting conclusions when a valid argument
cannot be made. But it seems that logic can tell us quite a lot about
analogy, by giving us a standard for evaluating the truth of its conclu-
sions, a general form for its justification, and a language for distin-
guishing it from other forms of inference. Moreover, analysis of the
logical problem makes clear that an agent can bring background
knowledge to bear on the episodes of its existence, and soundly infer
from them regularities that could not have been inferred before.
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NOTES

! See the essay by Stuart Russell elsewhere in this volume.

? The term ‘formal implication’ is due to Bertrand Russell and refers to the relation
between predicates P and Q in the inheritance rule VxP(x) = Q(x).

* 1 am indebted to Stuart Russell for this example, and for the suggestion of the
term ‘uniformity’.

“ This definition can easily be augmented to cover the relevance of sets of func-
tions, and values, to others.

% ‘Value’ as used here refers only to usefulness for purposes of inference.
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