Teaching Demonstration

The curse of dimensionality and clustering algorithms

David Varodayyan
varodayyan@stanford.edu
About this lecture

• Adapted from my lecture about $\frac{3}{4}$ way through my UIUC course

 CS 361: Probability and Statistics for Computer Science

• Topics covered so far include

 • Visualizing data
 • Probability
 • Principal components analysis
 • Classification algorithms

• Today’s slides and python notebook:

Today’s plan

• Recap
 • Visualizing data
 • Dimensionality reduction with PCA

• The curse of dimensionality

• The clustering problem

• k-means algorithm
The “Moneyball” baseball statistics dataset

<table>
<thead>
<tr>
<th>Team</th>
<th>League</th>
<th>Year</th>
<th>Runs Scored</th>
<th>Runs Against</th>
<th>Wins</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ARI</td>
<td>NL</td>
<td>2012</td>
<td>734</td>
<td>688</td>
</tr>
<tr>
<td>1</td>
<td>ATL</td>
<td>NL</td>
<td>2012</td>
<td>700</td>
<td>600</td>
</tr>
<tr>
<td>2</td>
<td>BAL</td>
<td>AL</td>
<td>2012</td>
<td>712</td>
<td>705</td>
</tr>
<tr>
<td>3</td>
<td>BOS</td>
<td>AL</td>
<td>2012</td>
<td>734</td>
<td>806</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1228</td>
<td>PIT</td>
<td>NL</td>
<td>1962</td>
<td>706</td>
<td>626</td>
</tr>
<tr>
<td>1229</td>
<td>SFG</td>
<td>NL</td>
<td>1962</td>
<td>878</td>
<td>690</td>
</tr>
<tr>
<td>1230</td>
<td>STL</td>
<td>NL</td>
<td>1962</td>
<td>774</td>
<td>664</td>
</tr>
<tr>
<td>1231</td>
<td>WSA</td>
<td>AL</td>
<td>1962</td>
<td>599</td>
<td>716</td>
</tr>
</tbody>
</table>
Visualizing where the data is with histograms
Visualizing where the data is with scatter plots
The Japanese facial expression dataset

• The dataset consists of \(n = 213 \) images of Japanese women

• Each image is grayscale and has \(64 \times 64 \) resolution

• We can treat each image as a vector of dimension \(d = 4096 \)
Dimensionality reduction with PCA

Original image

Number of principal components

mean 1 5 10 20 50 100

Reconstructions

Error
The curse of dimensionality

The data isn’t where you think it is
How much volume of a cubic orange is peel?
What about a d-dimensional “cubic” orange?

- Total amount of orange: 2^d
- Amount of fruity part: $2^d (1 - \epsilon)^d$
- Fraction that is peel: $1 - (1 - \epsilon)^d$

A high-dimensional orange is virtually all peel!
The curse of dimensionality

• If a dataset is uniformly distributed in a high-dimensional cube (or some other shape), the vast majority of data is far from the mean.

• We can also prove that the average distance between items grows with increasing dimensions.

• A d-dimensional histogram of the dataset is not very useful because
 • Most bins will be empty
 • Some bins will contain a single data point
 • Very few bins will contain more than one point

Dealing with data in high dimensions

• Collect as much data as possible

• Cluster data points together into one or more blobs

• Do PCA and/or fit a simple probability model to each blob
The clustering problem

• Given a dataset, separate the data items into clusters so that
 • Items within a cluster are close to each other
 • Items in different clusters are far from each other

• There are two problems to solve
 • Determine the number of clusters
 • Assign each item to a cluster

• Note that we are taking unlabeled data and assigning a class label to each item
Clustering approaches

• Divisive clustering
 • Treat the whole dataset as a single cluster
 • Then split the dataset recursively until you get a satisfactory clustering

• Agglomerative clustering
 • Treat each data item as its own cluster
 • Then merge clusters until you get a satisfactory clustering

• Iterative clustering (such as k-means)
\(k \)-means clustering algorithm

• Pick a value for \(k \), which is the number of clusters

• Select \(k \) random cluster centers

• Iterate the following two steps until convergence
 • Assign each data item to the nearest cluster center
 • Update each cluster center as the mean of the items assigned to its cluster
k-means clustering example

1. *k* initial "means" (in this case *k*=3) are randomly generated within the data domain (shown in color).

2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the **Voronoi diagram** generated by the means.

3. The **centroid** of each of the *k* clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

The Iris dataset

• Famous dataset collected by botanist Edgar Anderson and popularized by statistician Ronald Fisher in 1936

• There are 4 measurements per item
 • Sepal length (cm)
 • Sepal width (cm)
 • Petal length (cm)
 • Petal width (cm)

• See today’s notebook: http://web.stanford.edu/~divad/
The dataset actually contains 3 species
k-means clustering results: iris

true labels

$k = 3$ clusters
Choosing the number of clusters k

• Given a k-means clustering of N data items x_i to k cluster centers c_j, define the sum of square distances from each x_i to its cluster center as a cost function “within cluster sum of squares”

$$\sum_{i=1}^{N} \sum_{j=1}^{k} \delta_{i,j} \|x_i - c_j\|^2$$

where

$$\delta_{i,j} = \begin{cases}
1 & \text{if } x_i \in \text{cluster } j \\
0 & \text{if } x_i \notin \text{cluster } j
\end{cases}$$

• Perform k-means clustering for many values of k and find the knee in the “within cluster sum of squares”
Choosing the number of clusters k

Find the knee in the curve
Summary

• In high-dimensional datasets, the data isn’t where you think it is

• Collect as much data as you can, and cluster it into blobs

• There are variety of clustering techniques; k-means is quite effective

• Use “within cluster sum of squares” to help choose number of clusters
Final thoughts

• Clustering is usually just one part of a data pipeline and it is often good enough to get the number of clusters approximately right.

• Next lecture: the course project!
 • You will build a classifier that reads in a Fitbit accelerometer signal and tells what activity is being performed.
 • Within the classification pipeline, you will create a “pattern vocabulary” using k-means clustering.
Extra slides
The project: activity from accelerometer data

• The dataset consists of Fitbit-like accelerometer signals, each of which
 • Can be of arbitrary length
 • Consists of 3 dimensions (x, y, z) of data sampled at 32 Hz
 • Is labeled with one of 14 activities, such as “brushing teeth”

https://archive.ics.uci.edu/ml/datasets/Dataset+for+ADL+Recognition+with+Wrist-worn+Accelerometer

• Your task is to train a classifier to take an accelerometer signal and map it to an activity
The project: looking at the raw data
The project: building a pattern vocabulary

- Slice each signal into non-overlapping pieces of 1 second duration, which gives you pieces of size $d = 32 \times 3 = 96$

- Cluster the 96-dimensional vectors to k cluster centers using scikit-learn’s k-means clustering algorithm

Some cluster centers, x dimension only
The project: representation and classification

• Represent each signal as a k-dimensional feature vector

• Train a multiclass classifier such as scikit-learn’s random forest on the training vectors

• Evaluate the classifier using the test vectors

• Improve the classifier by tuning parameters
Some variants of k-means clustering

- Soft assignment allows some data items to belong to multiple clusters with weights associated with each cluster
- Hierarchical k-means speeds up clustering for very large datasets
 - Sample the dataset and apply k-means with a small value of k
 - Assign all the data to one of the clusters
 - Subcluster each individual cluster
 - Repeat until you have a tree of clusters of your desired depth
- k-medioids allows clustering of data that cannot be averaged
Multivariate normal distribution

- Extension of the normal distribution to multiple dimensions

- Example: bivariate (2-dimensional) normal distribution

Multivariate normal probability density

A multivariate normal random vector \mathbf{X} of dimension d has density

$$P(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp \left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right)$$

where

- $\boldsymbol{\mu} = E[\mathbf{X}]$ is a d-dimensional vector called the mean
- $\Sigma = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T]$ is a $d \times d$ symmetric and positive semidefinite matrix called the covariance matrix
Multivariate MLE

Given a d-dimensional dataset $\{x\}$ consisting of N items, we can fit a multivariate normal distribution using maximum likelihood estimation

$$\hat{\mu}_{MLE} = \text{mean}(\{x\}) = \frac{\sum_i x_i}{N}$$

$$\hat{\Sigma}_{MLE} = \text{Covmat}(\{x\}) = \frac{\sum_i (x_i - \text{mean}(\{x\}))(x_i - \text{mean}(\{x\}))^T}{N}$$