Evaluation of a Telerobotic System Concept for Real-Time Soft-Tissue Image Guidance During Radiotherapy Delivery

Jeffrey Schlosser, Kenneth Salisbury, Dimitre Hristov

ASTRO 52nd Annual Meeting
November 1st, 2010
Conflict of Interest

- Nothing to disclose
Imaging During Beam Delivery

• Existing solutions are limited:
 Radiographic x-ray Electromagnetic

Real-time marker-less soft-tissue image guidance during beam delivery is an unmet challenge
Novel Image Guidance Solution

Telerobotic system enables remote probe control
Telerobotic Imaging

Remote Haptic Interface

Robot
Key Issues

- Remote ultrasound imaging during beam delivery
 - Robotic manipulator design
 - Treatment plan compatibility
 - Performance during radiation exposure
 - Imaging robustness for multiple treatment sites
- Image guidance
 - Temporal calibration and time delay
 - Spatial calibration and accuracy

Details to appear in Medical Physics: Schlosser et al. (2010)
Telerobotic Imaging for Multiple Sites

Image quality remotely maintained over 10 minutes
Image Guidance: Spatial Calibration

Goal: find $\text{im} T_{\text{pr}}$

Variation of planar fit method from Hartov et. al*

Image Guidance: Spatial Calibration

(1) Collect images of plate

(2) Extract points on plane

\[w_p = w T_{tr} * tr T_{pr} * pr T_{im} * im p \]

(3) Convert to world frame

(4) Optimize planar data fit
Temporal Calibration and System Evaluation: Experimental Method

- Image static target in US phantom
- Vary probe pitch or pressure
- Track target in real-time using NCC
- Use transformation chain to register in world frame
Temporal Calibration and System Evaluation: Experimental Method

- Image static target in US phantom
- Vary probe pitch or pressure
- Track target in real-time using NCC
- Use transformation chain to register in world frame
Temporal Calibration and System Evaluation: Experimental Method

- Image static target in US phantom
- Vary probe pitch or pressure
- Track target in real-time using NCC
- Use transformation chain to register in world frame
Temporal Calibration and System Evaluation: Experimental Method

- Image static target in US phantom
- Vary probe pitch or pressure
- Track target in real-time using NCC
- Use transformation chain to register in world frame
Temporal Calibration and System Evaluation: Experimental Method

- Image static target in US phantom
- Vary probe pitch or pressure
- Track target in real-time using NCC
- Use transformation chain to register in world frame
Temporal Calibration

- **Novel procedure:**
 - Robot pitches US probe w/ sinusoidal motion
 - Static target imaged and tracked using NCC
 - Optical tracker data compared to US pixel data
Evaluation: Spatial Localization Error

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pitch</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Parameters</td>
<td>-5 to 5°</td>
<td>0 to 12N</td>
</tr>
<tr>
<td></td>
<td>0.4 Hz</td>
<td></td>
</tr>
<tr>
<td>Tracking Error</td>
<td>0.4±</td>
<td>0.6±</td>
</tr>
<tr>
<td></td>
<td>0.2 mm</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>Max Tracking Error</td>
<td>0.8 mm</td>
<td>1.3 mm</td>
</tr>
</tbody>
</table>

Real-time phantom localization error < 1mm
Evaluation: Spatial Localization Error

Real-time phantom localization error < 1mm

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pitch</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Parameters</td>
<td>-5 to 5°</td>
<td>0 to 12N</td>
</tr>
<tr>
<td></td>
<td>0.4 Hz</td>
<td></td>
</tr>
<tr>
<td>Tracking Error</td>
<td>0.4± 0.2 mm</td>
<td>0.6± 0.3mm</td>
</tr>
<tr>
<td>Max Tracking Error</td>
<td>0.8 mm</td>
<td>1.3 mm</td>
</tr>
</tbody>
</table>
Evaluation: Spatial Localization Error

Real-time phantom localization error < 1mm

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pitch</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Parameters</td>
<td>-5 to 5°, 0.4 Hz</td>
<td>0 to 12N</td>
</tr>
<tr>
<td>Tracking Error</td>
<td>0.4±0.2 mm</td>
<td>0.6±0.3 mm</td>
</tr>
<tr>
<td>Max Tracking Error</td>
<td>0.8 mm</td>
<td>1.3 mm</td>
</tr>
</tbody>
</table>
Evaluation: Spatial Localization Error

Real-time phantom localization error < 1mm

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pitch</th>
<th>Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Parameters</td>
<td>-5 to 5°</td>
<td>0 to 12N</td>
</tr>
<tr>
<td></td>
<td>0.4 Hz</td>
<td></td>
</tr>
<tr>
<td>Tracking Error</td>
<td>0.4± 0.2 mm</td>
<td>0.6± 0.3mm</td>
</tr>
<tr>
<td>Max Tracking Error</td>
<td>0.8 mm</td>
<td>1.3 mm</td>
</tr>
</tbody>
</table>
Evaluation: Time Lag

- **Experimental method:**
 - Similar to time calibration
 - Robot trajectory (1000Hz) compared to target trajectory in ultrasound sequence

- [Graphs showing comparison of Raw Data and Sinusoid Model]
 - Time [sec]
 - Robot Pitch Encoder
 - World Coordinate

- **Time Lag:** 179ms
Real-Time Guidance at 5 Hz and Sub-millimeter Localization Accuracy
Conclusions

• Remotely-controlled soft-tissue imaging in the treatment vault is feasible for multiple abdominal sites
• Sub-millimeter targeting accuracy with 2D imaging indicates feasibility for accurate real-time 3D ultrasound guidance
• Telerobotic US guidance system could offer non-invasive localization for IGRT that truly reflects soft-tissue anatomy
Questions?

Investigator Emails:

jschlosser@stanford.edu
jks@robotics.stanford.edu
dhristov@stanford.edu