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Abstract

We nonparametrically estimate spillovers of properties financed by the Low In-
come Housing Tax Credit (LIHTC) onto neighborhood residents by developing a new
difference-in-differences style estimator. LIHTC development revitalizes low-income
neighborhoods, increasing house prices 6.5%, lowering crime rates, and attracting
racially and income diverse populations. LIHTC development in higher income areas
causes house price declines of 2.5% and attracts lower income households. Linking these
price effects to a hedonic model of preferences, LIHTC developments in low-income ar-
eas cause aggregate welfare benefits of $116 million. Affordable housing development
acts like a place-based policy and can revitalize low-income communities.
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1 Introduction

Increasing geographic income segregation and rising housing costs have put the issue of the

government’s role in promoting affordable housing at the forefront of current policy debates.1

Subsidized housing policy often focuses on easing low income households’housing costs and

providing access to financially out of reach neighborhoods. However, subsidized housing is

also a place-based policy. Housing subsidies influence households’choices of neighborhoods

and developers’ choices of where to build. Subsidy induced changes in the locations of

households and housing construction can have important spillovers onto the neighborhood

residents.2 Moreover, these place-based spillovers likely have large economic impacts across

the US, as federal, state and local governments spend over $97 billion dollars a year on

different forms of housing assistance. A key question is thus how to best allocate affordable

housing across neighborhoods.

In this paper, we provide an analysis of the costs and benefits of affordable housing con-

struction to surrounding neighborhood residents and how they vary across demographically

different neighborhoods. We study the neighborhood impacts of multifamily housing de-

velopments funded through the Low Income Housing Tax Credit (LIHTC). Established in

1986, this program has become an integral component of federal housing policy, funding 21

percent of all multifamily developments over the period 1987-2008. Looking forward, with

the construction of publicly run housing projects expected to continue to decline, the LIHTC

program is likely to remain one of the main federal government initiatives designed to ensure

access to affordable housing by low income households.3

We combine data on the location and funding dates for all LIHTC funded projects, hous-

ing transaction data from 129 counties, and home buyer race and income data to estimate

the effects of LIHTC construction on the surrounding neighborhood. Our estimates show

that the impact of affordable housing construction has dramatically different effects on sur-

rounding property values based on whether the affordable housing was built in a relatively

richer or poorer neighborhood and whether the neighborhood has a high share of minority

residents. LIHTC construction in neighborhoods with a median income below $26,000 in-

1New York City and San Francisco have both announced plans for large expansions of affordable housing
units to “ensure diverse and inclusive neighborhoods.”Upon entering offi ce, Bill de Blasio, mayor of New
York City, unveiled a plan to create and preserve 200,000 units of affordable housing over ten years. In 2014,
the mayor of San Francisco, Ed Lee, outlined an initiative to create 30,000 affordable housing units over six
years to “ensure San Francisco remains a place where people from every background can call home.".

2Previous research suggests households are willing to pay to live near higher income and more educated
neighbors (Bayer et al. (2007); Guerrieri et al. (2014); Diamond (2015)). The quality of the housing stock
also spills over onto the value of neighboring houses (Rossi-Hansberg et al. (2010), Campbell et al. (2011)).

3Section 8 housing vouchers which provide rental subsidies to low income households who rent in the
private rental market is the main alternative federally run low-income housing program.
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creases local property values by approximately 6.5% within 0.1 miles of the development site

In contrast, LIHTC construction in neighborhoods with median incomes above $54,000 leads

to housing price declines of approximately 2.5% within 0.1 miles of the development site.

These declines, however, are only seen in high income areas with a minority population of

below 50%.

To account for these price impacts, we explore how LIHTC development affects other

characteristics of the local neighborhood, in particular demographics and local crime rates.

We find that the construction of a LIHTC development attracts higher income home buyers

in low income areas. Conversely, affordable housing development attracts lower income

home buyers in higher income areas with low minority populations. Examining the impact

of LIHTC construction on the share of Black home buyers, we find that the introduction of

affordable housing leads to decreased segregation in lower income areas. Finally, LIHTC

development causes declines in both violent and property crime within low income areas,

but does not increase crime in high income areas.

We identify these effects by exploiting the timing of when funding is granted for the

development along with the exact geographic location of the affordable housing. Clearly, the

neighborhoods targeted by developers to build affordable housing are non-random. However,

the timing of the funding is often out of the hands of the developer since there is substantial

uncertainty in which year the project will be funded.4 Further, the exact geographic loca-

tion of the development site within a broader neighborhood appears to be determined by

idiosyncratic characteristics, such as which exact plot of land was for sale at the time.

To harness this identification strategy, we develop a new econometric method for estimat-

ing a difference-in-differences style estimator in a non-parametric setting where treatment is

a smooth function of distance to the LIHTC site and time since LIHTC funding. We draw on

new methods developed in statistics (Charnigo et al. 2011, Charnigo and Srinivasan, 2015)

to transform our data on house price levels to data on the derivative of house prices with

respect to distance from LIHTC sites. These transformed data allow us to flexibly difference

out very local time trends and neighborhood variation in housing prices. Further, by viewing

house prices as a smooth function of geographic location, we show how to generalize discrete

geographic fixed effects in house prices to a smooth, time-invariant surface of house prices.

Employing a structural, generalized hedonic model of housing choice along the lines of

Rosen (1974) and Bajari and Benkard (2005), we translate our estimated price effects into

households’preferences for living near LIHTC. The hedonic model allows us to view real

estate as a continuous choice of quantities of housing and neighborhood characteristics. We

4Developers must apply for LIHTC funds. Acceptance rates vary across states. In California in 2012,
only 42.7% of submitted applications received funding.
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specifically focus on the continuous choice of distance in miles to a LIHTC development.

The key advantage of this approach is that it ensures the existence of an equilibrium price

surface, which continuously maps housing and neighborhood characteristics to house prices

without needing to specify the determinants of housing supply. As a result of these two key

model properties, an agent’s optimality condition reduces to a simple equation relating the

marginal cost of moving further from a LIHTC site to its marginal benefit, which allows us

to recover preferences on an individual basis.

We find that the average household that desires living near LIHTC sites in low income

areas is willing to pay approximately 6% of their house price to live 0.1 miles from a LIHTC

site. In higher income areas with low minority populations, on the other hand, the average

household who chooses to live near LIHTC is willing to pay approximately 1.6% of their

total house price to avoid living within 0.1 miles of a LIHTC site.5 Correlating these pref-

erence estimates with information on home buyer demographics, we further find that higher

income households are more willing to pay for proximity to or distance from the LIHTC site,

consistent with results of Diamond (2016).

We finally use our structural framework, our empirical preference estimates, and census

data to calculate the local welfare impact of introducing affordable housing to different types

of neighborhoods.6 We decompose the effect into the welfare impacts of affordable housing

on homeowners, renters, and absentee landlords.7 Our analysis reveals large possible societal

gains from building affordable housing in low income areas, with construction of LIHTC in

low income, low minority areas increasing total welfare by approximately $116 million. In

contrast, building LIHTC in low minority, high income areas leads to losses of approximately

$12 million.

Moving LIHTC properties from higher income to lower income neighborhoods may there-

fore benefit both the residents of the higher and lower income neighborhoods. Of course,

these neighborhood benefits must be weighed against the cost and benefits which accrue to

the tenants of the affordable housing. Chetty et al. (2016) find that moving young chil-

dren from high poverty public housing to low poverty areas increases these children’s future

earnings by a present discounted value of $100 thousand. This effect is not large enough

to overcome our estimated benefits to low-income neighborhoods simply because there are

many more low income households living in a low-income area than in the affordable housing

5While these households who choose to live near LIHTC sites in high income areas dislike LIHTC prox-
imity, they find it optimal to live there since LIHTC proximity also provides a discount on their home prices.
On net, these households prefer to live closer to LIHTC sites in high income areas than to live further away.

6A caveat to our local welfare calculation is that we cannot account for possible general equilibrium effects
on neighborhoods far away from the LIHTC site.

7We do not directly observe rents and renters’location choices, which require us to make some assumptions
which allow us to adjust our homeowner results to speak to renter and landlord welfare.
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development itself.

Previous work studying the welfare effects of place-based policy subsidizing firm loca-

tions has often found it challenging to identify heterogeneous effects of these policies across

geographic areas. As stated in Glaeser & Gottlieb (2011) “For these externalities to create

a justification for any particular spatial policy, these externalities must be stronger in some

places than in others...Economics is still battling over whether such spillovers exist at all,

and we are certainly not able to document compelling nonlinear effects.”We are able to both

document significant spillovers and heterogeneity in these effects across neighborhoods.

A small number of previous studies have examined the impacts of affordable housing on

local neighborhoods. Eriksen and Rosenthal (2010) study the crowd-out effects of subsidized

affordable housing construction on private rental development and find large crowd-out ef-

fects. More closely related, Baum-Snow and Marion (2009) use census data and a regression

discontinuity approach to study the effects of LIHTC financed developments in low income

neighborhoods on new construction, median incomes, and property values at the census block

group level. They also find that housing prices appreciate in low income areas. Schwartz et

al. (2006) look at the price impact of affordable housing in New York City and report positive

results. Freedman and Owens (2011) study the impact of LIHTC developments on crime at

the county level and find mixed results. Our study leverages extensive micro data to study

highly local effects of affordable housing in many different parts of the United States. By

looking across a wide array of neighborhoods and counties, we show how affordable housing

has dramatically different effects on neighborhood residents based on neighborhood income

and the minority share of the neighborhood population. Previous studies either focus on

a single geographic area (Schwartz et al. 2006, Goujard 2011) or only within low income

neighborhoods at a single point in time (Baum-Snow and Marion, 2009). Moreover, none of

these studies utilize a structural framework in conjunction with detailed data on buyer char-

acteristics to recover and put structure on individual preferences for proximity to affordable

housing.

More broadly, our paper is related to a literature which examines the spillovers to neigh-

borhoods of housing policies. Rossi-Hanbserg et al. (2010) study the impact of urban

revitalization programs implemented in the Richmond, Virginia area on local land prices.

Campbell et al. (2011) examine the effects of housing foreclosure on housing prices nearby.

Ellen et al. (2013) look at how foreclosures impact local crime rates. Autor et al. (2014,

2015) study the impact of ending rent control on nearby real estate prices and crime rates.

Finally, a growing literature has found that higher income individuals are willing to

pay more for local neighborhood amenities (Bayer et al (2007), Diamond (2016), Handbury

(2013)). A number of recent papers have also argued that higher income or more educated
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neighbors endogenously improve local amenities (Card, Mas, and Rothstein (2008), Bayer et

al (2007), Guerrieri et al (2014), Diamond (2016)). However, previous work has not had ac-

cess to micro-level demographic and housing transaction data. Further, LIHTC development

provides a quasi-experimental shock to the income mix of ones’neighbors and allows us to

identify the distribution of households’preferences for proximity to low-income neighbors.8

The paper proceeds as follows. Section 2 provides institutional background detail about

the Low Income Housing Tax Credit. Section 3 describes our data sources and Section 4

discusses our estimation procedure for the pricing surface. We present our reduced form

results on price and other neighborhood characteristics in Section 5. Section 6 details the

hedonic model of housing choice, presents our preference estimates, and conducts welfare

analysis. Section 7 concludes.

2 The Low Income Housing Tax Credit

Since its inception in 1986, the Low Income Housing Tax Credit Program has been an

integral component in fostering the development of multifamily housing throughout the

United States. With an annual tax credit valued at over 8 billion dollars, the program

funded 21 percent of all multifamily developments between the years 1987-2008.

Each year, federal tax credits are allocated to the states based on population. These

credits are awarded by state authorities to developers of qualified projects. Developers then

sell these credits to investors to raise equity capital for their projects and reduce the amount

of debt they would otherwise have to borrow. Investors receive a dollar-for-dollar credit

against their federal tax liability for a period of 10 years, provided the property continues to

comply with all program guidelines.9

To qualify for a tax credit under the Low Income Tax Credit Program, federal

guidelines require that proposed projects be for construction or rehabilitation of a residential

rental property and satisfy either one of two low-income occupancy criteria. At least 20

percent of tenants must earn less than 50 percent of the Area Median Gross Income (AGMI),

or alternatively, at least 40 percent of tenants must earn less than 60 percent of AGMI.10

8LIHTC development also impacts the overall population density and average age of the neighborhood
housing stock. We can’t fully separate out preferences for the income level of one’s neighbors from preferences
for new construction or increased density. However, the differential value of LIHTC development across
neighborhoods of different income levels help zoom in on preferences over the income of one’s neighbors.

9Eriksen (2009) studies the market pricing of these tax credits. He finds that that LIHTC developers in
California received on average $0.73 per $1 of tax credit in the years 1999-2005.
10Actual income limits depend on household size. The 50 percent of AGMI limit is for a base family size

of four members. Income limits are adjusted upward by 4 percentage points for each family member in
excess of four. Limits are adjusted downward by 5 percentage points for each family member short of four.
These limits are multiplied by 1.2 to get the 60 percent income limits.
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If the income of a household in one of the low income units grows to exceed the relevant

income limit, then the program requires developers to place a low income tenant into the

next unit vacated by a market rate tenant.11 Additionally, developers must restrict rents,

including utility allowance, in low-income units to 30 percent of the relevant income limit,

i.e. either 50 percent of 60 percent of AGMI for a minimum affordability period of 30 years.

These criteria are only the minimal requirements as specified by the federal govern-

ment. In practice, states almost always receive many more project proposals and tax credit

allocation requests from developers than they have federal allotments, generally on the order

of 2 to 4 times. Each state is therefore required to maintain a “Qualified Application Plan”

(QAP) to govern the selection process. These plans usually operate by assigning point scores

to various project characteristics and then allocating tax credits based on point totals until

funds are exhausted. Such project characteristics include tenant demographics, location, fur-

ther funding sources, and structural properties of the building. Given this latitude the states

enjoy in determining selection criteria, many require developers to go beyond the minimum

number of affordable units and the minimum level of affordability.

The funding process in California, in which more than 50 percent of the LIHTC sites in

our sample are located, is illustrative of the high degree of competition which exists between

developers. Practically all funded projects have the maximum total point score, such that the

funding threshold is based on so-called tie-breaker scores. Receiving funding in a given year

is by no means guaranteed. According to data provided by the California State Treasurer’s

Offi ce, only 34.3% of applications were funded in 2007, 38.3% in 2008, 32.2% in 2009, 26.9%

in 2010, 57.7% in 2011, and 42.7% in 2012.

The value of tax credits received by selected developers is calculated according to the

project’s “qualified basis”, which essentially reflects the cost of constructing or rehabilitating

the low-income units. Once the qualified basis has been determined, the annual tax credit is

determined by applying the relevant housing tax credit rate. New construction or substantial

rehabilitation projects, which are not otherwise subsidized by the Federal government, receive

a 9 percent credit rate, while all other projects receive a 4 percent credit rate. These annual

credits are then paid out over a period of 10 years.12 Section A.1 of the online appendix

provides further details on the LIHTC program.

11Many LITHC properties are comprised 100 percent of low-income units. Clearly, this requirement
becomes superfluous in such a case.
12This calculation is a baseline figure. Congress passed legislation in 1989 affording state allocating

agencies the option to increase the qualified basis by up to 30 percent in both "qualified census tracts"
(QCTs) and "diffi cult development areas" (DDAs). Census tracts with 50 percent of households earning
below 60 percent of AGMI earn qualified status, subject to a population restriction which is generally non-
binding. Metropolitan areas with high ratios of fair market rent to AMGI are designated as DDAs. See
Baum-Snow and Marion (2009) for more details.
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3 Data

We bring together data from a variety of sources. Our first dataset is from DataQuick,

which provides detailed public records on housing characteristics and transactions data col-

lected from county assessor and register of deeds offi cers. We restrict our analysis to those

counties which have transactions history data dating to at least 1996. This leaves us with

a sample of approximately 16 million transactions located within 1.5 miles of a LIHTC site

in a total of 129 counties in 15 states. Figure 1 provides a map of the counties in our

sample. We merge this dataset with data collected by the United States federal government

according to the provisions of the Home Mortgage Disclosure Act (HMDA), which provides

us with the race and household income of the home buyers.

Information on LIHTC financed projects is provided by the Department of Housing

and Urban Development (HUD). This data covers 39,094 projects and almost 2,458,000 low

income housing units placed into service between the years 1987 and 2012. Our analysis

focuses on the 7098 LIHTC projects located in our sample of 129 counties. See Panel B of

Table 1 for summary statistics. Due to DataQuick’s coverage of counties, our sample is from

more dense, urban areas, relative to the overall distribution of LIHTC sites. However, when

comparing the characteristics of LIHTC sites developed in urban areas to our 129 county

subsample, our sample looks quite representative.

We finally collect 1990 census data at the tract and block group level. These data

provide information on median income levels and minority population shares.

Panel A of Table 1 provides summary statistics. Compared to the United States as a

whole, the counties in our sample have a similar black share (11.6% vs 12.1% nationwide), a

significantly higher Hispanic share (15.3% vs 8.3% nationwide), a higher renter share (40%

ver 34%), and a median income approximately 18% greater. Median income and renter

share is higher than the rest of the United States since our sample comprises urban areas

and metropolitan areas in relatively high productivity areas such as New England, New York

and California. Hispanic share is quite large in our sample since many of our counties are

in California and the Southwest, which host a large Hispanic population compared to the

rest of the country. Within the census block groups which receive LIHTC developments,

the Hispanic and Black share are even higher at 24.0% and 23.6%, respectively. The median

incomes are also 33% lower and renter share is 23 percentage points higher in these select

block groups than average block groups within our sample of counties.

Panel C of Table 1 also provides summary information about locales within 1 mile, 0.5

miles, 0.2 miles, and 0.1 miles of projects financed through the Low Income Housing Tax

Credit program. Average housing prices are about 7% lower and average home buyer
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incomes are 5% lower within half a mile of a LIHTC site than those within 1 mile of an

LIHTC site. The percent of home buyers which are Black is 11% higher within half a mile

of an LIHTC site than within one mile. It is clear LIHTC development is targeted at lower

income, higher minority share, and lower housing cost areas. However, housing prices, home

buyer incomes, and the Black share of home buyers are quite similar between areas within

0.2 miles of an LIHTC site and those within 0.1 miles. The lack of variation in neighborhood

characteristics at these more fine geographic measures help substantiate our identification

strategy that precise geographic location of LIHTC development provides quasi-experimental

variation. The online appendix reports these summary statistics separately by neighborhood

income level and show similar patterns. See Section A.2 of the online appendix for more

details on all data sources.

4 Non-Parametric Differences-in-Differences Estimation

Our first goal is to study the reduced-form effect of LIHTC development on local house

prices. Our research design to identify the causal effects of LIHTC development on local

house prices will use a non-parametric spatial difference in differences strategy. Intuitively, we

will compare house prices very close to the LIHTC site before and after LIHTC development

versus house price trends slightly further away from the LIHTC site. This allows us to

recover the house price impacts of LIHTC developments and how they vary with distance

from the LIHTC site and time since development.

Previous research using this style of identification strategy has used a “ring method,”

where an inner ring is drawn around the treatment location and an outer ring (with a larger

radius) is drawn to use as a control group for the inner treated ring. Annual comparisons

of house prices in the inner versus outer rings are used to identify the treatment effect.

Our method generalizes this concept. Instead of estimating the difference in average house

prices between the inner and outer rings around a LIHTC site, we recover a non-parametric

function of house prices that illustrates how prices vary with distance from the LIHTC site

and the time since development. This gives a more detailed picture of how LIHTC impacts

house prices over time and space. It also allows us to recover the gradient of house prices

with respect to LIHTC proximity, which will be needed for our hedonic model to recover

households’ preferences for LIHTC proximity. We find our approach offers a number of

benefits over the ring method, which we will discuss in detail. As a robustness test, we will

also perform the standard “ring method”analysis.
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4.1 The spatial non-parametric differences-in-differences setup

To estimate the non-parametric spatial differences in differences we present a new estima-

tion method using empirical derivatives which we will discuss below. We develop a formal

econometric model where we index all LIHTC locations by a unique geographic area l, cor-

responding to the 1.5 mile radius circle surrounding the LIHTC site. Each location l will

have a type Y ∈ LY ⊂ RL, with LY finite, reflecting the characteristics of the census block
group in which the LIHTC site is located; in particular, we focus on median income and

minority share. We let individual houses be denoted by j. Within a neighborhood l sur-

rounding a LIHTC site, we associate with each house j its polar coordinates (rj, θj) relative

to the LIHTC site in neighborhood l. We denote calendar year by t.

Following a differences-in-differences approach, we assume house prices in neighborhood

l are given by:

log pjt = m̃Y (rj, τ j) + φl (rj, θj) + ϕl (θj, t) + εjt, (1)

where m̃Y (rj, τ j) is the impact of LIHTC construction on the house transaction price in a

neighborhood of type Y. Specifically, rj measures the distance in miles of house j from the

LIHTC site and τ j measures the difference in years between the transaction year of house

j and the LIHTC site announcement date. The non-parametric function φl (rj, θj) denotes

neighborhood-specific, location “fixed effects.”13 In a standard difference-in-difference frame-

work, treatment is usually assigned to discrete entities (e.g. people, cities, firms), however we

generalize this to the continuous case and allow for a smooth surface of housing prices across

geographic locations that do not depend on time.14 The non-parametric function ϕl (θj, t)

allows for a distinct time trend for neighborhood l, which also could potentially vary based

on θ.15 The error εjt recognizes that some housing and neighborhood characteristics will

have prices that vary in time in ways that jointly depend on rj and θj beyond this additively

separable setup.

13We do not analyze or model possible interaction effects of multiple geographically proximate LIHTC
sites. We do not have enough data to study such effects.
14One could consider discretizing the geography into something like census tracts or even individual houses

and including census tract or house fixed effects in the regression. However, this suffers from a bias/variance
trade off where if the geographic units are too large, the regression does not adequately control for neigh-
borhood variation in house prices. However if the geographic units are too small (house fixed effects) a large
amount of information is thrown away. In the case of house fixed effects, we would only be able to use repeat
sales of the same houses to identify our estimates, even if there were many houses that only transacted once
but were located right next to each other. The smooth surface of housing prices over geography attempts to
deal with this bias/variance trade off more effi ciently.
15For example, it could be that in some neighborhoods there is more house price appreciation to the north

than to the south for reasons unrelated to LIHTC development. While not controlling for θ is unlikely to
bias our estimates, it can help with regard to effi ciency.
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Crucially, we have assumed that these local price trends do not depend on r. Then,

under the identifying assumption that local housing price trends unaccounted for by our

location “fixed effects”φl (rj, θj) and neighborhood time trends ϕl (θj, t) are independent of

distance to the LIHTC site, rj, and year since LIHTC funding, τ j :

E (εjt|m̃Y (rj, τ j) , φl (rj, θj) , ϕl (θj, t)) = 0,

we can recover a consistent estimate of the gradient of m̃Y (rj, τ j) with respect to distance.

That is, while the overall neighborhood is likely an endogenous choice by developers, due to

the unpredictable nature of whether LIHTC funds will be awarded to a given applicant, it is

hard for developers to strategically time LIHTC funding with highly local house price trends.

Further, due to highly local supply constraints such as the exact location of available lots, the

placement of a low-income property is plausibly exogenous with respect to highly local price

trends. Intuitively, we can obtain a consistent estimate of the non-parametric price gradient

by examining price changes close to a LIHTC property vs price changes slightly further away

and then using differences-in-differences to “difference out fixed effects”. Furthermore, to

the extent that the treatment effect ultimately decays towards zero with distance within this

area, we can estimate the overall level treatment effect by integrating our estimate of the

gradient.

While we set up the estimation in a non-parametric framework, such a strategy has

been pursued in previous papers, albeit in a more parametric form. This more parametric

approach would compare price changes in an inner circle of certain radius to price changes

in an outer ring of certain radius that surrounds the inner ring. The inner ring would be

thought to receive the treatment, while the outer ring would act as the control. Examples

of this approach include Currie et al. (2013), Autor et al. (2014), Aliprantis and Hartley

(2014), and Shoag and Veuger (2015).16 While this method is quite simple, it has a number

of drawbacks. First, it requires the researcher to choose an arbitrary cutoff in distance

between the treatment and control rings. Second, it is susceptible to a substantial missing

data problem, as it is often the case that at narrow ring choices there could be years in which

either the inner or outer ring have no housing transactions. Third, it makes no attempt to

control for the time-invariant variation in house prices within each of the two rings, which

can lead to substantial variance in the estimator. Fourth, the estimator delivers an average

difference in house prices between two rings, but not a derivative at specific distances, which

is what is needed for a hedonic model. However, this estimate could be enough if the

researcher were only interested in reduced form average effects on house prices. In Section

16Autor et al. (2014) approaches this problem slightly differently using exponential weighting based on
distance.
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B of the online appendix, we perform simulation studies comparing our setup to the ring

method. We find both estimators produce consistent results, but the standard errors on the

ring methods are much wider and often cannot reject a zero effect even for modest sized point

estimates, which are strongly statistically significant using our non-parametric framework.

4.2 The empirical derivatives estimator

Standard estimation methods for estimating additively separable non-parametric functions,

as we have in equation (1) are very computationally challenging to work with when there are

many additively separable non-parametric functions.17 Instead, we build on new methods

developed in the statistics literature by Charnigo et al. (2011) and Charnigo and Srinivasan

(2015) which allow us to directly estimate the derivative of m̃Y (rj, τ j) by “differencing out”

the additively separable nonparametric functions. The idea is to estimate gradients of the

pricing surface using empirical partial derivatives and then to use kernel regression as a

smoothing procedure. The key advantage of these methods is that they provide a way to

difference out the fixed effects and time trends in a spatial, non-parametric setting, just as

one would do in a fully parametric differences-in-differences design. The procedure provides

substantial computational and effi ciency gains over the alternative of estimating the full

non-parametric surface in levels and then taking derivatives. We outline the methodology

here.

First, at each housing transaction data point (rι, θι, tι), we create “empirical derivatives”

of the log house price surface with respect to the distance r to the LIHTC site . Note, ι

is simply an indexing variable over all house transaction locations where we will evaluate

the empirical derivative. Intuitively, these are just finite differences in house prices with

respect to distance from the LIHTC site. To do this, we find housing transactions with

similar values of θ and t, but different distances from the LIHTC site. In an ideal world,

we would want to use house prices with identical values of θ and t and calculate numerical

derivatives of house prices with respect to distance from the LIHTC site. Taking numerical

derivatives with respect to r allows us to difference out any time trend in the neighborhood,

since the time trend shouldn’t vary with distance from the LIHTC site. We then analyze

how these numerical derivatives change relative to a base year, allowing us to difference out

the time-invariant surface of house prices.

17The standard method is a procedure called back-fitting which is a Gauss-Seidel algorithm where one esti-
mates an individual non-parametric function, given a guess of the other additively separable non-parametric
functions. The procedure loops overs each non-parametric function, given the best guess of the others until
the method converges. See Hastie and Tibshirani (1990) for more details. This method would be incredibly
computationally challenging as we would have to estimate two nonparametric functions for each LIHTC site
l along with m̃Y (rj , τ j) . This would require iterating over more than 14,000 functions.
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To be precise, let Ỹι be the empirical derivative at (rι, θι, tι) within neighborhood l con-

structed according to:

Ỹι,l =
κn∑
k=1

wk
log pa(k,ι,r) − log pb(k,ι,r)

ra(k,ι,r) − rb(k,ι,r)
(2)

wk =
k

κn (κn + 1) /2
(3)

with the observation subscripts recursively defined by:

a (1, ι, r) = arg min
{d∈Lr,ι:rd>rι+ln}

rd, b (1, ι, r) = arg max
{d∈Lr,i:rd<rι−ln}

rd (4)

a (k, ι, r) = arg min
{d∈Lr,ιrd>ra(k−1,ι,r)}

rd, b (k, ι, r) = arg max
{d∈Lr,ι:rd<rb(k−1,ι,r)}

rd (5)

where ln > 0.18

Lr,ι :=

{
p ∈ {1, ..., n} :

(tp − tι)2

(rp − rι)2 < ϑtn,
(θp − θι)2

(rp − rι)2 < ϑθn

}
(6)

Note, again, that ι simply indexes our empirical derivative observations. Equation (2) calcu-

lates a numerical derivative with respect to LIHTC distance as the difference in house prices

(log pa(k,ι,r)− log pb(k,ι,r)) between a pair of houses a (k, ι, r) and b (k, ι, r) , divided by the dif-

ference in LIHTC distance (ra(k,ι,r) − rb(k,ι,r)). Equation (2) then calculates these numerical
derivatives for κn pairs of houses and creates a weighted average of these with weights wk.

This weighted average is our empirical derivative at (rι, θι, tι), Ỹι.

Equations (4), (5), and (6) determine which houses to use for the empirical derivative

calculation. Equation (6) first determines the set of “eligible”houses to use in the empirical

derivative. Since we are interested in the derivative with respect to LIHTC distance, we

ideally would want to compute the empirical derivatives using houses with identical θs and

ts. Essentially, we want to hold θ and t fixed and zoom in on house price variation only

in the r dimension. Since we cannot choose where to observe house price transactions, we

create a tolerance window within which θ and t are “approximately”held fixed. Equation

(6) states that houses are in the set eligible for our empirical derivative calculation if both

their squared distance in time from tι and squared distance in angle from θι are no more than

the squared radial distance from rι times ϑ
t
n and ϑ

θ
n, respectively. Essentially this means

18 ln ensures we throw away house price transactions extremely close to rι. If we have numerical derivatives
from transactions which occur at the exact same location as ri(such as multiple transactions in the same
condo building), the denominator in equation (2) will blow up. Thus, we throw out transaction less then
ln =0.01 miles away from ri.
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that houses in the eligible set Lr,ι are similar to (rι, θι, tι) in the θ and t dimension, but

differ in the r dimension. Visually, this can be thought of house transactions falling within

a 3D “bowtie”around (rι, θι, tι) , as illustrated in Figure 2. ϑn is a tuning parameter which

determines the width of the bowtie. A large ϑn allows more house prices to be eligible for the

empirical derivative calculation, but will also add bias since they will have more variation in

the θ and t dimension. A smaller ϑn allows less data to be used in the empirical derivative

calculation, leading to more variance. We search for (at most) κn nearby transactions within

this “bowtie”of nearby locations.19

The house prices (a (1, ι, r) , ..., a (k, ι, r)) are transactions which are further away from

the LIHTC site than rι and are ordered by radial distance from rι. Thus, a (1, ι, r) is closer

to rι than a (2, ι, r). Similarly, the house prices (b (1, ι, r) , ..., b (k, ι, r)) are the transactions

closer to the LIHTC site than rι and are ordered by radial proximity to rι. Thus, b (1, ι, r)

is closer to rι than b (2, ι, r) . To construct the empirical derivatives, equations (4) and (5)

state that the housing transactions are paired together based on how close they are to rι.

Thus, the first pair of houses used in the empirical derivative calculation would be a (1, ι, r)

and b (1, ι, r), where a (1, ι, r) is the house closest to (rι, θι, tι) in the radial (r) dimension

that has a distance from the LIHTC site greater than rι, and b (1, ι, r) is the house closest

to (rι, θι, tι) in the radial dimension which has a distance from the LIHTC site less than rι.

Note that these houses must also fall within the bowtie tolerance region defined by equation

(6). When constructing empirical derivatives in each local area, we use only pre-treatment

data in constructing pre-treatment derivatives and only post-treatment data in constructing

post-treatment derivatives. This is to ensure that data from the post-treatment period has

no effect on the pre-treatment estimates.

Once we have transformed our data on house price levels to data on house price deriva-

tives, we smooth these house price derivatives using a standard kernel estimator. Define the

Nadaraya-Watson kernel estimate at (r, t):

Φ̂l (r, t) =
n−1

∑n
ι=1 KHn ((r, t)− (rι, tι)) Ỹι,l

n−1
∑n

ι=1KHn ((r, t)− (rι, tι))
(7)

where:

KHn ((r, t)− (rι, tι)) =
1

hr,nht,n
K

(
r − rι
hr,n

,
t− tι
ht,n

)
(8)

and K (·, ·) is the two-dimensional Epichanokov kernel with bandwidths hr,n, ht,n. Thus,

19We use κn as the maximum number of house price pairs included in the calculation. However, sometimes
there are less than κn pairs of house prices in the bowtie region. In this case, we use as many pairs as there
are available in the data. Formally, the number of available house price pairs is a random variable. We
address this in the econometric proofs in the appendix.
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Φ̂l (r, t) is constructed around each LIHTC site l.

The following theorem provides a consistent estimate of the gradient treatment effect.

Theorem 1 Suppose:

1. n→∞, hn → 0, ln → 0, κn →∞, ϑn → 0

2. nhn →∞, κn/
(
nϑ2

n

)
→ 0, l2nκn →∞

Letting Tl denote the treatment year of LIHTC site l of type Y. Then the following:

Φ̂l (r, Tl + τ)− Φ̂l (r, Tl − 1) (9)

is a consistent estimate of ∂m̃Y(r,τ)
∂r

, where we assume ∂m̃Y(r,−1)
∂r

= 0.

The proof of this result, as well as a general discussion of nonparametric derivative

estimation in both the univariate and multivariate setting, are provided in Section D of the

online appendix. This result generalizes Charnigo et al. (2011) and Charnigo and Srinivasan

(2015) to the case where the data are observed at random locations. Charnigo et. al (2011)

analyze a univariate case when the data can be observed at chosen locations. Charnigo and

Srinivasan (2015) analyze the multivariate case where the locations of the data are again

fixed. Neither of these consider the random design, difference in differences setup. Section

C of the online appendix performs Monte Carlo simulations to evaluate the performance of

our estimator and coverage rates of our bootstrapped standard errors.

In our empirical work, we define the treatment year Tl as the year in which funds are allo-

cated for the development project, rather than the year the project is placed in service. We

do this for two reasons. First, prices are forward looking and thus should reflect anticipated

neighborhood effects of low income property development when the project is announced.

Second, the construction of the project itself may have direct effects on prices prior to the

development being placed into service, but after the funding is announced. We set κn = 5

(the number of house pair used in each empirical derivative), hr,n = 0.3 (the bandwidth for

smoothing in miles), ht,n = 5,(the bandwidth for smoothing in years), ϑtn = 1.6 (the bow-tie

width in years), ϑθn = 0.4 (the bow-tie width in distance perpendicular to r ),and ln = .01

(miles around the empirical derivative location to drop data)20. With enough house price

20 ln is required since sometimes there can be transactions at the exact same location (in a condo building)
and the distance between the transaction is zero. This is not useful for the empirical derivative calculations
since the denominator of the empirical derivatives (distance between the transactions) would be zero. The
need to drop data very very close to the site of the empirical derivative shows up in the consistency proofs
in the appendix as well.
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transactions around a single LIHTC site, we would be able to estimate the price impacts

for each site individually, however for power reasons we average our estimates across LIHTC

sites of type Y :

̂∂m̃Y (r, τ)

∂r
=

1

NY

∑
l∈Y

[
Φ̂l (r, Tl + τ) dt− Φ̂l (r, Tl − 1)

]
,

where NY is the number of LIHTC sites of type Y in our data. We use block bootstrapping

over LIHTC neighborhoods to obtain standard errors. See Section D of the online appendix

for econometric proofs of consistency, Section C for Monte Carlo analysis of our estimator,

and Section B for a simulation study comparing our estimator to the simple ring estimator.

5 Reduced Form Results

5.1 Price Effects

We begin by studying the reduced form price effects. For clarity of exposition, we begin by

presenting the nonparametric level estimates obtained by integrating the gradient estimates

as described in the previous section. Figure 3 illustrates the average impact of LIHTC

construction on local house prices across all neighborhoods. First, note that prices leading

up to the LIHTC funding are quite flat, validating our identification assumption that ab-

sent LIHTC construction, housing prices very close to the LIHTC site would have trended

similarly to house prices slightly further away. Nonetheless, it appears from Figure 3 that

LIHTC construction has no significant average impact on local house prices. However, this

figure masks substantial heterogeneity in the price impact of LIHTC development on local

house prices.

To examine such heterogeneity, we re-estimate the price effects for construction in various

location types Y ∈ LY. We begin by dividing the LIHTC sites into four buckets based on
the 1990 census median income of the census block group in which the LIHTC site is located.

The income quartile cutoffs are $26,017, $38,177, and $54,642 in 2012 dollars. Note that,

consistent with the summary statistics evidence provided in Table 1, the cutoff for the top

income quartile is still substantially below the average block group median income of $66,652

for the counties in our sample. Moreover, LIHTC residents must earn no more than 60% of

the local area’s median gross income, which on average across all our counties is 0.6*$66,652

=$39,991. Thus, the bottom quartile of LIHTC sites have residents earning significantly

below the average income cutoff, while the top quartile neighborhoods have median incomes
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about $15,000 above the average income cutoff.21

Figure 4 illustrates the heterogeneity in price impacts. Panel A shows that LIHTC

construction triggers large local price appreciation of approximately 6.5% after 10 years in

the bottom income quartile. Panel B shows that LIHTC development has little impact in

the second income quartile, beyond maybe small appreciation very close to the development

site. We see in panels C and D that construction of affordable housing leads to striking and

markedly different effects in both the third and fourth income quartiles, with construction

leading to price declines of approximately 3% after 10 years in the third income quartile and

declines of 2.5% in the fourth income quartile. The speed of the price decline in the fourth

income quartile is dramatic, with practically all losses within 0.1 miles of a LIHTC site over

the 10 year period occurring in the first year. However, the price declines in income quartiles

3 and 4 “radiate outwards”as time since LIHTC funding increases. At distances of 0.3 to

0.4 miles away from the LIHTC site, there are modest declines in house prices right away,

but they fall over time. It appears the housing market very quickly “prices” the impact

of LIHTC very locally, but it takes 5 to 10 years for the house prices 0.3 to 0.4 miles away

to fully adjust to the shock. In all cases, we do not see strong evidence for pre-trends in

prices, further validating our identification assumption that there are no very local house

price trends correlated with LIHTC development. Table 2 summarizes the point estimates

shown in these figures, along with standard errors.

We additionally examine the impact of LIHTC development in high minority areas. In

particular, we restrict to those LIHTC sites located within a census block group that has

a population at least 50% Black or Hispanic based on the 1990 census. We then further

classify these sites based on whether they are in low income areas, defined as within the first

or second income quartile, or high income areas, defined as within the third or fourth income

quartiles.

Figure 5 illustrates the effects of affordable housing construction in high minority areas.

Low income, high-minority areas see strong price appreciation of approximately 5% after

10 years resulting from LIHTC development, similar to the overall effect we see in the first

and second income quartile. Conversely, prices in high income, high-minority areas remain

relatively stable, with no evidence of the house price decline documented above. Thus, the

substantial price depreciation seen in high income areas occurs in those neighborhoods with

minority populations of below 50%.

21This is an approximate, back of the envelope calculation. AGMI limits vary by county.
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5.1.1 Comparison to Ring Method

Our nonparametric estimator gives a lot of detail into the shape and intensity of the local

house price responses. However, this does come at a slight cost of computational complexity.

Previous methods using this style of identification strategy have employed the “ring method”

discussed in the previous section. While this method is simple, it can be quite underpowered.

This is due to a severe missing data problem where data is dropped when either the inner or

outer ring does not have a transaction in a given year. Furthermore, there can be substantial

time-invariant geographic house price variation within the rings (e.g. in the north vs the

south) which the ring method does not control for. Finally, our hedonic model requires the

actual gradient, which the ring method does not directly provide.

As a robustness check, we have run the ring estimator on our data. We define the inner

ring as distances less than 0.2 miles from the LIHTC site, and the control ring as 0.2 to 0.5

miles from the treatment site. The plotted effects are shown in Figure 6. All confidence

intervals contain our nonparametric estimated effects. However, only the lowest income

neighborhoods show a statistically significant effect due to LIHTC construction. While the

point estimates for the higher income neighborhoods are pretty close to those estimated with

nonparametrics, the excessive noise in the ring estimator leads us to not be able to reject an

effect of zero. We explore the differences between the ring estimator and our nonparametric

estimator more directly using simulations in Section B of the online appendix. In those

simulations, we also find the standard errors on the ring estimates to be much bigger than

those using our nonparametric methods.

5.1.2 Treatment Effects in the Short and Long run

We define the short term effect as the average price gradient impact on LIHTC site l between

event years 0 through 5, relative to event years -5 to 0:

∂ log pshort

∂r
(r, l) =

1

5

∫ 5

0

Φ̂l (r, Tl + τ) dτ − 1

5

∫ 0

−5

Φ̂l (r, Tl − τ) dτ .

Similarly we define the longer term impact of LIHTC sites as the impact in event years 5

through 10, relative to event years -5 to 0:

∂ log plong

∂r
(r, l) =

1

5

∫ 10

5

Φ̂l (r, Tl + τ) dτ − 1

5

∫ 0

−5

Φ̂l (r, Tl − τ) dτ .

We decompose these price gradient effects into differential effects based on neighborhood

income quartile and minority share. We define ∂m̃shortY (rj)

∂r
and ∂m̃longY (rj)

∂r
as the short term

(within 5 years) and long term (6-10 years) gradients of the price effect with respect to
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distance (r) of LIHTC development in neighborhoods of type Y:

∂ log pshort (r, l)

∂r
=

∂m̃short
Y (rj)

∂r
+ εshortrl , (10)

∂ log plong (r, l)

∂r
=

∂m̃long
Y (rj)

∂r
+ εlongrl . (11)

We allow the neighborhood price effects to vary by the income quartile of the neighborhood
(Yinc

l ) and whether the neighborhood has a high minority share (Yminor
l ) :

∂m̃shortY (rj)

∂r
= δshort

Yi n c
l

(r) + βshortm low (r) ∗Ym inor
l ∗ 1

[
Yinc
l ≤ 2

]
+ βshortmhigh (r) ∗Ym inor

l ∗ 1
[
Yinc
l > 2

]
, (12)

∂m̃longY (rj)

∂r
= δlong

Yi n c
l

(r) + βlongm low (r) ∗Ym inor
l ∗ 1

[
Yinc
l ≤ 2

]
+ βlongmhigh (r) ∗Ym inor

l ∗ 1
[
Yinc
l > 2

]
. (13)

where Yinc
l ∈ [1, 2, 3, 4] is the income quartile of the neighborhood surrounding LIHTC site

l and Yminor
l is an indicator variable equal to 1 if LIHTC site is located in a high minority

area. δshortYinc
l

(r) and δlong
Yinc
l

(r) represent the short and long term price gradient impacts of

LIHTC development in low minority areas in income quartile Yinc
l at distance r. βshortmlow (r)

and βlongmlow (r) measure the differential short and long term impacts in high minority areas

within income quartiles 1 and 2. βshortmhigh (r) and βlongmhigh (r) measure the differential short and

long term impacts in high minority areas within income quartiles 3 and 4.

Figures 7 and 8 illustrate our nonparametric estimates in the short-term and long-term of

the price gradient treatment effects given by equations (12) and (13) as well as 90% confidence

intervals. Here, a negative estimate implies prices are increasing as one moves closer to the

construction site, while a positive estimate implies prices are decreasing as one moves closer.

Note that the results reported in the Q1/Q2 High Minority and Q3/Q4 High Minority plots

are differential effects relative to the low minority effects reported in the Q1-Q4 plots. The

Q1/Q2 High Minority plot illustrates that there may be slightly larger price appreciation

effects in low income areas when the area is also high minority, however the effect is not quite

statistically significant. Further, the statistically significant negative impact on the price

gradient in the Q3/Q4 High Minority plot demonstrates that high income, high minority

areas suffer significantly less price depreciation than high income, low minority areas. This

is, of course, consistent with the evidence seen in the second panel of Figure 5. High minority

and low income areas receive the most house price appreciation from LIHTC development,

while higher income, low minority areas exhibit house price decline.22

22Our effects are of a similar magnitude to other nonpriced neighborhood amenities. Gallagher and
Greenstone (2008) find that Superfund sponsored clean-ups of hazardous waste sites lead to economically
small and statistically indistinguishable from zero changes in local property values. Campbell et al. (2011)
report that a foreclosure within a 0.25 mile radius of a given house lowers the predicted log price by 1.7
percent. At extremely small distances the effect is larger, with foreclosures causing price declines of between
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5.2 Mechanisms

Taken together, these results seem to imply that LIHTC construction makes low income

neighborhoods more desirable regardless of minority share, while making high income, low

minority share neighborhoods less desirable. There are a variety of possible explanations for

this finding. Most directly, LIHTC renovates or builds new apartment buildings, but also

brings in moderately low income tenants to the neighborhood. While we can’t unbundle

the effects of construction from the impact of the tenants, our results are consistent with the

hypothesis that relatively higher (lower) income neighbors are a positive (negative) amenity,

as evidenced by LIHTC’s heterogeneous effects on local house prices. Clearly in high

income neighborhoods LIHTC tenants are likely to be of relatively lower income. In the

lowest income areas, though, LIHTC tenants easily could be of higher income than the local

average.23

Even if LIHTC development is the initial shock that causes these house price changes,

there are likely many indirect mechanisms through which LIHTC impacts the desirability of

the local neighborhood. We begin by using the merged DataQuick-HMDA data and our non-

parametric methods to investigate the impact of LIHTC development on local demographic

change. If local residents have preferences over the demographics of their neighbors, the

in-migration of LIHTC residents may further attract different types of residents and these

new in-migrants could make the neighborhood more or less desirable. Figure 9 reports the

average treatment effect in levels (not gradients) from years 0 to 10 on home buyer income.

Consistent with our price results, we find that the introduction of affordable housing leads

to home buyers with higher incomes of approximately 3%-4% in low income, low minority-

share areas. Conversely, such introduction leads to a statistically significant decrease in

home buyer income of approximately 1.5% in low minority, top income quartile areas. The

effects are muted in high minority areas, with low-income high minority areas not attracting

quite as high income home buyers as the low-income non-minority areas. The high income,

high minority areas also do not experience declines in home buyer income, unlike the high

income, low minority areas.

We next investigate the impact of LIHTC construction on the Black share of home

buyers, with the results presented in Figure 10. The average impact on low income, low

minority share areas is statistically and economically insignificant. However, low-income,

7.2 and 8.7 percent, depending on specification.
23While we do not have direct data on the income distribution of LIHTC tenants across different neighbor-

hood types, Horn and O’Regan (2013) document LITHC tenants are moderately low income. The median
LIHTC resident is between 30 and 40 percent AMI. In contrast, over 75 percent of public housing and
vouchers tenants are below 30 percent AMI. This suggests that LIHTC residents in the lowest income areas
are likely of higher income than their private-market neighbors.
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high-minority areas do see a statistically significant decrease in the percentage of Black home

buyers. We also see decreases in the Black share of home buyers in the higher income, high

minority areas of 3 percentage points. Therefore, it appears that building affordable housing

in high minority areas may lead to lower racial segregation.24

We explore the impact of affordable housing development on local crime rates in Figure

11. The cities of Chicago, San Francisco, and San Diego provide comprehensive detailed

local crime statistics dating from 2001-2014 in Chicago, 2003-2014 in San Diego, and 2007-

2014 in San Francisco. These data provide the type of crime, as well as the date and

the exact location in the city. Since this is a much smaller sample (we have only have 127

LIHTC sites developed in this time frame in these cities), we cut the data only by high/low

income and high/low minority. We find both violent and property crime decline in low

income areas, regardless of minority share. However, in higher income areas we do not see

any increase in crime, rather property crime may even fall slightly. Lowering crime in low

income areas appears to be one of the driving mechanisms through which LIHTC improves

low income neighborhoods. In fact, according to survey evidence provided by Buron et al.

(2009), increased safety is the third most frequently cited motivation for moving into LIHTC

properties, after lower rent and nicer apartments. The same report documents that 80

percent of sampled properties provide some form of security system. The two most popular

measures were restricted entry (63 percent) and buzzer systems (56 percent). Over one-third

of sampled properties employed a security guard.

In the online appendix, we examine whether the house price impacts of LIHTC vary

based on whether the LIHTC is new construction or a rehab of an older apartment build-

ing. We find quite similar effects for both rehab and new construction across all types of

neighborhoods, suggesting the mechanism is not simply upgrading blighted older buildings

(rehabs) or increasing population density (new construction).

6 Hedonic Model of Housing Choice

6.1 Structural Estimation

We now use our reduced form price estimates of the price gradient to structurally recover

individual preferences for LIHTC proximity on a household by household basis. We will then

24Horn and O’Regan (2011) find that LIHTC development may directly decrease segregation in certain
areas The authors collect data on the racial composition of LIHTC tenants collected from state agencies
in Texas, Delaware, and Massachusetts. They find that, in Texas and in low income Delaware census tracts
(QCTs), the racial composition of the LIHTC development tends to be less segregated than that of the
census tract in which it is located. To the extent that people have preferences for living with individuals of
the same race, this may account for some of our estimated effect on the race of new home buyers.
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use these preference estimates to quantify the local, long term welfare impact of building

affordable housing. To this end, we develop a generalized hedonic model along the lines of

Rosen (1974) and Bajari and Benkard (2005). In this framework, a house j is considered

a bundle of characteristics
(
Rj,Xj,Yj,ξj

)
. Here Rj denotes the distance to the nearest

LIHTC property. The vector Xj denotes physical and location characteristics of the house j.

These include characteristics which can, to an approximation, be thought of as continuously

chosen by agents, such as square-footage, lot size, numbers of beds/baths, and age, as well as

discrete choice variables, such as whether the property is a condo or single-family house. As

described previously, the variable Yj denotes the type of the nearest LIHTC property, that

is the median income and minority share of the census block group in which the development

is located. This specification allows the agent to view LIHTC properties in different types

of neighborhoods as distinct goods with disparate impacts on their utility.25 Finally, ξj is

a vector of property and location characteristics of the house which are observable to the

home buyer but not to the econometrician. Such variables might include whether there is

a finished basement or not. Each household has quasilinear utility over these housing and

neighborhood characteristics R,X,Y, ξ and a composite consumption good c whose price is

normalized to one.

Under this setup, with minimal assumptions on the utility function and no supply side

assumptions, Bajari and Benkard (2005) show that there exists an equilibrium price surface

which is Lipschitz continuous with respect to characteristics and that there is a single price

for each unique bundle of characteristics. This allow us to write equilibrium house prices

as a mapping from characteristics space pjt = pt (R,X,Y, ξ). Note that the equilibrium

price function can vary with time. This is because in the hedonic framework each different

time period is treated as a distinct market, in which market primitives such as consumer

preferences or marginal production costs can change.

Home buyers have quasilinear preferences and their optimization problem can be written

as:

max
R,X,Y,ξ,c

Ui (R,X,Y, ξ) + c such that pt (R,X,Y, ξ) + c ≤ wi, (14)

where wi is the wealth of agent i.26

Household i elects his ideal household and neighborhood bundle (R∗i ,X
∗
i ,Y

∗
i , ξ
∗
i , c
∗
i ) by

25For example, a given household may find LIHTC proximity desirable when it is built in a low income
neighborhood, since it improves neighborhood quality of low income areas. However, LIHTC proximity
might be undesirable when it is built in a high income neighborhood, since it could degrade neighborhood
quality.
26Since quasi-linear utility does not allow for income effects, this model would not be well suited for

studying total housing and neighborhood demand. However, we zoom in on a small aspect of this decision:
the importance of LIHTC proximity in choosing a place to live. Since this is not the overwhelming driver of
house prices, it is plausible to believe income effects are negligible.
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maximizing his utility. Since distance from a LIHTC property is a continuous choice

variable, the optimal distance is found by setting the first order condition with respect to R

to zero. Doing so relates the slope of the households’utility function with respect to R, i.e.

the marginal willingness to pay (MWTP), to the slope of the pricing surface pt (R,X,Y, ξ)

at the optimal bundle.27

∂Ui (R
∗
i ,X

∗
i ,Y

∗
i , ξ
∗
i , c
∗
i )

∂R
=
∂pt (R∗i ,X

∗
i ,Y

∗
i , ξ
∗
i )

∂R
. (15)

Note that this includes distances very far from any LIHTC where the LIHTC proximity might

no longer impact house prices or utility.28 The households who don’t find it worthwhile to

live close enough to LIHTC to pay its hedonic price will live at these further distances

where proximity is irrelevant for prices and utility. From these very far away households’

perspective, it is as if the LIHTC site doesn’t exist.

Without any further assumptions on the utility function, we can use our previous non-

parametric estimates of the price gradient to recover this local MWTP for each individual

household in our data who chooses to live close enough to a LIHTC site such that house

prices are influenced. To do so, we assume the following form for the equilibrium price

function:

log pt (R,X,Y, ξ) = m̃Y (R, τ) + ht (X, ξ) ,

where τ is the number of years since LIHTC development and ht (X, ξ) measures the price

impacts of the other physical and neighborhood characteristics. As before, m̃Y (R, τ) rep-

resents the price impact of being R miles away from a LIHTC development built in neigh-

borhood type Y. Implicitly, just as in our empirical specification, we are assuming that the

impact of LIHTC distance on house prices does not depend on individual house character-

istics. Under the additional assumption that there is a function from geographic location

and time (r, θ, t) to the available characteristics (X, ξ) at that location, and that:

ht (X, ξ) = φl (r, θ) + ϕl (θ, t) ,

we then recover our empirical specification (1). We therefore can estimate an individual

27Households will also optimize over other characteristics variables. Some of those variables may be
categorical. See Bajari and Benkard (2005) for a discussion of how optimization over categorical variables
is handled. Under our assumption of an additively separable utility function, we do not need to examine
the optimal choices of households over other housing characteristics for our analysis.
28For example, the utility benefit of moving 55.1 miles away from versus 55 miles is likely zero. Similarly,

we would expect the hedonic price of LIHTC proximity to also be zero at this distance.
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household’s MWTP at its optimal bundle by:

̂∂Ui (R∗i ,X
∗
i ,Y

∗
i , ξ
∗
i , c
∗
i )

∂R
=

̂∂pt (R∗i ,X
∗
i ,Y

∗
i , ξ
∗
i )

∂R
=

̂∂m̃Y (R∗i , τ)

∂r
pt (R∗i ,X

∗
i ,Y

∗
i , ξ
∗
i ) .

That is, the estimated marginal willingness to pay is equal to our non-parametric estimate

of the log price gradient at distance R∗ multiplied by the observed purchase price.

Note, however, that this procedure only provides information about preferences for each

household at that household’s optimally chosen bundle. In other words, it does not allow

us to recover the full MWTP curve. This is a common issue arising in hedonic work

when one does not see many choices by the same household. Since we want to conduct

non-local welfare analysis, which essentially requires integrating over the MWTP curve, we

follow convention in the literature by specifying a log-linear parametric form for the utility

function.

We begin by assuming there is a maximal distance R0,Y at which proximity to LIHTC

of type Y no longer contributes to agent utility. We identify R0,Y as the point at which

the estimated price gradient for type Y goes to zero. Furthermore, we see from our hetero-

geneous estimates of the pricing surface that affordable housing proximity is viewed as an

amenity in some areas, e.g. in lower income areas, but a disamenity in others. We assign

each type Y a label λY = G,B depending on whether the price gradient is negative or

positive respectively. Types with label G are viewed as an amenity and types with label B

are viewed as a disamenity. Given these labels, we assume a household’s utility increases in

R for types with label B and increases in R0,Y −R for types with label G. In other words,
when LIHTC is viewed as an amenity households like proximity, and when LIHTC is viewed

as a disamenity households like distance. Give our log-linear specification, we thus have:

UG
i (R,X,Y, ξ,c) = AG + γi,Y log (1 +R0,Y −R)1 [R ≤ R0,Y] + ui (X, ξ) + c (16)

UB
i (R,X,Y, ξ,c) = AB + γi,Y log (1 +R)1 [R ≤ R0,Y] + ui (X, ξ) + c, (17)

where ui (X, ξ) reflects the utility contribution of the house’s physical and location character-

istics. The parameter γi,Y is household specific and reflects household i’s personal preference

for proximity to LIHTC in a neighborhood of type Y. Note that the indicator variables en-

sures that the contribution of LIHTC proximity to utility disappears beyond distance R0,Y.

We finally set the constants AG, AB such that the limit of household utility approaches

ui (X, ξ) + c as R approaches R0,Y. This leads to AG = 0 and AB = γi,Y log (1 +R0,Y) .

With these parametric assumptions in place, we can then recover the global MWTP

curve for each individual household who optimally chooses R ≤ R0,Y. This is, of course,
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equivalent to recovering γi,Y for each household. Given the functional forms, we estimate a

household’s γi,Y∗i by:

γ̂i,Y∗i
1 +R∗i

=
̂∂pt (R∗i ,X
∗
i ,Y

∗
i , ξ
∗
i )

∂R
, λ = B (18)

γ̂i,Y∗i
1 +R0,Y∗i

−R∗i
=

̂∂pt (R∗i ,X
∗
i ,Y

∗
i , ξ
∗
i )

∂R
, λ = G (19)

where the form of the price gradient estimate is give above.

6.2 Welfare

Using our recovered parameter estimates, we consider the long-run, local welfare impact

of introducing unanticipated LIHTC development into a metropolitan area which currently

has none. By local welfare, we mean that we will assume the price and amenity value of

neighborhoods away from the LIHTC are unchanged due to the LIHTC construction. This

assumption would be violated if there are general equilibrium effects, such as if a LIHTC

development causes “good neighbors” to move into the LIHTC neighborhoods and leave

their old neighborhoods, making these previous neighborhoods decline in amenities. While

quantifying the full GE effects of LIHTC would be ideal, we see the heterogeneity in the local

welfare impacts as a useful first step in understanding where to target affordable housing.

This is a long-run welfare calculation since we assume moving costs are zero. Moving

costs create a wedge between the optimal location of each household and the location the

household lived in before LIHTC development. In the long-run, everyone is much more likely

to re-optimize their housing choices, although moving costs could still be relevant.

We decompose the welfare effects into the impacts on homeowners, renters, and absen-

tee landlords. We will discuss the equilibrium in both the periods pre and post LIHTC

development to highlight the welfare effects on each type of household.

6.2.1 Neighborhood choice before LIHTC development

Prior to construction of a LIHTC development, the local population optimizes over a vector

of housing and neighborhood characteristics (X, ξ) according to the following problem:

maxui (X, ξ) + c s.t. h0 (X, ξ) + c ≤ yi (20)

where yi is household income, ui (X, ξ) is the individual-specific utility function over hous-

ing and location characteristics defined above, and h0 (X, ξ) is the metropolitan equilibrium
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hedonic price function over characteristics prior to LIHTC construction.29 We denote the

optimal bundle of characteristics chosen by household i prior to LIHTC construction as(
X∗0,i, ξ

∗
0,i

)
. When LIHTC is built in the following period, we define Ri,pre as the distance

between household i’s chosen location in the pre period and the site of new LIHTC develop-

ment. Since LIHTC development is unanticipated, Ri,pre does not influence his optimization

in the period before LIHTC development.

Turning to renters, since we do not observe data directly on rents, we make the assumption

that house prices are equal to the present discounted value of rents. Renters therefore face

the same optimization as homeowners in the pre-period.

6.2.2 Neighborhood choice after LIHTC development

We assume zero moving costs, such that when affordable housing is built, all households

will re-optimize. We view this welfare calculation as the long-run effect on welfare, since

reoptimization in reality is sluggish. After LIHTC construction, the possibility to live close

to a LIHTC site is within households’choice sets. The utility function is the same as before,

but now includes the possibility of receiving utility from LIHTC proximity, as defined in

equations (16) and (17):

max
R,X,ξ,c

UλY
i (R,X,Y, ξ,c) s.t. m̃Y (R) + h1 (X, ξ) + c ≤ yi + m̃Y (Ri,pre) + h0 (X, ξ) .

The quantity m̃Y (Ri,pre)+h0 (X, ξ) in the budget constraint is the revenue received from the

sale of the current home. m̃Y (Ri,pre) represents the house price appreciation for the people

whose previous period’s location choice happened to be close enough to the new LIHTC site

to have their house prices impacted. The expression m̃Y (R) + h1 (X, ξ) is the price of the

newly bought home where h1 (X, ξ) represents the hedonic prices for all the neighborhood

and housing characteristics other than LIHTC proximity in the post period and m̃Y (R)

represents the LIHTC proximity hedonic price.

Our methodology does not allow us to examine the impact of LIHTC construction on

outcomes at the broader metropolitan level. That is, we are not able to study how LIHTC

construction impacts further away neighborhoods due to equilibrium changes in demographic

sorting or the supply of location characteristics across neighborhoods within the metropoli-

tan area. We therefore assume that h1 (X, ξ) = h0 (X, ξ), i.e. the hedonic price surface for

all other house/location characteristics does not change due to the introduction of LIHTC

development. This assumes that any housing choice available in the pre-period is still avail-

29We assume that agents do not anticipate LIHTC development when they choose their optimal bundle
of characteristics in the pre-period.
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able in the post period after LIHTC. We gain significant tractability from this assumption,

since it ensure that all households will choose the same bundle of characteristics (X∗i , ξ
∗
i )

pre and post LIHTC construction other than LIHTC proximity. However, it is due to this

assumption and its implications that we are truly calculating only a local welfare effect.

Renters will reoptimize according to a similar problem:

max
R,X,ξ,c

UλY
i (R,X,Y, ξ,c) s.t. m̃Y (R) + h1 (X, ξ) + c ≤ yi.

Note that the key difference is in the budget constraint. Renters do not obtain any income

from the sale of a currently owned home.

We can now tabulate the various welfare effects. For homeowners, if their housing choice

in the pre period does not end up being close to the new LIHTC site (Rpre ≥ R0,Y) and their

optimal location choice in the post period is also far enough away from the LIHTC such that

it does not impact prices or utility (R∗1,i ≥ R0,Y), then the welfare impact is ∆Ui = 0. For

these households, none of the locations impacted by LIHTC proximity are more desirable

than their chosen locations in the pre-period, leading these households to make the same

housing choices in the pre and post period. The welfare impact is thus equal to zero.

For homeowners whose pre-period housing choice ends up being close enough to the new

LIHTC site such that it impacts housing prices (Rpre < R0,Y), but optimally choose to move

away from the LIHTC site (R∗1,i ≥ R0,Y) in the post period, the welfare impact is given by

the change in prices:

∆Ui = m̃Y (Rpre) .

These households move away from the LIHTC development and choose a new housing-

neighborhood bundle that looks identical to the one they chose in the pre-period (X∗i , ξ
∗
i ).

They do not gain or lose any utility due to changes in neighborhood or housing character-

istics, but do obtain greater or less consumption due to the price appreciation/depreciation

m̃Y (Rpre) of their pre-period home.

For homeowners who optimally choose to live close to the new LIHTC site and pay its

hedonic price (R∗1,i < R0,Y), the welfare impact results from both the utility gain/loss due

to LIHTC proximity and the change in consumption due to house price appreciation. For

LIHTC development in areas where it is viewed as an amenity(λY = G):

∆Ui = γi,Y log
(
1 +R0,Y −R∗1,i

)
+ m̃Y (Rpre)− m̃Y

(
R∗1,i
)
, if Rpre ≤ R0,Y

∆Ui = γi,Y log
(
1 +R0,Y −R∗1,i

)
− m̃Y

(
R∗1,i
)
, if Rpre > R0,Y.

while for LIHTC development in areas where it is viewed as a disamenity(λY = B):
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∆Ui = γi,Y log

(
1 +R∗1,i
1 +R0,Y

)
+ m̃Y (Rpre)− m̃Y

(
R∗1,i
)
, if Rpre ≤ R0,Y

∆Ui = γi,Y log

(
1 +R∗1,i
1 +R0,Y

)
− m̃Y

(
R∗1,i
)
, if Rpre > R0,Y.

Turning to renters, the welfare impacts for those who optimally choose to live close to

the LIHTC site in the post-period (R∗1,i < R0,Y) are given by:

∆Ui = γi,Y log
(
1 +R0,Y −R∗1,i

)
− m̃Y

(
R∗1,i
)
, λY = G

∆Ui = γi,Y log

(
1 +R∗1,i
1 +R0,Y

)
− m̃Y

(
R∗1,i
)
, λY = B.

The welfare impact is zero for renters who optimally choose to live far way from LIHTC

(R∗1,i > R0,Y) since they choose the same bundle of house/location characteristics as they

did in the pre-period and their rents do not change. Note, that if LIHTC is viewed as an

amenity, renters must pay higher rents to locate close to it. If renters do not like living near

LIHTC sites, they are compensated for it by the lower rents. On net, renters who chose to

live close to LIHTC are made weakly better off than in the pre-period since they could have

chosen to live far away from the LIHTC site and receive a utility change of zero relative to

the pre-period.

Finally, the welfare impact on absentee landlords whose properties are located at R∗1,i ≤
R0,Y is given by the present value of the change in rents they collect:

∆Ui = m̃Y

(
R∗1,i
)
.

The impact is zero for landlords with properties located at distances greater than R0,Y since

rents do not change. Note that landlords are not able to fully capture the amenity value

to local renters in raised rents, leading renters to receive some welfare benefits from the

increased amenities, even net of increased rental rates. We show this is generically true

when renters have heterogeneous preferences in Section E of the online appendix. These

impacts are summarized in Tables 3 and 4.

Aggregating all homeowner welfare together when proximity to LIHTC is a disamenity

we get:30 ∑
i

γi,Y log

(
1 +R∗1,i
1 +R0,Y

)
∗ 1(R∗1,i < R0,Y), (21)

30See Tables 2 and 3 for treatment of both the amenity and disamenity case.
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where 1(R∗1,i < R0,Y) is an indicator function for whether household i chooses to live close

to the LIHTC site in the post period. The welfare impacts due to house price appreciation

do not enter aggregate welfare since it is just a transfer from home sellers to home buyers.

A key result of the model is that the aggregate welfare impacts on homeowners only depend

on the direct utility value of LIHTC proximity accruing to the households who choose to live

close to the new LIHTC site. Recall that our estimation methods only allow us to recover

the LIHTC preferences for the households who choose to move close LIHTC. The model

above shows that these are the only households whose preferences need to be estimated.

Aggregate renter welfare when proximity to LIHTC is a disamenity is:

∑
i

(
γi,Y log

(
1 +R∗1,i
1 +R0,Y

)
− m̃Y

(
R∗1,i
))
∗ 1(R∗1,i < R0,Y). (22)

This is the identical formula to aggregate household welfare, except that it includes the

change in rental costs for the renters who choose to pay the hedonic price of LIHTC proximity.

Aggregate landlord welfare is:∑
i

m̃Y

(
R∗1,i
)
∗ 1(Rpre < R0,Y).

Summing the landlord and renter aggregate welfare together will net out the rental cost

effects, since this is just a transfer from renters to landlords. This gives:

∑
i

(
γi,Y log

(
1 +R∗1,i
1 +R0,Y

))
∗ 1(R∗1,i < R0,Y). (23)

Just as in the homeowner case, the aggregate landlord-renter welfare only depends on the

direct neighborhood utility value of LIHTC proximity as valued by the renters who optimally

choose to live in the vicinity. Summing equations (21) and (23) gives the total welfare value

to society.

6.2.3 Measuring the welfare effects

With our welfare derivations in place, we now discuss how we measure the welfare impacts

empirically. To this end, let qH (γY, R1|Y,R1 < R0,Y) denote the joint density of preference

parameters and distance chosen from the LIHTC site given that the household has chosen

to live within R0,Y miles of a LIHTC site of type Y. This density is directly observed in our

data since we recover the γ of each household who chooses to move close to LIHTC and we

also observe each household’s chosen LIHTC proximity R1. The aggregate welfare impact of
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a LIHTC site developed in neighborhood of type Y for homeowners is then simply given by:

∆UH
agg,Y = NH

∫
γY log

(
1 +R0,Y −R∗1,i

)
qH (γY, R1, |Y,R1 < R0,Y) dγYdR1, λY = G(24)

∆UH
agg,Y = NH

∫
γY log

(
1 +R∗1,i
1 +R0,Y

)
qH (γY, R1|Y,R1 < R0,Y) dγYdR1, λY = B, (25)

where NH is the average number of homeowners who choose to live within R0,Y miles of

a single LIHTC site in neighborhoods of type Y. We only use our estimated preference

parameters γ to measure the density of γ at each distance R1, but not the total quantity of

households living at distance R1. Since our γ estimates come from housing transactions, we

don’t observe the very-long run total quantity of in-migrants to live close to LIHTC. To get

a more accurate measure of the total quantity of households who will choose to move in the

long run, we measure the total household count surrounding LIHTC sites in the American

Community Survey. We measure NH from the 5-year pooled ACS block group data on the

median number of homeowners per LIHTC site living within R0,Y miles of the LIHTC site

of type Y.31 These numbers are reported in Table A3.

Since we don’t have direct data on renter migration, and therefore cannot directly measure

their distribution of γ as we do for homeowners, we need to make some additional assumptions

to calculate their welfare. To calculate the impact for renters we assume that the distribution

of preference parameters conditional on race and income is the same as that for homeowners,

that is:

qR (γY, R1|Race, y,Y,R1 < R0,Y) = qH (γY, R1|Race, y,Y,R1 < R0,Y) . (26)

This allows us to adjust the distribution of home owner preferences according to differences

in the distribution of race and income between renters and owners, as measured in the ACS,

to create the distribution of preferences among renters. The main caveat to this approach

is that even at the same income level and race, renters’preferences may differ from that

homeowners for LIHTC proximity. However, since we don’t have any information other than

home owner purchases and their race and income, we cannot make further adjustments to

renter preferences other than using the demographics we observe for homeowners.
We can then calculate the aggregate welfare impact on renters when LIHTC is an amenity

(λY = G). Let qR (γY, R1, Race, y|R1 < R0,Y) be the joint density of preferences (γY) , LI-
HTC proximity (R1) , race (Race) , and income (y) for renters who chose to live within R0,Y

31We measure these household counts for the LIHTC sites used in our estimation, not the entire country.
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of the LIHTC site. Renter welfare can then be written as:

∆U
R
agg,Y = NR

∑
Race

∫ [
γY log

(
1 + R0,Y − R

∗
1,i

)
− m̃Y (R1)

]
q
R (

γY, R1, Race, y|R1 < R0,Y
)
dγYdR1dy (27)

= NR
∑
Race

∫ [
γY log

(
1 + R0,Y − R

∗
1,i

)
− m̃Y (R1)

]
q
R (

γY, R1|Race, y, R1 < R0,Y
)
q
R (

Race, y|R1 < R0,Y
)
dγYdR1dy(28)

= NR
∑
Race

∫ [
γY log

(
1 + R0,Y − R

∗
1,i

)
− m̃Y (R1)

]
q
H (

γY, R1|Race, y, R1 < R0,Y
)
q
R (

Race, y|R1 < R0,Y
)
dγYdR1dy(29)

= NR
∑
Race

∫ [
γY log

(
1 + R0,Y − R

∗
1,i

)
− m̃Y (R1)

]
q
H (

γY, R1, Race, y|R1 < R0,Y
) qR (Race, y|R1 < R0,Y

)
qH

(
Race, y|R1 < R0,Y

) dγYdR1dy,(30)

where going from equation (28) to (29) plugs in equation (26) . NR is the total number of

renters in the proximity of the LIHTC site. This number comes from the ACS.
When LIHTC proximity is undesirable (λY = B) , we have:

∆URagg,Y = NR
∑
Race

∫ [
γY log

(
1 +R∗1,i
1 +R0,Y

)
− m̃Y (R1)

]
qH (γY, R1, Race, y|R1 < R0,Y)

qR (Race, y|R1 < R0,Y)

qH (Race, y|R1 < R0,Y)
dγYdR1dy.

The joint density of race and income for both renters and homeowners, qR (Race, y|R1 < R0,Y)

and qH (Race, y|R1 < R0,Y) respectively, are calculated from 5-year pooled American Com-

munity Survey micro data. For the price effects due to LIHTC proximity, m̃Y, we use

our long term price estimates, derived from equation 13. Finally, the aggregate impact on

absentee landlords is given by:

∆U ll
agg = NR

∑
Race

∫
m̃Y (R1) qH (γY, R1, Race, y|R1 < R0,Y)

qR (Race, y|R1 < R0,Y)

qH (Race, y|R1 < R0,Y)
dγYdR1dy.

6.3 Results

To keep the model parsimonious, we only use the short term and long term price gradient es-

timates to recover households’preferences for LIHTC proximity. We denote these ∂m̃shortY (rj)

∂r

and ∂m̃longY (rj)

∂r
, as in equations (12) and (13).

Figure 7 plots the estimates of the short-term price gradient effects and Figure 8 plots

the estimates of the long-term price gradient effects. These are labeled the “non-parametric

estimates” in the figures. To use these estimates within our structural model to recover

preferences, we set the gradient equal to zero at all distances past the point where the

gradient first hits the x-axis and crosses zero or the point at which it comes the closest to

zero. These estimates are also shown in Figures 9 and 10.32 We use the point at which the

price effect goes to zero as our estimate of R0,Y, the distance beyond which household utility

is no longer impacted by LIHTC proximity.

32Our raw estimates are never statistically different from zero at any distance past the point where gradient
first hits the x-axis.
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Using the estimated price gradients, we use equations (18) and (19) to estimate each

household’s preference to live near LIHTC within neighborhood type Y. We designate LI-

HTC proximity to be desirable within neighborhoods where LIHTC development caused

price appreciation, while we designate LIHTC proximity as undesirable within areas where

it causes price decline.

We now examine how households’preferences for LIHTC proximity vary with race and

income of home buyers. We measure how much each household is willing to pay (as a share

of their house price) to live 0.1 miles from an LIHTC development. Panel A of Figures 12

and 13 shows that higher income households are willing to pay the most to live close the

LIHTC development in Q1 income areas, conditional on wanting to live in a Q1 income area.

This is true in both high and low minority areas. We find minority home buyers are willing

to pay more to live in high minority, Q1 income areas than non-minority home buyers, while

the reverse is true in low minority Q1 income areas. Overall, households choosing to live

near LIHTC sites in Q1 income areas are willing to pay about 6% of their house price to

live 0.1 miles from an LIHTC site. The preferences in Q2 areas are essentially zero, as

reflected in the essentially zero price effects discussed previously. Within low minority Q3

areas and Q4 areas, we find that higher income households are willing to pay slightly more

to avoid living 0.1 miles from an LIHTC site. We also find that minority home buyers are

less deterred by LIHTC development in Q3 and Q4 low minority areas than non-minority

home buyers. Overall, these households are willing to pay about 1.6% of their house price

to avoid living within 0.1 miles of LIHTC. Within Q3 and Q4 high minority areas, the

effects are economically insignificant, consistent with the economically insignificant price

effects discussed previously. The online appendix reports similar effects measured in dollars,

instead of in house price percentages, as these will be the numbers more closely linked to

those used in the next section for the welfare calculation. 33

Turning to welfare, Panel A of Table 5 reports the average willingness to pay for LIHTC

development per homeowner, renter, and landlord impacted by LIHTC development within

neighborhoods of different types. Within Q1 income, low minority areas, the average home-

owner would be willing to pay $23,403 for LIHTC development. The average renter would

be willing to pay $6502 and the average landlord would be willing to pay $6011.34 In Q1,

high minority areas, the average homeowner would be willing to pay $16,857, the average

renter would be willing to pay $6475, and the average landlord would be willing to pay $6099.

There are substantial benefits to the community from LIHTC development in Q1 income

33These figures are dominated by the fact that higher income households buy more expensive houses,
creating a strong link between home buyer income and willingness to pay for LIHTC proximity.
34The sum of the welfare benefits to landlords and renters is less than that of homeowners because renters

tend to be lower income, lowering their willingness to pay.
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areas. However, the opposite is true in low minority Q3 and Q4 areas. Within Q4 areas, the

average homeowner would be willing to pay $3972 to deter LIHTC development, the average

renter would be willing to pay $67 for LIHTC development and the average landlord would

be willing to pay $2416 to deter LIHTC development. In high minority, Q4 income areas,

residents benefit from LIHTC development.

Table 5 scales these numbers to aggregate effects to get total willingness to pay by society

from LIHTC development in different areas. The units are reported in thousands of dollars.

Since low income areas tend to be quite dense, as evidenced by Table A3, the aggregate

benefit to homeowners from LIHTC development in Q1 income low minority areas is $57.9

million. The aggregate benefit to renters is $29.2 million and the benefit to landlords is

$29.0 million. In total, society would be improved by $116.2 million from a single LIHTC

development in a low income, low minority area. This number is even bigger in low income,

high minority areas, ($211 million), simply because there tend to be more people living close

to LIHTC in these areas. Conversely, development of LIHTC in a Q4, low minority area

leads to an aggregate welfare loss of $12.1 million.

These place-based effects are large and meaningful relative to the typical cost of devel-

opment, around $300,000 per unit in California and likely lower elsewhere. This suggests

the development cost of a typical 82 unit building would be $24.6 million, substantially less

than the positive benefits in low income areas, and more than the welfare losses in the high

income areas.

6.4 Discussion

It is important to recognize that there are some important caveats to our analysis that

prevent us from fully capturing all indirect channels through which LIHTC development

could impact welfare. First, we can only capture the local welfare impacts of introducing

a tax credit property into neighborhoods of varying type. This analysis does not include

indirect general equilibrium effects on the amenity values on house prices of neighborhoods

away from the LIHTC sites. For example, an extreme scenario is that LIHTC attracts “good

neighbors”to low-income areas, forcing other neighborhoods to lower their stock of “good

neighbors.” In this zero sum game of good neighborhood allocation, the aggregate welfare

effects could be zero, while the local welfare effects to the LIHTC neighborhood would be

positive. However, documenting that LIHTC effects are extremely heterogeneous across

space is the first step toward gauging the scope for place based policies. For externalities

to create a justification for spatial policy, such externalities must be stronger in some places

than in others. As noted by Glaeser & Gottlieb (2011), the placed-based policy literature
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is often uncertain whether such spillovers exist and rarely documents nonlinear effects. Our

results clearly document the heterogeneity in neighborhood impacts, which is a key first step

to designing optimal spatial policy.

Second, we are not attempting to analyze the effectiveness or welfare impact of the

LIHTC program versus private market development. That is, we are not performing a policy

evaluation of the LIHTC program. First, we do not observe the counterfactual. It may, for

instance, be the case that LIHTC development is simply crowding out private multifamily

properties. Conversely, it seems quite likely that, due to frictions, private developers cannot

fully internalize the positive externalities of such construction in low-income areas, leaving

scope for government intervention, but answering this question is beyond the scope of the

current paper.

With these caveats in place, we believe that our estimates can still be useful in helping

federal, state, and local agencies think about where to locate affordable housing develop-

ments. If government agencies face constraints in the number of subsidized properties they

can finance, our estimates would suggest that development should be strongly targeted to

low income areas. We must caveat this claim as well, though. Our welfare estimates view

LIHTC development as a purely place based policy. Yet the location of affordable housing

also influences the welfare of the tenants living in the affordable housing, which our numbers

above do not capture.

Recent work by Chetty et al. (2015) finds that young children strongly benefit from

growing up in lower poverty neighborhoods. While the neighborhoods types analyzed in

Chetty et al. (2016) do not map directly into our definitions, they report that a child moving

out of public housing and into a low poverty area gains $99,000 in presented discounted value

of future income over a lifetime. If we use this number to benchmark the potential gains to

LIHTC tenants living in a Q4 low minority area versus a Q1 low minority neighborhood,

and assume each apartment has two children in it, the average LIHTC development would

improve the welfare of these children by $26.7 million.35 This is an underestimate of the

total welfare benefits to these households, as it only values the increased earnings and not

other benefits which have been documented, such as better measures of mental health and

lower obesity rates (Kling et al, 2007). The benefits to these tenants ($26.7 million) more

than offsets the losses to local residents in these high income areas ($12.1 million), which

makes development in these higher income areas look desirable.

35We assume the LIHTC remains affordable for 30 years and that each apartment will house a household
with two children for 15 years. Thus, two households will leave in each apartment for 15 years, sequentially.
We discount the present value of children’s income of the 2nd household moving in the apartment 15 years
after it was built by 3%, same discount rate used in Chetty et al. (2016). We assume the LIHTC site at 82
apartments.
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However, if placing such a property in a high income area means that one less property

must be allocated to a low income area, then there is an opportunity cost of $116 million,

which is more than 4 times the welfare benefits documented by Chetty et al. (2016). This

makes development of affordable housing in low income areas appear to be a very effective

policy in improving the economic welfare of many low-income households, even when taking

into account the current MTO evidence. A final caveat to these points is that there may

likely be diminishing marginal returns to new housing in poor areas if these policies were

scaled substantially. Yet, this is likely also true of the benefits estimated by Chetty et al

(2016) as well.

7 Conclusion

In this paper, we study multifamily housing developments funded through the Low Income

Housing Tax Credit (LIHTC) to quantify the costs and benefits of affordable housing de-

velopment on surrounding neighborhoods. Leveraging new econometric methods, we find

that LIHTC construction has heterogeneous effects on local house prices based on neighbor-

hood characteristics. In lower income areas, house prices appreciate substantially over the

long-run in response to the introduction of affordable housing projects. Areas with a high

minority share also experience significant price appreciation when a LIHTC development is

built. On the other hand, prices in areas with higher median incomes and low minority

shares tend to depreciate over the long-run.

We investigate the mechanisms underlying these price effects. Development in low

income, low minority share areas leads to a rise in the income of subsequent home buyers,

while development in high income, low minority share areas leads to a decrease in home

buyer income. In low income areas, LIHTC development leads to a reduction in both violent

and property crime. This is consistent with evidence documenting that the overwhelming

majority of LIHTC properties have a security system in place, as well as the stated desire

of LIHTC residents for secure housing. Finally, we find that LIHTC construction in high

minority share areas leads to an increase in the non-Black share of subsequent home buyers.

This result is particularly significant since it illustrates that reduced segregation, a stated

goal of many affordable housing programs, may be achieved by locating subsidized, rent-

controlled properties in high minority share areas, due to the resulting neighborhood and

demographic change.

We employ a structural, generalized hedonic model of housing choice to link the esti-

mated price effects to individual preferences for proximity to low income housing. In lower

income areas where affordable housing developments are viewed as an amenity, higher income
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households are willing to pay more for proximity. Conversely, higher income households are

willing to pay more to live further away from affordable housing developments in higher in-

come areas where such properties are viewed as a disamenity. White households are willing

to pay more than minority households to locate further away from the tax credit property

in high income, high minority share areas and have a lower willingness to pay for proximity

in lower income, high minority share areas. Such results suggest that white households may

have a preference for neighborhood homogeneity which interacts with how they view the

amenities/disamenities provided by LIHTC construction.

Our results show that affordable housing development has large welfare impacts as a

place based policy, which more than offset the welfare impacts to tenants living in affordable

housing. Given the goals of many affordable housing policies is to decrease income and racial

segregation in housing markets, these goals might be achieved by investing in affordable

housing in low income and high minority areas, which will then spark in-migration of high

income and a more racially diverse set of residents. These housing market spillovers leading

to broader neighborhood change could make a larger dent in lowering racial and income

segregation in the housing market than policies which try to achieve these goals by targeting

higher income or low minority areas with affordable housing developments.
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A Data & Policy Appendix

A.1 The Low Income Housing Tax Credit

In 1986, Congress passed the Tax Reform Act. As part of this legislation, Congress increased
the Home Mortgage Interest Deduction and modified the treatment of imputed rent and
local property taxes to further incentivize investment in owner-occupied housing. Concerned
that such provisions would decrease the supply of affordable rental housing for low-income
individuals, Congress introduced the Low Income Housing Tax Credit (LIHTC) as part of
the Act to encourage the development of multifamily housing and thus serve as a balancing
measure.

Each year, federal tax credits are allocated to the states based on population. In
particular, each state receives the inflation-adjusted equivalent of $2.30 per resident, as
measured in 2014 dollars. These credits are awarded by state authorities to developers of
qualified projects. Developers then sell these credits to investors to raise equity capital for
their projects and reduce the amount of debt they would otherwise have to borrow. Investors
receive a dollar-for-dollar credit against their federal tax liability for a period of 10 years,
provided the property continues to comply with all program guidelines.36

To qualify for a tax credit under the Low Income Tax Credit Program, federal
guidelines require that proposed projects be for construction or rehabilitation of a residential
rental property and satisfy either one of two low-income occupancy criteria. At least 20
percent of tenants must earn less than 50 percent of the Area Median Gross Income (AGMI),
or alternatively, at least 40 percent of tenants must earn less than 60 percent of AGMI.37 The
AGMI is based on data from the Internal Revenue Service, the American Housing Survey,
and the decennial Census. It is calculated annually by the Department of Housing and
Urban Development (HUD) for all metropolitan areas and counties. If the income of a
household in one of the low income units grows to exceed the relevant income limit, then
the program requires developers to place a low income tenant into the next unit vacated
by a market rate tenant.38 Additionally, developers must restrict rents, including utility
allowance, in low-income units to 30 percent of the relevant income limit, i.e. either 50
percent of 60 percent of AGMI for a minimum affordability period of 30 years.

Note that these criteria are only the minimal requirements as specified by the federal
government. In practice, states almost always receive many more project proposals and
tax credit allocation requests from developers than they have federal allotments, generally
on the order of 2 to 4 times. Each state is therefore required to maintain a “Qualified
Application Plan” (QAP) to govern the selection process. These plans usually operate
by assigning point scores to various project characteristics and then allocating tax credits
based on point totals until funds are exhausted. Such project characteristics include tenant

36Eriksen (2009) studies the market pricing of these tax credits. He finds that that LIHTC developers in
California received on average $0.73 per $1 of tax credit in the years 1999-2005.
37Actual income limits depend on household size. The 50 percent of AGMI limit is for a base family size

of four members. Income limits are adjusted upward by 4 percentage points for each family member in
excess of four. Limits are adjusted downward by 5 percentage points for each family member short of four.
These limits are multiplied by 1.2 to get the 60 percent income limits.
38Many LITHC properties are comprised 100 percent of low-income units. Clearly, this requirement

becomes superfluous in such a case.
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demographics, location, further funding sources, and structural properties of the building.
Given this latitude the states enjoy in determining selection criteria, many require developers
to go beyond the minimum number of affordable units and the minimum level of affordability.
The funding process in California, in which more than 50 percent of the LIHTC sites in

our sample are located, is illustrative of the high degree of competition which exists between
developers. Practically all funded projects have the maximum total point score, such that
the funding threshold is based on the so-called tie-breaker score, which reflects ratios of
committed public funds to total developer cost, as well as eligible basis to total developer
cost. Moreover, state guidelines specify certain allotments of funding for various set-asides,
such as rural, non-profit, and small developments, as well as well as certain allotments by
geographic region. The tie-breaker score threshold thus varies annually and by region and
set-aside, depending on the number of applications received in that segment in a given year.
Receiving funding in a given year is by no means guaranteed, reflecting the high degree of
competition. According to data provided by the California State Treasurer’s Offi ce, only
34.3% of applications were funded in 2007, 38.3% in 2008, 32.2% in 2009, 26.9% in 2010,
57.7% in 2011, and 42.7% in 2012.

The value of tax credits received by selected developers is calculated according to the
project’s “qualified basis”, which essentially reflects the cost of constructing or rehabilitating
the low-income units. Specifically, the project’s “eligible basis”is the value of all depreciable
development costs, such as construction, engineering, soil tests, and utility connection fees. It
does not include land acquisition costs. The qualified basis is then calculated by multiplying
the eligible basis by the “applicable fraction.”This is the smaller of two percentages, the
fraction of low income units in the development, or the fraction of total square footage
allotted to low income units. Once the qualified basis has been determined, the annual tax
credit is determined by applying the relevant housing tax credit rate. New construction
or substantial rehabilitation projects, which are not otherwise subsidized by the Federal
government, receive a 9 percent credit rate, while all other projects receive a 4 percent credit
rate. These annual credits are then paid out over a period of 10 years.39

Since its inception in 1986, the Low Income Housing Tax Credit Program has been
an integral component in fostering the development of multifamily housing throughout the
United States. With an annual tax credit valued at over 8 billion dollars, the program funded
21 percent of all multifamily developments between the years 1987-2008.

A.2 Data

A.2.1 DataQuick

Our first dataset is from DataQuick, which provides detailed public records housing
characteristics and transactions data collected from county assessor and register of deeds

39This calculation is a baseline figure. Congress passed legislation in 1989 affording state allocating
agencies the option to increase the qualified basis by up to 30 percent in both "qualified census tracts"
(QCTs) and "diffi cult development areas" (DDAs). Census tracts with 50 percent of households earning
below 60 percent of AGMI earn qualified status, subject to a population restriction which is generally non-
binding. Metropolitan areas with high ratios of fair market rent to AMGI are designated as DDAs. See
Baum-Snow and Marion (2009) for more details.
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offi cers. This dataset covers over 109 million properties from 1988-2012 in over 2,300 juris-
dictions and provides information such as sales price, transaction type, loan amount, number
of beds, number of baths, square-footage, lot size, age, etc. The quality of the DataQuick
data is not uniform across the country. Certain states, such as Texas and Utah, do not
require the prices of housing transactions to be a matter of public record. Thus, DataQuick
does not report house prices for those states. Other states, such as Illinois, provide prices
in their records but do not collect information regarding the number of bathrooms. Finally,
not all of the counties covered by DataQuick have records dating back to 1988. Coverage of
a significant number of counties began in 1996.

We restrict our analysis to those counties which have transactions history data dating
to at least 1996. From this subset, we then restrict to those counties which have at least
an average of 1000 residential arm-length sales per year. This leaves us with a sample of
approximately 16 million transactions located within 1.5 miles of a LIHTC site in a total
of 129 counties in 15 states, concentrated largely in the major metropolitan areas of New
England, Florida, California, Illinois, North Carolina, Tennessee, the Southwest and the
Pacific Northwest. Figure 1 provides a map of the counties in our sample.

A.2.2 Home Mortgage Disclosure Act Data

We merge this dataset with data collected by the United States federal government ac-
cording to the provisions of the Home Mortgage Disclosure Act (HMDA). Passed in 1975 due
to concerns over redlining in the mortgage market in urban, minority areas, this legislation
requires all lending institutions to report public loan data. Implemented as Regulation C
by the Federal Reserve Board, it was amended in 1989 in response to the Financial Insti-
tutions Reform, Recovery, and Enforcement Act (FIRREA).40 These amendments greatly
expanded the mortgage lenders covered under HMDA and required reporting of significant
demographic information of both loan applicants and borrowers. The government provides
public historical archives of this data covering the period 1991-2012. It includes information
on loan census tract, loan amount, loan provider, and borrower demographics such as race,
income, and sex. Since there is not a unique loan ID on which we can match the DataQuick
data to the HMDA data, we perform a fuzzy merge. In particular, we merge the data ac-
cording to census tract, year, loan amount, and bank name. This results in a match rate
of approximately 80 percent. To examine whether our merge procedure linking the housing
transaction data to the HMDA data introduces selection biases, Table 1 also reports house
prices using both the DataQuick database alone as well as the merged DataQuick-HMDA
database. The housing prices of those matched to the HMDA data are about 10% higher
than the average housing transaction, however this does not vary with distance to a LIHTC
site.

A.2.3 HUD LIHTC Database

Information on LIHTC financed projects is provided by the Department of Housing
and Urban Development (HUD). This data covers 39,094 projects and almost 2,458,00 low

40The rule-writing authority of Regulation C was transferred from the Federal Reserve Board to the
Consumer Financial Protection Bureau on July 21, 2011.
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income housing units placed into service between the years 1987 and 2012. Note that the data
therefore reflects only those projects approved by the state allocating agencies and not all
project proposals submitted to them. The dataset includes detailed geographic information
regarding the project location, the type of construction, the year the project was placed in
service, the year funds for the project were allocated, and the number of units designated as
low-income. Geocoded information is missing for some of the projects and we exclude from
the sample any projects for which the year funds allocated variable is missing. We are left
with 7098 LIHTC projects located in our sample of 129 counties. See Panel C of Table 1
for summary statistics. Due to DataQuick’s coverage of counties, our sample is from more
dense, urban areas, relative to the overall distribution of LIHTC sites.

B Comparison of Ring Method vs Empirical Deriva-
tives

We will assess the performance of the standard ring difference-in-differences method with
our new empirical derivatives method by a simulation study. We will match characteristics
of our problem to make the simulation study as close as possible to the scenario we analyze
in our data. First, we will simulate data for L affordable housing developments, each sub-
scripted by l.We assume the price of a house j located near LIHTC site l has a price at time
t as defined by:

pjt = 1 + 0.05 ∗ (0.8− r)2 ∗ 1 (t > 0) ∗ 1 (r < 0.8) + αl ∗ t+ βlatl LATj + βlonl LONj + εjt,

εjt˜N (0, 0.036) , βlatl ˜N (0, 0.036) , βlonl ˜N (0, 0.036) , αl˜N (0, 0.025) .

The true treatment effect of interest is: 0.05 ∗ (0.8− r)2 ∗ 1 (t > 0) ∗ 1 (r < 0.8), while each
neighborhood l as its own time invariant surface of house prices, as represented by the plane:
βlatl LATj+β

lon
l LONj and (LATj, LONj) are the coordinates of house j and β

lat
l , β

lon
l measure

the effect of the location on house prices, independent of time period. These parameters are
drawn from a normal distribution for each neighborhood l. αl ∗ t represents a neighborhood
specific time trend for house prices, where αl is drawn from a normal distribution for each
neighborhood. εjt is a house specific error that is normally distributed.
To make this simulation comparable to the real dataset, we allow there to be L = 1721

LIHTC sites used for the simulation (the number in each of our 4 income quartiles in the
real data). We allow there to be 58 housing transactions per square mile per year around
each LIHTC site, which is what we have in our real LIHTC data.
The standard ring difference in difference method is to compare the change in house

prices in an inner ring to the change in house prices in an outer ring. This discretizes the
spatial component of the data. Time is also treated as discrete, measured by year. We define
our inner ring as the average house price transaction in year T within a 0.25 mile radius
0.25:

Rin
lT =

∑
jt pjt ∗ 1 (Y r (t) = T ) ∗ 1 (r ≤ 0.25)∑

jt 1 (Y r (t) = T ) ∗ 1 (r ≤ 0.25)
.

where T indexes years (as opposed to exact dates) and Y r (t) is a function that maps
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exact dates to the year of the transaction. We define a middle ring in year T at radius
0.25 < r ≤ 0.5 :

Rmid
lT =

∑
jt pjt ∗ 1 (Y r (t) = T ) ∗ 1 (0.25 < r ≤ 0.5)∑

jt 1 (Y r (t) = T ) ∗ 1 (0.25 < r ≤ 0.5)
,

and an outer ring at 0.5 < r ≤ 0.75 :

Rout
lT =

∑
jt pjt ∗ 1 (Y r (t) = T ) ∗ 1 (0.5 < r ≤ 0.75)∑

jt 1 (Y r (t) = T ) ∗ 1 (0.5 < r ≤ 0.75)
.

The inner treatment effect in year T is defined as the difference in inner versus outer rings
in year T, relative to the year before treatment (treatment occurs in year 0):

Treat_inner=
(
Rin
lT −Rout

lT

)
−
(
Rin
l,−1 −Rout

l,−1

)
.

The middle ring treatment is defined similarly:

Treat_middle=
(
Rmid
lT −Rmid

lT

)
−
(
Rin
l,−1 −Rout

l,−1

)
.

We calculate inner and middle ring treatment effects and plot their path over time, along with
bootstrapped standard errors, where the bootstrap sampling is down at the neighborhood l
level (the same as we use for our empirical derivative method). Results are plotted in panels
C and D of Figure A4. For both the inner and outer ring, we fail to reject a point estimate
of zero treatment effect. The ring estimate’s confidence interval does contain the true point
estimate as we would hope. The estimates are very noisy because the make no attempt to
control for the within-ring variation in house prices due to βlatl LATj + βlonl LONj.
In comparison, Panels A and B plot the estimated non-parametric effect at 0.1 miles

from the LIHTC set and 0.4 miles from the LIHTC site. Despite these being nonparametric
estimates, the standard errors are smaller than in the ring method and we reject a point
estimate of zero in both cases. The true value is also contained in the 95% confidence
intervals. Despite being a nonparametric estimate, the empirical derivative method perform
better because it accounts for the time-invariant spatial variation in house prices: βlatl LATj+
βlonl LONj. It also makes better use of thin data by smoothing nearby data together with
house transactions on unavailable in a given year-ring Our method also produces a fully
non-parametric plot of house price effects, as seen in Figure A5, while the ring method only
delivers a couple discrete numbers.
This is not to say that the empirical derivative methods will always have smaller confi-

dence intervals. If the time-invariant spatial variation in house prices
(
βlatl LATj + βlonl LONj

)
is

not very important within the rings used for analysis, we would expect the ring method to
produce more powerful estimates than the nonparametrics, since it does not need to recover
as much information from the data. Also, as with all nonparametric estimators, there will
be some bias in the estimates due to smoothing. We assess this bias-variance trade off in
the Monte Carlo simulation in the next appendix.
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C Monte Carlo Simulations

We perform some Monte Carlo simulations to assess the bias and variance in our estimator,
as well as the coverage ratio of our standard errors. We will do this under a variety of value
of the tuning parameters to valid their impacts on the estimates. We will use the same model
as in the previous appendix to simulate our data to feed into our estimator:

pjt = 1 + 0.05 ∗ (0.8− r)2 ∗ 1 (t > 0) ∗ 1 (r < 0.8) + αl ∗ t+ βlatl LATj + βlonl LONj + εjt,

εjt˜N (0, 0.036) , βlatl ˜N (0, 0.036) , βlonl ˜N (0, 0.036) , αl˜N (0, 0.025) .

We will also keep the size of the dataset the same as used in the previous simulation. We
allow there to be L = 1721 LIHTC sites used for each simulation (the number in each of our
4 income quartiles in the real data). We allow there to be 58 housing transactions per square
mile per year around each LIHTC site, which is what we have in our real LIHTC data. We
will perform 100 monte carlo simulation for each set of tuning parameters.
There are 2 tuning parameters in our empirical derivative estimator: κ and u. κ deter-

mines the number of pairs of house prices to use in empirical derivative calculation, as shown
in equation (2) . In our main estimates we set κ = 5 , meaning we use 5 pairs of house prices
(where one house within each pair is located closer to the LIHTC site and one is located
further away from the point of derivative evaluation). Using a large number of house price
pairs should lead to less variance in our estimator, since it uses more data, however it can
also increase the bias of our estimate, since it will incorporate house prices that are further
away from the site of derivative evaluation. We will try values of κ = 5 and κ = 3 in our
monte carlo simulation.
Panel A of Figure A6 plots the bias in our derivative estimator. We see slightly more

bias in our estimator for the higher values of k, as expected. This is also seen in Panel B of
Figure A6, which shows the bias in the levels estimate (where we just integrate the derivative
estimate). Panels C and D of Figure A6 plot the variance of our estimator across the monte
carlo simulations. As expected, the higher values of κ lower the variance in our estimator,
highlighting the bias-variance trade off.
The second tuning parameter determines the width of the ”bow-tie” ϑ used to select

houses eligible for the empirical derivative estimation. In our main estimates, we use a value
of ϑ = 0.5, lower values of ϑ allow houses located far away in the time and θ dimension
from the point of derivative evaluation to be included in the calculation. Higher values force
the estimator to only use house prices with very similar values of θ and t for derivative
estimation. For our monte carlo simulation, we evaluate ϑ = 0.5 and ϑ = 0.2. Lower values
of ϑ should increase variance in our estimator, as it does a less accurate job of controlling
for θ and t. However this should also decrease the bias in our estimator, since it allows more
of the data used for derivative estimator to be very close to the point of evaluation in the
r direction, regardless of θ and t. Looking at Panel A of Figure A6, this is exactly what we
see. There is less bias in the derivative estimator at lower values of ϑ. Panel B of Figure A6
reports the bias in the levels estimate. Again, lower values of ϑ lead to less bias. Panels C
and D of Figure A6 plot the variance in our estimator across the monte carlo simulations.
As predicted, lower levels of ϑ increase the variance of our estimator. As expected, there is
the standard bias-variance trade off.
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Regardless of the tuning parameters, Panel A shows that the bias in the derivative esti-
mate is at its worst at a distance of 0.8. This is not surprising, since the true derivative at
this point is kinked. The nonparametric estimator smooths over this kink, leading to bias.
To assess whether our bootstrapping procedure produces accurate confidence intervals,

Figure A7 plots the coverage rates of our 95% confidence intervals. Note that we adjust our
point estimate by the estimated bias from the previous figure to allows us to look at the
coverage ratios of our confidence intervals, independent of the bias in our estimator due to
the choice of tuning parameters. We find all of our coverage ratios are centered around 95%,
which makes us very comfortable with our standard error calculations.

D Econometric Proofs

We begin by developing general econometric methods for estimating empirical derivatives.
We will then apply these results to prove Theorem 1 in the main text. We develop our general
econometric results by first focusing on the univariate case. This will ease exposition and
provide intuition. Results for the multivariate case follow closely the logic of the univariate
case.

D.1 Univariate Case

Suppose we draw an iid sample of size n from the following nonparametric model

Yi = m (xi) + εi

where E (εi|xi) = 0 and V ar (εi|xi) = σ2. We assume that m (x) is twice continuously
differentiable. The variable xi is distributed according to the continuous density function:

f (x) : [xmin, xmax]→ (0,∞) .

We propose the following Nadaraya-Watson kernel estimator for the first derivative m′ (xi) :

m̂′ (x) =
n−1

∑n
i=1 Khn (x− xi) Ỹi

n−1
∑n

i=1 Khn (x− xi)
(31)

Ỹi =

kn,i∑
j=1

wj
Yi,+j − Yi,−j
xi,+j − xi,−j

1 [kn,i > 0]

wj =
j

kn,i (kn,i + 1) /2
,

with the observations {(xi,+j, Yi,+j)}kn,ij=1 {(xi,−j, Yi,−j)}
kn,i
j=1 defined recursively by:

xi,+1 = arg min
x>xi+ln

x, xi,−1 = arg max
x<xi−ln

x

xi,+j = arg min
x>xi,+j−1

x, xi,−j = arg max
x<xi,−j−1

x

44



for j = 2, ..., kn,i where ln > 0. Note that Yi,+j = m (xi,+j) + εi,+j. The random variable kn,i
is defined as:

kn,i = min (|Ln,i| , |Un,i| , κn)

Li = {xp : xp < xi − ln}
Ui = {xp : xp > xi + ln}

for some κn > 0. We define Khn (x− xi) as

Khn (x− xi) =
1

hn
K

(
x− xi
hn

)
,

where K (·) is a kernel function. We have the following result:

Theorem 2 Assume the random design model above and suppose:

1. K (u) is bounded, compactly supported, and symmetric

2. n→∞, hn → 0, ln → 0, κn →∞

3. nhn →∞, κnn−1 → 0, l2nκn →∞

Then m̂′ (x)→p m′ (x) for all x ∈ (xmin, xmax).

We prove the theorem through a sequence of lemmas. In what follows, we denote the
indicator variable In,i = 1 [kn,i > 0] . We also denote Pi (·) = P (·|xi) and Ei [·] = E [·|xi] .

Lemma 3 The estimate

n−1

n∑
i=1

Khn (x− xi)

converges in probability to f (x) for all x ∈ (xmin, xmax).

Proof. This is a standard result. See Hardle (1990).

Lemma 4 As n→∞ , P (kn,i <∞)→ 0.

Proof. Trivial.

Lemma 5 Conditional on xi = u for any u ∈ (xmin, xmax), as n → ∞ the difference(
xi,+kn,i − xi,−kn,i

)
In,i converges in probability to zero.

Proof. Fix δ > 0. Since ln → 0, there exists N1 such that for all n > N1, ln < δ/4.
Conditional on xi = u, we have:

Pi
((
xi,+kn,i − xi,−kn,i

)
In,i > δ

)
≤ FB (2κn;n− 1, pδ)
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where FB (·;n− 1, pδ) denotes the binomial distribution and

pδ =

∫ u−δ/4

u−δ/2
f (s) ds+

∫ u+δ/2

u+δ/4

f (s) ds > 0.

Since κnn−1 → 0 as n → ∞ , there exists N2 such that κnn−1 < pδ/4 for all n ≥ N2. Let
N = max {N1, N2,−2 ln (δ) /p2

δ} . Then by Hoeffding’s inequality, for all n > N :

Pi
((
xi,+kn,i − xi,−kn,i

)
In,i > δ

)
≤ exp

(
−2

((n− 1) pδ − 2κn)2

n− 1

)

≤ exp

(
−(n− 1) p2

δ

2

)
≤ δ,

which proves the claim.

Lemma 6 As n→∞ , the bias:∣∣∣∣∣E
[

1

n

n∑
i=1

Khn (x− xi) Ỹi

]
−m′ (x) f (x)

∣∣∣∣∣→ 0.

Proof. The idea of the proof is to apply a first-order Taylor expansion to the empirical
derivatives. We then must show that the remainder term in the expansion converges to zero
as the sample size grows. We can write the bias of the estimator as:∣∣∣∣∣E

[
1

n

n∑
i=1

Khn (x− xi) Ỹi

]
−m′ (x) f (x)

∣∣∣∣∣
=

∣∣∣∣∣∣E
 1

n

n∑
i=1

Khn (x− xi)
kn,i∑
j=1

wj
Yi,+j − Yi,−j
xi,+j − xi,−j

In,i

−m′ (x) f (x)

∣∣∣∣∣∣
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Denote expectation conditional on the observed sample covariates as Ex [·] . By applying
Taylor’s theorem, we have

Ex

 kn,i∑
j=1

Yi,+j − Yi,−j
xi,+j − xi,−j

In,i


= m′ (xi)

kn,i∑
j=1

wj
xi,+j − xi,−j
xi,+j − xi,−j

In,i

+
1

2

kn,i∑
j=1

wj
m′′
(
ζ i,i+j

)
(xi,+j − xi)2 −m′′

(
ζ i,i−j

)
(xi − xi,−j)2

xi,+j − xi,−j
In,i

= m′ (xi) In,i +
1

2

kn,i∑
j=1

wj
m′′
(
ζ i,i+j

)
(xi,+j − xi)2 −m′′

(
ζ i,i−j

)
(xi − xi,−j)2

xi,+j − xi,−j
In,i

where ζ i,i+j ∈ (xi, xi,+j) and ζ i,i−j ∈ (xi,−j, xi) . By the law of iterated expectations and the
triangle inequality, the bias is thus bounded above by∣∣∣∣∣E

[
1

n

n∑
i=1

Khn (x− xi)m′ (xi) In,i

]
−m′ (x) f (x)

∣∣∣∣∣
+

∣∣∣∣∣∣E
 1

n

n∑
i=1

Khn (x− xi)
kn,i∑
j=1

wj
m′′
(
ζ i,i+j

)
(xi,+j − xi)2 −m′′

(
ζ i,i−j

)
(xi − xi,−j)2

xi,+j − xi,−j
In,i

∣∣∣∣∣∣ .
We know that that P (kn,i > 0)→ 1. The first term thus goes to zero as n→∞ according
to the usual proof for consistency of Nadaraya-Watson estimators. See, for example, Hardle
(1990). To show that the second term converges to zero, note first that it is bounded above
by:41

sup
x
|m′′ (x)|

∫
|Khn (x− xi)|

∣∣∣∣∣∣Ei
 kn,i∑
j=1

wj
(xi,+j − xi)2 + (xi − xi,−j)2

xi,+j − xi,−j
In,i

∣∣∣∣∣∣ f (xi) dxi

≤ sup
x
|m′′ (x)|

∫
|Khn (x− xi)|Ei

 kn,i∑
j=1

wj
(xi,+j − xi)2 + (xi − xi,−j)2

xi,+j − xi,−j
In,i

 f (xi) dxi

≤ sup
x
|m′′ (x)|

∫
|Khn (x− xi)|Ei

 kn,i∑
j=1

wj (xi,+j − xi,−j) In,i

 f (xi) dxi

≤ sup
x
|m′′ (x)|

∫
|Khn (x− xi)|Ei

[(
xi,+kn,i − xi,−kn,i

)
In,i
]
f (xi) dxi

41Recall that Ei [·] = E [·|xi = u] .
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By Hardle (1990), it thus suffi ces to show that Ei
[(
xi,+kn,i − xi,−kn,i

)
In,i
]
converges to

zero. But we know by Lemma 5, Pi
((
xi,+kn,i − xi,−kn,i

)
In,i > 0

)
converges to zero. Since(

xi,+kn,i − xi,−kn,i
)
In,i is almost surely bounded, convergence in probability impliesEi

[(
xi,+kn,i − xi,−kn,i

)
In,i
]

converges to zero as well. This completes the proof.

Lemma 7 As n→∞ , the variance:

V ar

(
n−1

n∑
i=1

Khn (x− xi) Ỹi

)
→ 0.

Proof. The variance can be decomposed as:

1

n
V ar

[
Khn (x− xi) Ỹi

]
+

1

n2

∑
i6=j

Cov
(
Khn (x− xi) Ỹi, Khn (x− xj) Ỹj

)
(32)

By the law of total variance:

1

n
V ar

[
Khn (x− xi) Ỹi

]
=

1

n

[
E
[
V ari

(
Khn (x− xi) Ỹi

)]
+ V ar

(
Ei

[
Khn (x− xi) Ỹi

])]
→ 1

n
E
[
K2
hn (x− xi)V ari

(
Ỹi

)]
+

1

n
V ar (Khn (x− xi)m′ (xi))

The second term approaches zero as n → ∞ by Hardle (1990). Also by Hardle (1990), for
the first term it suffi ces to show that:

V ari

(
Ỹi

)
→ 0.

The idea of the proof is to again expand the empirical derivatives using Taylor’s theorem.
We then use the law of total variance to condition on the observables. We then prove that
the variance converges to zero. Applying a Taylor expansion, the variance becomes:

V ari

 ∑kn,i
j=1wj

εi,+j−εi,−j
xi,+j−xi,−j In,i

+
∑kn,i

j=1wj
m′′(ζi,i+j)(xi,+j−xi)2−m′′(ζi,i−j)(xi−xi,−j)2

xi,+j−xi,−j In,i


Using the law of total variance, this can be decomposed as:

V ari

 Ex

[∑kn,i
j=1 wj

εi,+j−εi,−j
xi,+j−xi,−j In,i

]
+Ex

[
wj

m′′(ζi,i+j)(xi,+j−xi)2−m′′(ζi,i−j)(xi−xi,−j)2

xi,+j−xi,−j In,i
]  (33)

+Ei

V arx
 kn,i∑

j=1

wj
εi,+j − εi,−j
xi,+j − xi,−j

In,i



48



We first note that

Ex

 kn,i∑
j=1

wj
εi,+j − εi,−j
xi,+j − xi,−j

In,i

 = 0,

since E (εi+j|xi,+j) = E (εi−j|xi,−j) = 0. Thus the first term in (33) becomes:

V ari

Ex
 kn,i∑
j=1

wj
m′′
(
ζ i,i+j

)
(xi,+j − xi)2 −m′′

(
ζ i,i−j

)
(xi − xi,−j)2

xi,+j − xi,−j
In,i


= Ei

 kn,i∑
j=1

wj
m′′
(
ζ i,i+j

)
(xi,+j − xi)2 −m′′

(
ζ i,i−j

)
(xi − xi,−j)2

xi,+j − xi,−j
In,i


−Ei

 kn,i∑
j=1

wj
m′′
(
ζ i,i+j

)
(xi,+j − xi)2 −m′′

(
ζ i,i−j

)
(xi − xi,−j)2

xi,+j − xi,−j
In,i

2

The final term converges to zero by the preceding lemma. The first term is:

Ei

 kn,i∑
j=1

wj
m′′
(
ζ i,i+j

)
(xi,+j − xi)2 −m′′

(
ζ i,i−j

)
(xi − xi,−j)2

xi,+j − xi,−j
In,i

2
≤ Ei

 kn,i∑
j=1

wj

∣∣∣∣∣m′′
(
ζ i,i+j

)
(xi,+j − xi)2 −m′′

(
ζ i,i−j

)
(xi − xi,−j)2

xi,+j − xi,−j
In,i

∣∣∣∣∣
2

≤
[
sup
x
m′′ (x)

]2

Ei

 kn,i∑
j=1

wj
(xi,+j − xi)2 + (xi − xi,−j)2

xi,+j − xi,−j
In,i

2
≤

[
sup
x
m′′ (x)

]2

Ei

[(
xi+kn,i − xi−kn,i

)2 In,i
]
,
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which approaches zero as n → ∞ by Lemma 5 and almost sure boundedness. Thus, the
first term in (33) converges to zero. Turning to the second term in (33):

Ei

V arx
 kn,i∑

j=1

wj
εi,+j − εi,−j
xi,+j − xi,−j

In,i


= Ei

2σ2

kn,i∑
j=1

w2
j

(xi,+j − xi,−j)2In,i


≤ 2σ2

4l2n
Ei

 kn,i∑
j=1

j2

k2
n,i (kn,i + 1)2 /4

In,i


≤ σ2

3l2n
Ei

[
2kn,i + 1

kn,i (kn,i + 1)
In,i
]

≤ σ2

3
Ei

[
1

l2nkn,i
In,i
]

≤ σ2

3

[
1

l2nκn
+

1

l2n
P (kn,i < κn)

]
The first term in brackets approaches zero by assumption. For suffi ciently large n, by apply-
ing κnn−1 → 0 and Hoeffding’s inequality as in the previous lemma, we have for suffi ciently
large n > N :

1

l2n
P (kn,i < κn) ≤ 1

l2n
exp

(
−(n− 1) p2

N

2

)
where:

pN =

∫ u−lN

xmin

f (s) ds+

∫ xmax

u+lN

f (s) ds.

Since l2nκn →∞, κnn−1 → 0, and n exp (−n)→ 0, it follows that:

1

l2n
P (kn,i < κn)→ 0

as desired.
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Turning to the covariance in equation (32), we apply the law of total covariance:42

1

n2

∑
i6=j

Cov
(
Khn (x− xi) Ỹi, Khn (x− xj) Ỹj

)
=

n− 1

n
E
[
Khn (x− xi)Khn (x− xj)Covij

(
Ỹi, Ỹj

)]
+
n− 1

n
Cov

(
Khn (x− xi)Eij

[
Ỹi

]
, Khn (x− xj)Eij

[
Ỹj

])
→ n− 1

n
E
[
Khn (x− xi)Khn (x− xj)Covij

(
Ỹi, Ỹj

)]
+
n− 1

n
Cov (Khn (x− xi)m′ (xi) , Khn (x− xj)m′ (xj))

=
n− 1

n
E
[
Khn (x− xi)Khn (x− xj)Covij

(
Ỹi, Ỹj

)]
.

By Hardle (1990), we thus need to show Covij

(
Ỹi, Ỹj

)
converges to zero as n → ∞. This

will be the case as long as the probability that there is overlapping data used to form the
empirical derivatives Ỹi and Ỹj goes to zero as n → ∞. This can easily be shown by
Hoeffding’s inequality, using the exact same approach as in Lemma 5.
The previous two lemmas show that the numerator of equation (31) converges in mean-

square error to zero, which implies convergence in probability. The theorem thus follows by
Slutsky’s theorem.

D.2 Multivariate Case

We now extend our estimation procedure to the multidimensional case. Suppose we draw
an iid sample of size n from the following nonparametric model

Yi = m (Xi) + εi

where E (εi|Xi) = 0 and V ar (εi|Xi) = σ2. We assume that Xi = (x1,i, ...xD,i) ∈ RD and m
is twice continuously differentiable in all of its arguments. The variables Xi are distributed
according to the continuous joint density function:

f (X) :
D∏
d=1

[xd,min, xd,max]→ (0,∞) .

42We denote Eij [·] = E [·|xi, xj ] and Covij (·) = Cov (·|xi, xj) .
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We propose the following Nadaraya-Watson kernel estimator for the first derivative ∂m/∂xd :

∂m̂

∂xd
=

n−1
∑n

i=1 KHn (X−Xi) Ỹi
n−1

∑n
i=1 KHn (X−Xi)

(34)

Ỹi =

kn,i∑
j=1

wj
Ya(j,i,d) − Yb(j,i,d)

xd,a(j,i,d) − xd,b(j,i,d)

1 [kn,i > 0]

wj =
j

kn,i (kn,i + 1) /2
,

with the observations
{(
Xa(j,i,d), Ya(j,i,d)

)}kn
j=1

{(
Xb(j,i,d), Yb(j,i,d)

)}kn
j=1

defined recursively by:

a (1, i, d) = arg min
{p∈Ld,i:xd,p>xd,i+ln}

xd,p, b (1, i, d) = arg max
{p∈Ld,i:xd,p<xd,i−ln}

xd,p

a (j, i, d) = arg min
{p∈Ld,i:xd,p>xd,a(j−1,i,d)}

xd,p, b (j, i, d) = arg max
{p∈Ld,i:xd,p<xd,b(j−1,i,d)}

xd,p

for j = 2, ..., kn,i where ln > 0 and:

Ld,i :=

{
p ∈ {1, ..., n} :

(xq,p − xq,i)2

(xd,p − xd,i)2 < ϑn for all q 6= d

}

for some ϑn > 0. The random variable kn,i is defined as:

kn,i = min (|Ln,i| , |Un,i| , κn)

Li = {p ∈ Ld,i : xd,p < xd,i − ln}
Ui = {p ∈ Ld,i : xd,p > xd,i + ln}

for some κn > 0. Letting Hn = (h1,n, ..., hD,n) , note that:

KHn (X−Xi) =
1

h1,n · · · hD,n
K

(
x1 − x1,i

h1,n

, ...,
xD − xD,i
hD,n

)
,

where K (·) is a kernel function. We have the following result:

Theorem 8 Assume the random design model above and suppose:

1. K (u) is bounded, compactly supported, and spherically symmetric.

2. n→∞, hn → 0, ln → 0, κn →∞, ϑn → 0

3. nhn →∞, κn
(
nϑD−1

n

)−1 → 0, l2nκn →∞

Then:
∂m̂

∂xd
(X)→p ∂m

∂xd
(X)
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for all X ∈
D∏
d=1

(xd,min, xd,max) .

We again prove the result in a sequence of lemmas.

Lemma 9 The estimate

n−1

n∑
i=1

KHn (X−Xi)

converges in probability to f (X) for all X ∈
D∏
d=1

(xd,min, xd,max) .

Proof. This is a standard result. See Hardle (1990).

Lemma 10 As n→∞ , P (kn,i <∞)→ 0.

Proof. Unlike the univariate case, we have to do some work to prove this. The issue is that
the ”bowtie”may collapse to a line too quickly. Since κn →∞, without loss of generality it
suffi ces to show that P (|Un,i| <∞)→ 0. We first note that since f is a continuous function
from a compact set to (0,∞) it must achieve a minimum, which we denote as ∆ > 0. Choose
any M ≥ 0. It is then straightforward to check via multiple integration that for n > M + 1:

P (|Un,i| ≤M) ≤ FB (M ;n− 1, p∆)

where:

p∆ =
∆ϑ(D−1)/2

n (xd,max−xd,i)
D

D!

By Hoeffding’s inequality:

P (|Un,i| ≤M) ≤ exp

(
−2

((n− 1) p∆ −M)2

n− 1

)

= exp

(
−2

[
(n− 1) p2

∆ − 2p∆M +
M2

n− 1

])
.

Since κn
(
nϑD−1

n

)−1 → 0, it must be that nϑD−1
n →∞. It therefore follows that (n− 1) p2

∆ →
∞. Two two final terms in the bracket approach zero. Therefore, P (|Un,i| ≤M) converges
to zero.

Lemma 11 As n→∞ , the bias:∣∣∣∣∣E
[
n−1

n∑
i=1

KHn (X−Xi) Ỹi

]
− ∂m

∂xd
(X) f (X)

∣∣∣∣∣→ 0.
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Proof. Write the bias as:∣∣∣∣∣E
[

1

n

n∑
i=1

KHn (X−Xi) Ỹi

]
− ∂m

∂xd
(X) f (X)

∣∣∣∣∣
=

∣∣∣∣∣∣E
 n∑
i=1

KHn
(X−U)

kn∑
j=1

wj
Ya(j,i,d) − Yb(j,i,d)
xd,a(j,i,d) − xd,b(j,i,d)

In,i

− ∂m

∂xd
(X) f (X)

∣∣∣∣∣∣
where U = (u1, ..., uD) and dU =du1 · · · duD. Conditioning on the sample and applying
Taylor’s theorem as in the univariate case, we have:

EX

[
kn∑
j=1

wj
Ya(j,i,d) − Yb(j,i,d)

xd,a(j,i,d) − xd,b(j,i,d)

In,i

]

=

kn∑
j=1

D∑
q=1

wj
∂m

∂xq
(U)

xq,a(j,i,d) − xq,b(j,i,d)

xd,a(j,i,d) − xd,b(j,i,d)

In,i

+
kn∑
j=1

∑
|α|=2

wj
Rα

(
Xa(j,i,d)

) (
Xa(j,i,d) −Xi

)α −Rα

(
Xb(j,i,d)

) (
Xb(j,i,d) −Xi

)α
xd,a(j,i,d) − xd,b(j,i,d)

In,i

where we have used the multi-index notation with α ∈ ND and where Rα (·) denotes the
remainder of the Taylor expansion. By the triangle inequality, the bias is therefore bounded
above by∣∣∣∣E [KHn (X−U)

∂m

∂xd
(U) In,i

]
− ∂m

∂xd
(X) f (X)

∣∣∣∣
+

∣∣∣∣∣∣
∫
KHn (X−U)

kn∑
j=1

∑
q 6=d

∂m

∂xq
(U)

√
ϑnIn,if (U) dU

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
KHn (X−U)Ei

 kn∑
j=1

∑
|α|=2

wj
Rα
(
Xa(j,i,d)

) (
Xa(j,i,d) −Xi

)α −Rα (Xb(j,i,d)

) (
Xb(j,i,d) −Xi

)α
xd,a(j,i,d) − xd,b(j,i,d)

In,if (U) dU

∣∣∣∣∣∣ .
The first term converges to zero by the usual consistency proof for multivariate Nadaraya-
Watson estimates and since P (kn,i > 0) → 1 . We can bound the remainder according to
the Taylor uniform bound. The second term converges to zero since ϑn → 0 as n → ∞.
The final term is therefore bounded above by:

sup
|α|=2

sup
X
|Dαm (X)|

∫
|KHn (X−U)|Ei

 kn∑
j=1

∑
|α|=2

wj

(
Xa(j,i,d) −Xi

)α
+
(
Xb(j,i,d) −Xi

)α
xd,a(j,i,d) − xd,b(j,i,d)

In,i

 f (U) dU

≤ sup
|α|=2

sup
X
|Dαm (X)|

∫
|KHn (X−U)|Ei

[ ∑kn
j=1 wj

(
1 + (D − 1)

√
ϑn +D (D − 1)ϑn

)
×
(
xd,a(j,i,d) − xd,b(j,i,d)

)
In,i

]
f (U) dU,

which converges to zero by Hoeffding’s inequality as in the univariate case and since ϑn → 0
as n→∞.
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Lemma 12 As n→∞ , the variance:

V ar

(
n−1

n∑
i=1

KHn (X−Xi) Ỹi

)
→ 0.

Proof. The proof follows exactly as in the univariate case, applying the multidimensional
Taylor formula in place of the unidimensional Taylor formula.
The numerator of equation (34) converges in mean-square error to zero, which implies

convergence in probability. The theorem follows by Slutsky’s theorem.

D.3 Proof of Theorem 1

Given the previous results, the proof is straightforward. The only complication is that
2-dimensional (only in r and t) smoothing is used in the Nadaraya-Watson estimator, rather
than 3-dimensional smoothing. It is straightforward, however, from the work above to see
that:43

Φ̂l (r, Tl + τ) → p∂m̃Y (R, τ)

∂R
+

∫ 2π

0

∂φl (r, θ)

∂r
f (θ|Tl + τ , r) dθ

Φ̂l (r, T − 1τ) → p

∫ 2π

0

∂φl (r, θ)

∂r
f (θ|Tl − 1, r) dθ

By the assumption in footnote 18, f (θ|Tl + τ , r) = f (θ|Tl − 1, r) , so:

Φ̂l (r, Tl + τ)− Φ̂l (r, Tl − 1)→p ∂m̃Y (R, τ)

∂R
,

as desired.

E Renter Surplus

In this appendix, we show that generically renters will earn economic surplus in the hedonic
equilibrium. The basic intuition is that given a fixed distribution of rental locations in
space, when renters are heterogeneous, market clearing will generally require that certain
renters are inframarginal at the location where they live. To fix ideas, we begin with a
simple discrete case. We then show that the basic result holds in the continuous hedonic
model as well.

E.1 Discrete Case

To start, suppose there are two locations, which we designate as location A and location B.
Suppose that there are 3 rental units at location A and 7 rental units at location B. There
are two types of renters, which we designate as type x and type y. The number of each type

43Recall that we assume ∂m̃Y(R,−1)
∂R = 0.
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as well as their respective valuations of living at each location are provided in the following
table:

# of Renters Value of A Value of B
x 5 6 2
y 5 3 0

Each agent also has an outside option, which we call location Z, that yields a total utility
value of zero.
First, note that market clearing requires both types of agents to live at location B.

Thus, due to the presence of the outside option, it must be that p (B) = 0. It is then
straightforward to see that p (A) = 4. If p (A) < 4, then no type x renters would choose
location B and market clearing would be violated. Similarly, if p (A) > 4, then no renter
would choose to live at location A and market clearing would be violated. So equilibrium
prices are p (A) = 4 and p (B) = 0. In equilibrium, all five type y agents live at location B.
Two of the type x agents live at location B and three type x agents live at location A.
Note that the type x agents earn economic rents at both locations. Since both types of

agents must live at location B due to market clearing, the type x agents will be inframarginal
at location B and therefore earn economic surplus. But then to induce type x agents to live
at location A, equal economic surplus must be offered to the type x agents at location A as
well.

E.2 Continuous Case

We next show that renters continue to earn economic surplus in the continuous case. We
consider the canonical linear-quadratic hedonic model as described in Tinbergen (1956),
Epple (1987), Ekeland et al. (2004), and others. Suppose that the supply of rental units
is normally distributed over the real line with mean µQ and variance σ

2
Q. Given a hedonic

price function p (R), a renter i chooses her optimal location according to the problem:

γiR +
1

2
AR2 − p (R) ,

which yields the first-order condition:

γi + AR− p′ (R) = 0.

We assume that renters are heterogeneous with γi normally distributed with mean µγ and
variance σ2

γ. We conjecture that the hedonic price function has a quadratic form:

p (R) = π0 + π1R +
1

2
π2R

2.

A renter i thus optimally chooses the location:

R∗i =
γi − π1

π2 − A
.
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The density of demand therefore follows a normal distribution. Market clearing requires
that the density of demand equal the density of supply. Since both demand and supply
are normally distributed, it suffi ces that the means and variances equal each other. We
therefore have a system of two equations in two unknowns:

µγ − π1

π2 − A
= µQ

σ2
γ

(π2 − A)2 = σ2
Q

which yields:

π1 = µγ − µQ (π2 − A)

π2 =
σγ
σQ

+ A.

Finally, we assume that agents have an outside option offering a reservation utility of zero.
As is well known, this pins down the initial condition at R = 0 in the underlying differential
equation and sets π0 = 0. If π0 > 0, renters living at R = 0 would earn negative utility and
thus choose the outside option instead.
As a representative example, consider the model above with the following parameters:

A 1
µγ 3
σγ 3
µQ 0
σQ 5

In Figure A8, we plot the equilibrium utility:

γiR
∗
i +

1

2
AR∗2i − p (R∗i )

for renters with varying γi. As is clear from the figure, all agents with the exception those
with γi = 3, who optimally chooses R = 0, earn economic surplus in equilibrium.
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Table 1: Summary Statistics

Panel A: 1990 Census Block Group Data
Block Groups with

Whole US Counties in Sample LIHTC Development Sites
1990 Black Share 0.1212 0.1164 0.2394

[0.2399] [0.2334] [0.3122]
1990 Hispanic Share 0.0827 0.1526 0.2394

[0.1668] [0.2091] [0.2511]
1990 Median Income 56482 66652 44890

[28730] [32620] [23278]
1990 Renter Share 0.3357 0.4029 0.6336

[0.2397] [0.2778] [0.2658]
Panel B: LIHTC Developments

All LIHTC Non-Rural LIHTC Estimation Sample

Year Funds Allocated 1997.6 1997.7 2000.8
[6.70] [6.76] [5.55]

# Low Income Units 60.3 68.5 82.2
[71.5] [79.1] [86.3]

% Units Low Income 0.97 0.96 0.96
[0.13] [0.14] [0.13]

New Construction 0.63 0.59 0.58
[0.48] [0.49] [0.49]

Rehab Existing Building 0.37 0.41 0.42
[0.48] [0.49] [0.49]

In Central City 0.46 0.61 0.64
[0.50] [0.49] [0.48]

In Metro,Non-Central City 0.30 0.39 0.36
[0.46] [0.49] [0.48]

In Rural Area 0.24 0 0
[0.43] [0] [0]

Observations 32799 24843 6882
Panel C: DataQuick & HMDA Data

Transactions<1 Transactions<.5 Transactions<.2 Transactions<.1
mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site

Housing Transaction Price 309186 273864 258183 259868
[335132] [390521] [404485] [471315]

Housing Transaction Price 326821 291613 274882 273789
-HMDA Matched [317237] [364186] [376996] [411524]
% of Home Buyers Black 0.0581 0.0704 0.0761 0.0753

[0.4621] [0.4737] [0.4800] [0.4802]
Income of Home Buyer 98745 93273 91566 92137

[51151] [51099] [52624] [54364]
Housing Transactions 12,007,578 3,431,529 807,669 242,004

Panel D: Crime Rates within 1 mi of LIHTC Sites
Low Minority High Minority Low Minority High Minority
Income Q1/2 Income Q1/2 Income Q3/4 Income Q3/4

Annual Violent Crimes 617.1 586.9 383.3 453.0
per Square Mile [2720.7] [1557.8] [2044.2] [1154.0]
Annual Property Crimes 2523.2 1083.1 1495.1 982.3
per Square Mile [9701.8] [2787.6] [7155.5] [2670.2]

Observations 678030 2452968 989424 559950
Note: All prices inflated to 2012 dollars. Standard deviations in brackets. Crime
data covers San Diego 2003-2014, Chicago 2001-2014, and San Francisco 2007-2014
for 127 LIHTC Sites. An observation for crime data is a 0.025 square mile area.
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Table 2: Reduced Form Log Price Impacts

LIHTC Sites in Tracts with Median Inc<$26,017

Distance to LIHTC: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1. 1.2

Log Price Impact : 0.0640*** 0.0532*** 0.0458*** 0.0404*** 0.0356*** 0.0304*** 0.0247*** 0.0183*** 0.0121*** 0.0071** 0.0039* 0.0018
[0.0166] [0.0134] [0.0113] [0.0099] [0.0086] [0.0073] [0.0061] [0.0051] [0.0041] [0.0031] [0.0022] [0.0011]

LIHTC Sites in Tracts with $26,017≤ Median Income < $38,177

Distance to LIHTC: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1. 1.2

Log Price Impact : 0.0053 0.0018 -0.0016 -0.0029 -0.0026 -0.0021 -0.0017 -0.0012 -0.0008 -0.0007 -0.0004 -0.0000
[0.0098] [0.0082] [0.0070] [0.0062] [0.0056] [0.0050] [0.0044] [0.0037] [0.0031] [0.0024] [0.0016] [0.0008]

LIHTC Sites in Tracts with $38,177≤ Median Income < $54,642

Distance to LIHTC: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1. 1.2

Log Price Impact : -0.0250*** -0.0207*** -0.0149** -0.0096* -0.0054 -0.0024 -0.0008 -0.0001 0.0003 0.0001 -0.0002 -0.0002
[0.0079] [0.0063] [0.0053] [0.0047] [0.0042] [0.0038] [0.0033] [0.0028] [0.0023] [0.0018] [0.0013] [0.0007]

LIHTC Sites in Tracts with $54,642≤ Median Income

Distance to LIHTC: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1. 1.2

Log Price Impact : -0.0244*** -0.0205*** -0.0166*** -0.0123*** -0.0088** -0.0062* -0.0043 -0.0028 -0.0018 -0.0012 -0.0008 -0.0005
[0.0080] [0.0063] [0.0052] [0.0044] [0.0039] [0.0036] [0.0033] [0.0029] [0.0025] [0.0019] [0.0014] [0.0007]

LIHTC Sites in Tracts with Median Income<$38,177, Minority Share ≥0.50

Distance to LIHTC: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1. 1.2

Log Price Impact : 0.0347*** 0.0262*** 0.0195** 0.0152** 0.0126* 0.0105* 0.0085 0.0066 0.0046 0.0028 0.0017 0.0012
[0.0111] [0.0092] [0.0078] [0.0068] [0.0061] [0.0054] [0.0048] [0.0043] [0.0036] [0.0029] [0.0020] [0.0011]

LIHTC Sites in Tracts with Median Income≥$38,177, Minority Share ≥0.50

Distance to LIHTC: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1. 1.2

Log Price Impact : -0.0019 -0.0037 -0.0020 0.0011 0.0032 0.0051 0.0056 0.0052 0.0044 0.0026 0.0007 0.0000
[0.0112] [0.0092] [0.0078] [0.0068] [0.0061] [0.0055] [0.0049] [0.0043] [0.0035] [0.0028] [0.0020] [0.0011]

Note: All prices inflated to 2012 dollars. Bootstrapped standard errors in brackets. Effects reported are the average house price impact between 0 and 22 years
versus 6 to 1 year before treatment. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table 3: Welfare Impacts of LIHTC on Households (LIHTC Amenity)

∆Ui Homeowners Renters Landlords
Rpre > R0,Y, R

∗
1,i > R0,Y 0 0 0

Rpre > R0,Y, R
∗
1,i < R0,Y γi,Y log

(
1 +R0,Y −R∗

1,i

)
− m̃Y

(
R∗

1,i

)
γi,Y log

(
1 +R0,Y −R∗

1,i

)
− m̃Y

(
R∗

1,i

)
0

Rpre < R0,Y, R
∗
1,i > R0,Y m̃Y (Rpre) 0 m̃Y

(
R∗

1,i

)
Rpre < R0,Y, R

∗
1,i < R0,Y γi,Y log

(
1 +R0,Y −R∗

1,i

)
+ m̃Y (Rpre) − m̃Y

(
R∗

1,i

)
γi,Y log

(
1 +R0,Y −R∗

1,i

)
− m̃Y

(
R∗

1,i

)
m̃Y

(
R∗

1,i

)
Total by group:

∑
i γi,Y log

(
1 +R0,Y −R∗

1,i

)
· 1
(
R∗

1,i < R0,Y
) ∑

i

(
γi,Y log

(
1 +R0,Y −R∗

1,i

)
− m̃Y

(
R∗

1,i

))
·
∑

i m̃Y
(
R∗

1,i

)
·

1
(
R∗

1,i < R0,Y
)

1 (Rpre < R0,Y)

Total Overall:
∑

i γi,Y log
(
1 +R0,Y −R∗

1,i

)
· 1
(
R∗

1,i < R0,Y
)

Note: Rpre represents distance of household’s chosen location before LIHTC development from new LIHTC development site. R∗
1,i represents

chosen distance from LIHTC development site when household reoptimizes location post LIHTC development. R0,Y represents max distance at
which LIHTC proximity can impact utility. Each row and column pair represents a different household type. Entry summarizes welfare impact
of LIHTC development when agents view LIHTC proximity as an amenity.

Table 4: Welfare Impacts of LIHTC on Households (LIHTC Disamenity)

∆Ui Homeowners Renters Landlords
Rpre > R0,Y, R

∗
1,i > R0,Y 0 0 0

Rpre > R0,Y, R
∗
1,i < R0,Y γi,Y log

(
1+R∗

1,i

1−R0,Y

)
− m̃Y

(
R∗

1,i

)
γi,Y log

(
1+R∗

1,i

1−R0,Y

)
− m̃Y

(
R∗

1,i

)
0

Rpre < R0,Y, R
∗
1,i > R0,Y m̃Y (Rpre) 0 m̃Y

(
R∗

1,i

)
Rpre < R0,Y, R

∗
1,i < R0,Y γi,Y log

(
1+R∗

1,i

1−R0,Y

)
+ m̃Y (Rpre) − m̃Y

(
R∗

1,i

)
γi,Y log

(
1+R∗

1,i

1−R0,Y

)
− m̃Y

(
R∗

1,i

)
m̃Y

(
R∗

1,i

)
Total by group:

∑
i γi,Y log

(
1+R∗

1,i

1−R0,Y

)
· 1
(
R∗

1,i < R0,Y
) ∑

i

(
γi,Y log

(
1+R∗

1,i

1−R0,Y

)
− m̃Y

(
R∗

1,i

))
·

∑
i m̃Y

(
R∗

1,i

)
·

1
(
R∗

1,i < R0,Y
)

1 (Rpre < R0,Y)

Total Overall:
∑

i γi,Y log
(

1+R∗
1,i

1−R0,Y

)
· 1
(
R∗

1,i < R0,Y
)

Note: Rpre represents distance of household’s chosen location before LIHTC development from new LIHTC development site. R∗
1,i represents

chosen distance from LIHTC development site when household reoptimizes location post LIHTC development. R0,Y represents max distance at
which LIHTC proximity can impact utility. Each row and column pair represents a different household type. Entry summarizes welfare impact
of LIHTC development when agents view LIHTC proximity as a disamenity.
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Table 4: Mean Utility Benefit per Household from LIHTC Construction

Panel A: Low Minority Areas

Income Q1 Income Q2 Income Q3 Income Q4

Average Benefit per Home Owner 23403* 208 -3636*** -3972**
[13426] [1618] [912] [1921]

Average Benefit per Renter 6502 67 234 67
[4061] [907] [377] [115]

Average Benefit per Landlord 6011** 46 -2843*** -2416**
[3030] [1730] [951] [1027]

Panel B: High Minority Areas

Income Q1 Income Q2 Income Q3 Income Q4

Average Benefit per Home Owner 16857*** 2414 996 3255
[5440] [1847] [3138] [5419]

Average Benefit per Renter 6475** 190 342 971
[2634] [666] [1010] [1773]

Average Benefit per Landlord 6099** 1288 375 1090
[2496] [1597] [1684] [2201]

Note: Mean welfare benefit from LIHTC construction to households who choose to live nearby. Utility is measured in
2012 dollars. To decompose effect between renters and landlords we assume the present discounted value of future
rents is equal to house prices.
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Table 5: Total Utility Benefit to Households from LIHTC Construction

Panel A: Low Minority Areas

Income Q1 Income Q2 Income Q3 Income Q4

Aggregate Benefit to Home Owners 57,945* 61.46 -3,789*** -9,008**
[33243] [479] [950] [4358]

Aggregate Benefit to Renters 29,208 23.87 258 78.48
[19626] [563] [442] [152]

Aggregate Benefit to Landlords 29,048** 28.42 -3,331*** -3,208**
[14644] [1074] [1114] [1364]

Aggregate Benefit to Society 116201** 113.7 -6,861*** -12,138**
[53163] [1136] [1780] [5494]

Panel B: High Minority Areas

Income Q1 Income Q2 Income Q3 Income Q4

Aggregate Benefit to Home Owners 63,460*** 1,446 3,615 14,508
[20480] [1113] [11394] [24148]

Aggregate Benefit to Renters 73,417** 314.7 1,903 4,861
[32059] [1382] [6087] [9613]

Aggregate Benefit to Landlords 74,236** 2,672 2,262 5,907
[30379] [3314] [10148] [11933]

Aggregate Benefit to Society 211,113*** 4,433 7,780 25,277
[62794] [3829] [23577] [40943]

Note: Total welfare benefit from LIHTC construction to households. Utility is measured in thousands of 2012 dollars.
To decompose effect between renters and landlords we assume the present discounted value of future rents is equal to
house prices.
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Figure 1: Counties Used in Analysis

Note: Counties were selected based on whether the history of housing transaction data began in 1996
or earlier and had at least an average of 1000 arm-length transactions per year. This gives 129
counites in 15 states and covers 31% of the US population.
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Figure 2: Example of Bowtie Threshold Used in Empirical Derivatives

Note: LIHTC site is located in the middle of the ring. The site marked X is where the empirical
derivative with respect to LIHTC distance is being measured. Houses inside the shaded region are
candidates for the empirical derivative calculation.
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Figure 3: Average Price Impact of LIHTC
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Note: Kernel smoothed estimates of log house prices using Nadaraya-Watson estimator with Epanech-
nikov kernel. Estimates integrate over the estimated derivatives to measure log price levels at a
given distance from LIHTC site, relative to 1.4 miles away.
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Figure 4: Price Impact of LIHTC by Neighborhood Median Income

(a) Q1 Income Neighorhoods
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(b) Q2 Income Neighorhoods
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(c) Q3 Income Neighorhoods
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(d) Q4 Income Neighorhoods
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Note: Kernel smoothed estimates of log house prices using Nadaraya-Watson estimator with Epanech-
nikov kernel. Estimates integrate over the estimated derivatives to measure log price levels at a
given distance from LIHTC site, relative to 1.4 miles away. Household median income quartile cut-
offs are $26017, $38177, and $54642 in 2012 dollars, as reported in the 1990 Census block group of
the LIHTC site.
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Figure 5: Price Impact of LIHTC by Median Income within High Minority Neighborhoods

(a) Q1 & Q2 Income, High Minority Neighorhoods
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(b) Q3 & Q4 Income, High Minority Neighorhoods
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Note: Kernel smoothed estimates of log house prices using Nadaraya-Watson estimator with Epanech-
nikov kernel. Household median income quartile cutoffs are $26017, $38177, and $54642 in 2012
dollars, as reported in the 1990 Census block group of the LIHTC site.
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Figure 6: Ring Method Estimated Treatment Effects by Neighborhood Income
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(b) Q2 Income Neighborhoods
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(c) Q3 Income Neighborhoods
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(d) Q4 Income Neighborhoods
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Note: Willingness to pay is measured in 2012 dollars. Household median income quartile cutoffs are
$26017, $38177, and $54642 in 2012 dollars, as reported in the 1990 Census block group of the LI-
HTC site. Reported preferences are for households who choose to live close to LIHTC development.
95% confidence intervals shown.
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Figure 7: Impact of LIHTC on Derivative of Log House Prices wrt miles from LIHTC vs miles to
LIHTC:

Impacts 0 to 5 years post LIHTC Funding
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Note: Kernel smoothed estimates of log house price derivatives with respect to distance to LIHTC
using Nadaraya-Watson estimator with Epanechnikov kernel. Household median income quartile
cutoffs are $26017, $38177, and $54642 in 2012 dollars, as reported in the 1990 Census block group
of the LIHTC site. An LIHTC project is consider high minority share if at least 50% of the cen-
sus block group where the LIHTC project is located was Black or Hispanic as reported in the 1990
census. Dashed lines are fully non-parametric estimate and confidence intervals. Solid line repre-
sents effect truncated to zero for distances beyond which the first time the non-parametric estimate
crosses zero or gets closest to zero. These price effects are used in structural model of preference es-
timation. Standard errors estimated using a block-bootstrap with 500 simiulations where sampling
is done over LIHTC sites. Dashed lines measure 90% confidence interval.
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Figure 8: Impact of LIHTC on Derivative of Log House Prices wrt miles from LIHTC vs miles to
LIHTC:

Impacts 6 to 10 years post LIHTC Funding
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Note: Kernel smoothed estimates of log house price derivatives with respect to distance to LIHTC
using Nadaraya-Watson estimator with Epanechnikov kernel. Household median income quartile
cutoffs are $26017, $38177, and $54642 in 2012 dollars, as reported in the 1990 Census block group
of the LIHTC site. An LIHTC project is consider high minority share if at least 50% of the cen-
sus block group where the LIHTC project is located was Black or Hispanic as reported in the 1990
census. Dashed lines are fully non-parametric estimate and confidence intervals. Solid line repre-
sents effect truncated to zero for distances beyond which the first time the non-parametric estimate
crosses zero or gets closest to zero. These price effects are used in structural model of preference es-
timation. Standard errors estimated using a block-bootstrap with 500 simiulations where sampling
is done over LIHTC sites. Dashed lines measure 90% confidence interval.
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Figure 9: Impact of LIHTC on Homebuyer Income:

Impacts 0 to 10 years post LIHTC Funding
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Note: Kernel smoothed estimates of log homebuyer income which are black using Nadaraya-Watson
estimator with Epanechnikov kernel. Household median income quartile cutoffs are $26017, $38177,
and $54642 in 2012 dollars, as reported in the 1990 Census block group of the LIHTC site. An LI-
HTC project is consider high minority share if at least 50% of the census block group where the
LIHTC project is located was Black or Hispanic as reported in the 1990 census. Dashed lines are
fully non-parametric estimate and confidence intervals. Standard errors estimated using a block-
bootstrap with 500 simiulations where sampling is done over LIHTC sites. Dashed lines measure
90% confidence interval.
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Figure 10: Impact of LIHTC on Black Share of Homebuyers:

Impacts 0 to 10 years post LIHTC Funding
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Note: Kernel smoothed estimates of percent of homebuyers which are black using Nadaraya-Watson
estimator with Epanechnikov kernel. Household median income quartile cutoffs are $26017, $38177,
and $54642 in 2012 dollars, as reported in the 1990 Census block group of the LIHTC site. An LI-
HTC project is consider high minority share if at least 50% of the census block group where the
LIHTC project is located was Black or Hispanic as reported in the 1990 census. Dashed lines are
fully non-parametric estimate and confidence intervals. Solid line represents effect truncated to zero
for distances beyond which the first time the non-parametric estimate crosses zero or gets closest
to zero. These price effects are used in structural model of preference estimation. Standard errors
estimated using a block-bootstrap with 500 simiulations where sampling is done over LIHTC sites.
Dashed lines measure 90% confidence interval.
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Figure 11: Crime Impacts of LIHTC by Neighborhood Median Income

(a) Property Crime in High Minority Neighorhoods
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(b) Property Crime in Low Minority Neighorhoods
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(c) Violent Crime in High Minority Neighorhoods
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(d) Violent Crime in Low Minority Neighorhoods
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Note: Kernel smoothed estimates of annual crimes per square mile using Nadaraya-Watson estima-
tor with Epanechnikov kernel. Estimates integrate over the estimated derivatives to measure log
crimes per square mile at a given distance from LIHTC site, relative to 1.4 miles away. Household
median income quartile cutoffs are $26017, $38177, and $54642 in 2012 dollars, as reported in the
1990 Census block group of the LIHTC site.
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Figure 12: Mean Willingness to Pay to Live 0.1 miles from LIHTC: Low Minority Areas

(a) Q1 Income Neighorhoods
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Note: Willingness to pay is measured as a percentage of the hombuyer’s houseprice. Household me-
dian income quartile cutoffs are $26017, $38177, and $54642 in 2012 dollars, as reported in the 1990
Census block group of the LIHTC site. Reported preferences are for households who choose to live
close to LIHTC development.
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Figure 13: Mean Willingness to Pay to Live 0.1 miles from LIHTC: High Minority Areas

(a) Q1 Income Neighorhoods
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Note: Willingness to pay is measured as a percentage of the hombuyer’s houseprice. Household me-
dian income quartile cutoffs are $26017, $38177, and $54642 in 2012 dollars, as reported in the 1990
Census block group of the LIHTC site. Reported preferences are for households who choose to live
close to LIHTC development.
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Table A1: Summary Statistics by Neighborhood Income Quartile

Panel A: LIHTC Sites in Block Groups with Median Income<$26,017
Transactions<1 Transactions<.5 Transactions<.2 Transactions<.1
mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site

Housing Transaction Price 257600 231679 224353 229799
[329316] [339910] [381076] [453349]

Housing Transaction Price 277499 252776 242647 244480
-HMDA Matched [310175] [318216] [351499] [416517]
% of Home Buyers Black .09364 0.1310 0.1513 0.1459

[0.5250] [0.5489] [0.5383] [0.5090]
Income of Home Buyer 93420 90547 90928 92547

[53672] [54649] [56557] [57717]

Panel B: LIHTC Sites in Block Groups with $26,017 ≤ Median Income< $38,177
Transactions<1 Transactions<.5 Transactions<.2 Transactions<.1
mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site

Housing Transaction Price 233492 205286 193702 198689
[267110] [296370] [279210] [279210]

Housing Transaction Price 249363 220514 211160 214544
-HMDA Matched [240353] [258190] [274176] [294745]
% of Home Buyers Black 0.0716 0.0882 0.0907 0.0907

[0.4790] [0.4984] [0.5023] [0.5102]
Income of Home Buyer 86386 81136 81022 82374

[49050] [48963] [49971] [50617]

Panel C: LIHTC Sites in Block Groups with $38,177 ≤ Median Income< $54,642
Transactions<1 Transactions<.5 Transactions<.2 Transactions<.1
mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site

Housing Transaction Price 274424 242592 231821 231749
[281324] [279365] [326449] [445992]

Housing Transaction Price 291458 258873 244756 238676
-HMDA Matched [266944] [260891] [261478] [281637]
% of Home Buyers Black 0.0689 0.0757 0.0771 0.0724

[0.4753] [0.4787] [0.4850] [0.0485]
Income of Home Buyer 93285 87950 86099 85123

[49194] [48734] [50185] [52580]

Panel D: LIHTC Sites in Block Groups with $54,642 ≤ Median Income
Transactions<1 Transactions<.5 Transactions<.2 Transactions<.1
mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site mi of LIHTC Site

Housing Transaction Price 369676 334890 314001 316961
[377497] [461491] [488588] [544460]

Housing Transaction Price 385589 350551 327842 327336
-HMDA Matched [358489] [448765] [465937] [507898]
% of Home Buyers Black 0.0415 0.0471 0.0517 0.0504

[0.4274] [0.4294] [0.4303] [0.4775]
Income of Home Buyer 107289 102083 98220 99220

[51190] [51151] [52628] [54084]
Note: All prices inflated to 2012 dollars. Standard deviations in brackets.
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Table A2: Reduced Form Log Price Impacts: New Construction vs Rehab Sites

LIHTC Sites in Tracts with Median Inc<$26,017

Dist to LIHTC: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1. 1.2

Rehab Sites
0.0791*** 0.0643*** 0.0560*** 0.0538*** 0.0517*** 0.0474*** 0.0399*** 0.0300*** 0.0197*** 0.0110** 0.0052 0.0023
[0.0208] [0.0174] [0.0149] [0.0130] [0.0115] [0.0100] [0.0085] [0.0072] [0.0059] [0.0045] [0.0032] [0.0017]

New Construction Sites
0.0490* 0.0441** 0.0387** 0.0300** 0.0228* 0.0159 0.0109 0.0071 0.0042 0.0025 0.0017 0.0010
[0.0253] [0.0200] [0.0169] [0.0147] [0.0126] [0.0105] [0.0088] [0.0073] [0.0060] [0.0046] [0.0032] [0.0017]

LIHTC Sites in Tracts with $26,017≤ Median Income < $38,177

Rehab Sites
0.0211 0.0185 0.0146 0.0115 0.0103 0.0093 0.0081 0.0068 0.0056 0.0043 0.0032 0.0019
[0.0152] [0.0126] [0.0109] [0.0096] [0.0086] [0.0077] [0.0069] [0.0061] [0.0051] [0.0040] [0.0028] [0.0014]

New Construction Sites
-0.0089 -0.0118 -0.0139 -0.0132 -0.0115 -0.0099 -0.0084 -0.0069 -0.0055 -0.0046 -0.0031 -0.0015
[0.0135] [0.0114] [0.0099] [0.0087] [0.0080] [0.0071] [0.0062] [0.0053] [0.0043] [0.0034] [0.0023] [0.0012]

LIHTC Sites in Tracts with $38,177≤ Median Income < $54,642

Rehab Sites
-0.0205 -0.0187* -0.0129 -0.0062 -0.0000 0.0045 0.0069 0.0077 0.0075* 0.0057* 0.0036 0.0019
[0.0131] [0.0106] [0.0089] [0.0078] [0.0071] [0.0066] [0.0058] [0.0050] [0.0041] [0.0031] [0.0023] [0.0012]

New Construction Sites
-0.0361*** -0.0298*** -0.0235*** -0.0183*** -0.0145*** -0.0115** -0.0096** -0.0083** -0.0068** -0.0055** -0.0041** -0.0021*
[0.0108] [0.0086] [0.0072] [0.0062] [0.0056] [0.0050] [0.0045] [0.0039] [0.0033] [0.0027] [0.0019] [0.0011]

LIHTC Sites in Tracts with $54,642≤ Median Income

Rehab Sites
-0.0320** -0.0243** -0.0179** -0.0123* -0.0078 -0.0045 -0.0024 -0.0010 -0.0002 0.0002 0.0007 0.0008
[0.0144] [0.0105] [0.0085] [0.0074] [0.0067] [0.0061] [0.0055] [0.0049] [0.0041] [0.0033] [0.0023] [0.0012]

New Construction Sites
-0.0224** -0.0201*** -0.0173*** -0.0136** -0.0104** -0.0082* -0.0063 -0.0047 -0.0033 -0.0025 -0.0019 -0.0012
[0.0093] [0.0077] [0.0065] [0.0057] [0.0051] [0.0046] [0.0041] [0.0035] [0.0028] [0.0021] [0.0015] [0.0008]

Note: All prices inflated to 2012 dollars. Bootstrapped standard errors in brackets. Effects reported are the average house price impact between 0 and 22 years
versus 6 to 1 year before treatment. * p < 0.10, ** p < 0.05, *** p < 0.01.
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Table A3: Median # of Households Impacted by LIHTC Development

Panel A: Low Minority Areas

Income Q1 Income Q2 Income Q3 Income Q4

# Renting HHs Impacted by LIHTC 4832.5 621 1171.5 1328
# Owning HHs Impacted by LIHTC 2476 296 1042 2268

Observations 658 884 1768 2463

Panel B: High Minority Areas

Income Q1 Income Q2 Income Q3 Income Q4

# Renting HHs Impacted by LIHTC 12171 2075 6028 5422
# Owning HHs Impacted by LIHTC 3764.5 599 3630 4456.5

Observations 2248 1817 1267 340

Note: Median number of renting and home owning households living within the area impacted by LIHTC development,
as meaured in the 2007-2012 ACS. Standard deviation in brackets below. Each observation is a neighborhood around
a LIHTC development.
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Figure A1: Mean Willingness to Pay to Live 0.1 miles from LIHTC: Low Minority Areas

(a) Q1 Income Neighorhoods
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(b) Q2 Income Neighborhoods
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(c) Q3 Income Neighborhoods
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(d) Q4 Income Neighborhoods
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Note: Willingness to pay is measured in 2012 dollars. Household median income quartile cutoffs are
$26017, $38177, and $54642 in 2012 dollars, as reported in the 1990 Census block group of the LI-
HTC site. Reported preferences are for households who choose to live close to LIHTC development.
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Figure A2: Mean Willingness to Pay to Live 0.1 miles from LIHTC: High Minority Areas
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(b) Q2 Income Neighborhoods
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(c) Q3 Income Neighborhoods
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(d) Q4 Income Neighborhoods
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Note: Willingness to pay is measured in 2012 dollars. Household median income quartile cutoffs are
$26017, $38177, and $54642 in 2012 dollars, as reported in the 1990 Census block group of the LI-
HTC site. Reported preferences are for households who choose to live close to LIHTC development.
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Figure A3: Ring Analysis vs Empirical Derivative Simulation Study
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Note: Data is simulated to compare estimation methods. Error bands represnt 95% confidence inter-
val.
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Figure A4: Empirical Derivative Simulation Study Surface Estimate
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Note: Data is simulated to compare estimation methods.
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Figure A5: Monte Carlos Results of Empircal Derivative Estimator Varying Tuning Paramters

(a) Bias in Derivative Estimator
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(b) Bias in Level Estimator
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(c) Standard Dev in Derivative Estimator
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(d) Standard Dev in Level Estimator
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Note: Each set of tuning parameters performs 100 monte carlo simulations. See text for further
details.
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Figure A6: Coverage Ratios from Monte Carlos Results

(a) 95% CI Coverage Ratios for Derivative Estimator
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(b) 95% CI Coverage Ratios for Level Estimator
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Note: Each set of tuning parameters performs 100 monte carlo simulations. Coverage ratios are ad-
justed for estimated bias. Standard errors are block bootstrapped at neighborhood level using 100
samples.
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Figure A7: Renter Surplus in Linear-Quadratic Hedonic Model
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Note: This figure shows the equilibrium renter surplus of the linear-quadratic hedonic model detailed
in Appendix E. Equilibrium renter surplus is a function of the preference parameter γi. The other
parameters of the model are A = 1, µγ = 3, σγ = 3, µQ = 0, and σQ = 5. The figure shows that all
renters, except the measure zero set with γi = 3, earn positive surplus in equilibrium.
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