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a  b  s  t  r  a  c  t

To  predict  a  fine-scale  invasion  of  Argentine  ants  (Linepithema  humile)  into  a natural  area  from  the  sur-
rounding  suburban  matrix,  we  introduce  a grid-based  invasion  model,  similar  to a  cellular  automaton
model.  Our  model  was  based  on observations  of  ant  presence  and  absence  but,  unlike  other  models  based
on  presence–absence  data,  it incorporated  the  process  of invasion  by spread  from  neighboring  areas.
Simulations  were  parameterized  from  a  statistical  analysis  of a 17-year  survey  of  ant  distributions  in  the
Jasper  Ridge  Biological  Preserve  in  northern  California.  We  simulated  the  effects  of Argentine  ant  pres-
ence at  neighboring  grid  squares,  distance  to  development,  presence  of  the  native  winter  ant  Prenolepis
rid-based model
rgentine ants
inepithema humile
renolepis imparis

imparis,  and  other habitat  and  climate  variables,  and  used  these  models  to  simulate  invasion  over  many
decades.  The  best  predictions  of  the  extent  of  Argentine  ant  invasion  were  based  on the  distance  of  each
site  to developed  areas.  Adding  the effect  of neighbors  improved  the  predictions  of  the  time  at  which  sites
would  be  invaded.  Winter  ants  responded  mainly  to vegetation  cover.  Our  results  suggest  that  Argentine

entia
rmin
ants  may  reach  their  pot
and  that  reserve  size  dete

. Introduction

.1. Invasion models

Biological invasions can damage both natural ecosystems and
uman economic activities. It is important for land managers
o predict where and how quickly invasions will occur, and
esearchers have developed a wide variety of models to accomplish
hese goals. Many invasion models fall into one of two  categories:
abitat suitability and mechanistic, which differ in application and

n the data required to parameterize them (Jeschke and Strayer,
008). Habitat suitability models can be parameterized using sim-
le presence/absence data, but can predict only the outcome of
n invasion, in eventual spatial extent, not the dynamic process
eading to that outcome. By contrast, mechanistic models require
etailed information to find values for the parameters, but can pre-
ict the course of invasions through space and time (Carrasco et al.,

010; Kot et al., 1996), and can be used to investigate the con-
equences of management interventions (Miller and Tenhumberg,
010; Shea et al., 2010).
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reka Fish and Wildlife Office, 1829 South Oregon Street, Yreka, CA 96097, United
tates. Tel.: +1 415 515 3350.

E-mail addresses: kfitzger@alumni.stanford.edu (K. Fitzgerald),
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l  distribution  in insular  urban  reserves  rapidly,  perhaps  within  10  years,
es  whether  the  reserve  is likely  to become  fully  invaded.

© 2012 Published by Elsevier B.V.

Habitat suitability models are used, when little information is
available about an invasive species’ population growth and dis-
persal, to identify regions similar to the invader’s known range,
where the invader would probably become established if it were
introduced there (Jeschke and Strayer, 2008; Loo et al., 2007;
Peterson et al., 2004). However, such species distribution modeling
is predicated on the assumption that a species is in equilibrium with
its environment. This may  lead to an underestimate the extent of
eventual invasion, because early in the invasion, when the invader
may  not yet have been introduced to all types of suitable habi-
tat, equilibrium may  not be reached (Jones et al., 2010; Robinson
et al., 2010; Welk, 2004). Moreover, an invasive species may  not
prefer the same habitat in all parts of its range, due either to
differences in biotic interactions or to physiological differences
between populations (Dullinger et al., 2009; Rödder and Lötters,
2010; Sutherst and Maywald, 2005). Some models of habitat suit-
ability avoid some of these pitfalls by basing their predictions on
detailed measurements of physiological reactions to climate (e.g.,
temperature-dependent mortality or reproduction rates as in Abril
et al., 2009; Hartley et al., 2006; Hartley and Lester, 2003), but
this type of model requires detailed knowledge about the invader’s
physiology.

Mechanistic models, such as integro-difference models and

individual-based simulations, predict the course of an invasion
(Carrasco et al., 2010; Kot et al., 1996). They can be also be useful in
identifying the best management interventions, e.g., by identifying
which life stages have the greatest effect on population growth or

dx.doi.org/10.1016/j.ecolmodel.2012.07.036
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
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pread (Shea et al., 2010). Their parameterization requires accurate
nd detailed information about population growth, dispersal and
igration (Miller and Tenhumberg, 2010), and such data may  be

ifficult to fit to a model (Münzbergová et al., 2010). Although rich
n demographic detail, such models tend to overlook environmen-
al heterogeneity or simplify it into suitable and unsuitable habitat
e.g., Guichón and Doncaster, 2008). Such simplification may  be
ndesirable, for example if some sites are suitable for the invader

n some seasons or years but not in others, leading to a fluctuating
nvasion front (Heller et al., 2006; Kuppinger et al., 2010; Sanders
t al., 2001), or if the rate of invasion differs with habitat (Borgmann
nd Rodewald, 2005).

.2. A model of Argentine ant invasion

Here we develop a model to predict the course of local inva-
ions of the Argentine ant, Linepithema humile,  that combines some
f the features of both mechanistic and habitat suitability models.
he model is parameterized using a previously published statistical
nalysis of an Argentine ant invasion within a northern California
iological preserve (Fitzgerald and Gordon, 2012), which examined
he effects of habitat, climate, and competition with a widespread
orth American dominant, the native winter ant, Prenolepis imparis.
ur data consist of observations of Argentine ant presence and
bsence at fixed sites, made each year for 17 years at about 200 sites
n a 100-m grid across the 481-ha Jasper Ridge Biological Preserve
n northern California. By tracking invasion into and retreat from
ach site we examined changes in the distribution over time, and
xamine how a variety of factors influence the course and extent
f the invasion. We  included the effects of the native winter ant
ecause it is one of the few native ant species that coexists with
nd even resists Argentine ant invasion (Fitzgerald and Gordon,
012; Sorrells et al., 2011; Suarez et al., 1998). To reduce the nega-
ive effects of spatial autocorrelation (Bini et al., 2009), the analysis
xplicitly incorporated the effect of neighboring sites on invasion
tatus, and incorporated random effects of site to account for sim-
larity among nearby sites.

Like habitat suitability models, the simulation model we
evelop here is based not on detailed demographic measurements
ut on observations of Argentine ant presence and absence. The
7-year sequence of data makes it possible to predict, as in mecha-
istic models, how Argentine ant invasion will proceed over time.
ur model also incorporates the effects of habitat features, such
s distance to developed areas, which make it possible to con-
ider how a preserve’s design may  influence the spread of the
rgentine ant. Thus our model takes a statistical approach similar

o that of some habitat suitability models, but incorporates the pro-
esses of invasion and retreat. The model we develop here builds
n our previous statistical analysis to reproduce the movement of
rgentine ants through the landscape, to extrapolate the invasion’s
pread in the future, and to predict invasive spread in several local
atural preserves. By tracking invasive spread from year to year
nd from season to season, we identify which sites will become
nvaded and when the invasion will occur. We  use the model
o identify how habitat features influence Argentine ant invasion
nd retreat.

.3. Previous studies of Argentine ant invasion

Argentine ants have been introduced around the world, and
ave become invasive in all major regions of Mediterranean cli-
ate (Suarez et al., 2001). Argentine ants, like many invasive
pecies, are most commonly found in and around developed areas.
n some places introduced populations of Argentine ants cannot
urvive winter outdoors, but require protection in buildings (e.g.,
innesota: Suarez et al., 2001). In other regions, Argentine ants
elling 247 (2012) 262– 272 263

commonly inhabit urban and suburban areas, but occur in only a
few types of natural habitats, or at the urban edges of preserves (e.g.,
in Southern California: Bolger, 2007; Holway and Suarez, 2006;
Suarez et al., 1998). In such areas, larger tracts of preserved land
may  provide a refuge for native ant species (Suarez et al., 1998). Sev-
eral studies predict Argentine ant invasions on a regional or global
scale, either by extrapolation based on current distributions (Pitt
et al., 2009; Roura-Pascual et al., 2004, 2009) or by finding regions
that appear to satisfy their physiological temperature requirements
(Abril et al., 2009; Hartley et al., 2006; Hartley and Lester, 2003).
Some of these studies explicitly account for the Argentine ant’s use
of urban environments (e.g., Pitt et al., 2009); others do not (e.g.,
Hartley and Lester, 2003). On the scale of a few kilometers, how-
ever, we  know of only one study that predicts the outcome of an
Argentine ant invasion in a natural area (Hartley et al., 2010), and
none that predict the course of an invasion from a developed area
into a natural area.

Seasonal polydomy may  influence the course of Argentine ant
invasions. Argentine ant colonies consist of groups of shallow, often
temporary nests connected by trails. Each colony is based around
a relatively permanent cluster of nests, occupying about 250 m2,
into which the entire colony aggregates during winter (Heller and
Gordon, 2006; Heller et al., 2008a).  In the summer, some nests in
the winter aggregation area remain in use, while the colony forms
many smaller nests, linked by trails over a large area of about
650 m2 (Heller et al., 2008a), that move frequently in response
to microclimatic variation or food availability (Heller and Gordon,
2006). Argentine ant queens do not participate in mating flights,
so new nests are founded when groups of workers and queens
walk to the new nesting site (Ingram and Gordon, 2003; Suarez
et al., 2001). The seasonal expansion and contraction of individual
colonies is reflected at the local scale in the changing invasion front,
which moves forward during the summer, but retreats or stays in
the same place during the winter (Heller et al., 2006; Krushelnycky
et al., 2004; Sanders et al., 2001). The invasion front may  also retreat
due to colony failure in sites near the invasion front, but to our
knowledge no studies have explicitly connected colony failure to
retreating Argentine ant invasion fronts.

2. Materials and methods

2.1. Data collection

2.1.1. Main survey location and procedure
Data were collected at Jasper Ridge Biological Preserve, a

481-ha preserve located in northern California at 37◦24′29′′N,
122◦13′39′′W.  The preserve includes a variety of natural habitat
types, surrounded by low-density suburban development. A few
roads, buildings, and parking lots are located within the preserve.

Our work is based on 17 years of data from an ongoing survey
of the Argentine invasion at Jasper Ridge (Fitzgerald and Gordon,
2012; Heller et al., 2006, 2008b; Human et al., 1998; Sanders et al.,
2001). The preserve was  surveyed for ants twice a year, once in May
and once in September, between May  1993 and September 2009.
Survey sites were arranged on a 100 m grid superimposed over the
entire preserve. Some areas were never surveyed due to poison oak
or difficult terrain. At each survey site, a circle with radius of 20 m
was searched for 5 person-minutes, and the genus of all ants found
was recorded. Between 1993 and 1996, at some sites ants were not
identified to genus, and instead categorized as Argentine or native
ants.

Argentine ants have been present in the local area since the early

20th century, and may  have entered the preserve originally from
the surrounding suburban development (Human et al., 1998). For
the first several years of the study, between 1993 and 2000, the
invasion expanded toward the interior of the preserve. Since 2001,
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he invasion boundary has stalled, or even retreated. Seasonal fluc-
uations continue, but very few survey sites have been invaded for
he first time, and Argentine ants have retreated from some sites.

.1.2. Additional survey locations
During September and October 2008 and April 2009, additional

nt surveys were conducted at nearby Fremont Older Open Space
reserve and Pulgas Ridge Open Space Preserve. These are recre-
tional and conservation areas in northern California owned by
he Midpeninsula Regional Open Space District, and are open to
he public. Fremont Older is a 299-ha park located at 37◦18′03′′N,
22◦04′05′′W,  surrounded by suburban housing development, agri-
ultural land, a golf course, and a county park. Pulgas Ridge is a
48-ha park located at 37◦28′40′′N, 122◦17′32′′W,  and is bordered
n one side by an 8-lane highway, with associated off-ramps and a
est area, and on the other sides by suburban development. The ant
urveys at Fremont Older and Pulgas Ridge followed the same pro-
ocol as the ant survey at Jasper Ridge. Sites on a 100-m grid were
urveyed in all accessible areas of Pulgas Ridge and in the eastern
ortion of Fremont Older.

.2. Statistical models of changes in ant distribution

Previous work showed that Argentine ant invasion and estab-
ishment were linked most strongly to proximity to developed
reas and the proportion of neighboring survey sites with Argentine
nts present (Fitzgerald and Gordon, 2012). Other factors, with
ignificant effects that depended on season, were the presence
f the native winter ant, P. imparis; features of the habitat such
s vegetation cover, distance to water, and elevation; and vari-
tion in temperature and rainfall (Fitzgerald and Gordon, 2012;
ppendix A). Dense tree or shrub cover was the variable most
losely associated with an active winter ant presence. Argentine
nt presence was  associated with changes in winter ant activity
ore consistently than the reverse. Weather, distance to water,

levation, neighboring sites with winter ants, and distance to devel-
pment also played roles in winter ant distribution, with effects
hat depended on season (Fitzgerald and Gordon, 2012, and see
ppendix A).

.3. Simulation models

.3.1. Model description

.3.1.1. Starting conditions. We  simulated changes over time in
rgentine ant and winter ant distribution, using a grid-based model
e created in MATLAB. Each hectare of Jasper Ridge was repre-

ented as a square on a grid, with grid squares centered on ant
urvey sites. Using transition probabilities derived from the pre-
ious analysis of survey data (Fitzgerald and Gordon, 2012), we
imulated the arrival and persistence of Argentine ants and win-
er ants in each grid square from 1994 to 2009. For grid squares
orresponding to sites that were surveyed in 1994, the initial pres-
nce and absence of each species was based on the 1994 ant survey
ata. For all other grid squares where there were no corresponding
ata on Argentine and winter ant presence in 1994, we  randomly
ssigned the initial distribution of presence and absence. To make
he random assignment, for each of the grid squares for which there
as no survey data, we assigned a probability equal to the propor-

ion of the surveyed sites occupied by Argentine ants. We  assigned
nitial winter ant presence in the same way, independent of initial
rgentine ant presence.
.3.1.2. Seasonal transitions. We  simulated changes in ant distribu-
ion separately for three sets of seasonal transitions: (1) from fall to
all (1-year fall simulations) and (2) from spring to spring (1-year
pring simulations); and (3) from spring to fall and back to spring
elling 247 (2012) 262– 272

(6-month simulations). The simulations were performed separately
because seasonal nest movement in Argentine ants, with spread in
the spring and contraction in the fall, contributes to the observed
pattern of invasion. Each simulation covered a period of 15 years,
either in 15 time steps each representing one year, for (1) and (2)
or in 31 time steps each representing six months for (3).

2.3.1.3. Simulations of Argentine ant distributions based on five sets
of variables. At each time step, each grid square was  assigned a
probability of Argentine ant presence at the next time step (see
Appendix A). We  ran separate simulations in which the probability
of arrival and persistence depended on five different subsets of the
variables (Table 1 and Appendix A). First, we  tested individually
the two  most important variables, the proportion of neighboring
grid squares with Argentine ants present, and distance from devel-
oped areas. Next, we combined distance to development with the
proportion of Argentine ant neighbors in one simulation. Finally,
we tested the full best models from previous work (Fitzgerald and
Gordon, 2012). The suites of habitat and weather variables included
in each full-model simulation differed depending on the season and
whether the probability being calculated was for arrival or persis-
tence at a site. Appendix A lists the full models for Argentine ant
arrival and persistence in each seasonal transition.

All simulations included random effects of location and year.
In addition to the sets of variables listed above, we  tested sim-
ulations that included only the location and year random effects
and no additional information. These effects accounted for variation
between locations that was  not attributable to habitat features, and
variation between years that was not attributable to fluctuations in
weather. For each model, the earlier statistical model-fitting pro-
cedure calculated adjustments to the intercept for each site and
year for which there were data (Fitzgerald and Gordon, 2012). In
the simulations, we used these calculated random effects for year,
and for grid squares corresponding to survey sites included in the
statistical analysis. For each grid square for which random effects
had not been calculated during the statistical analysis, we randomly
generated a random effect of location, drawn from a normal distri-
bution centered at 0, with standard deviation equal to that of the
calculated random effects for the surveyed sites.

2.3.1.4. Simulations of winter ant distributions used as input for
Argentine ant simulations. The full model simulations for Argentine
ant presence at time t + 1 depended in part on winter ant presence in
at time t. We  simulated winter ant occurrences as well as Argentine
ant occurrences, and ran winter ant and Argentine ant simulations
simultaneously. Winter ant models often depended on Argentine
ant presence at time t to predict winter ant presence at time t + 1.
When a winter ant model included the influence of Argentine ant
presence, we used the simulation results for Argentine ants at time
t to predict the presence of winter ants at time t + 1, and vice versa
when a full Argentine ant model included the influence of winter
ant presence.

To predict winter ant distributions, we first performed 2 sepa-
rate simulations for each of the two most important variables from
the statistical analysis, vegetation cover and Argentine ant presence
during the previous time step (Fitzgerald and Gordon, 2012), then
used both of these variables, then the full best models from the
previous analysis (Fitzgerald and Gordon, 2012), and finally only
random effects as described above.

We used all 25 combinations of the five Argentine ant and five
winter variable sets in conjunction with each of the seasonal tran-
sitions: fall to fall, spring to spring, and spring to fall and back to

spring, resulting in 75 different combinations (Table 1). Each of the
75 different 15-year simulations was repeated 100 times using dif-
ferent randomly generated initial conditions and different site and
year effects.
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Table 1
Combinations of seasonal transitions, factors used to simulate Argentine ant distributions, and factors used to simulate winter ant distributions. For each set of seasons, each
model in the Argentine ant column was paired with each model in the winter ant column. “Full model” refers to the models selected in Fitzgerald and Gordon (2012,  Tables
2.1  and 2.2).

Seasons Argentine ant model Winter ant model

Fall to fall Random effects only Random effects only
Neighbors with Argentine ants Vegetation cover

nce fr

2

t
t
i
fi
s
a
2
w
g
t
r
c
t
c
p
r

A
p
a
w
w
o
s
a
d
a
t

A
s
c
t
a
t
i
v

2
J

J
p
r
t
c
a
A
o
e
e
1
y

Spring to spring × Distance from development 

Neighbors with Argentine ants + dista
Spring  to fall to spring Full model 

.3.2. Model evaluation
We compared the simulated distribution of Argentine ants with

he observed data from field surveys. First, we examined how well
he simulations matched the spatial extent of the Argentine ant
nvasion, regardless of time, to evaluate which model best identi-
ed sites where Argentine ants were ever present. We  categorized
urvey sites as “invaded” if they ever had Argentine ants present
t any time during the 15 years of field surveys between 1994 and
009, and as “uninvaded” if they did not. For each simulation run,
e found the rate of false negatives, calculated as the proportion of

rid squares corresponding to invaded sites at which the simula-
ion predicted that Argentine ants would never be present, and the
ate of false positives, calculated as the proportion of grid squares
orresponding to uninvaded sites at which the simulation predicted
hat the species would be present during at least 2 surveys. We  also
alculated the rate of all errors for each simulation run, as the total
roportion of survey sites at which the corresponding simulation
esults were incorrect.

We  then examined how accurately the simulations predicted
rgentine ant presence at each particular time at each site, to com-
are how well the models predicted the changes over time in the
nts’ distribution. For grid squares and time steps corresponding
ith survey sites and dates at which Argentine ants were present,
e calculated the rate of false negatives, that is, false predictions

f Argentine ant absence. For grid squares and time steps corre-
ponding with survey sites and dates at which Argentine ants were
bsent, we calculated the rate of false positives, that is, false pre-
ictions of Argentine ant presence. We  also calculated the rate of
ll errors, the total proportion of survey sites and dates at which
he corresponding simulation results were incorrect.

We compared the performance of simulations based on the
rgentine ant and winter ant variable sets using a two-way analy-
is of variance (ANOVA), followed by pairwise t-tests with p-values
orrected for multiple comparisons using the Bonferroni correc-
ion. For each measure in each season, we compared the most
ccurate model from the fall and spring 1-year simulations with
he most accurate model from the 6-month simulations, which
ncluded both seasons. Statistical tests were performed using R
ersion 2.10.1 (R Development Core Team 2009).

.3.3. Predicting long-term outcome of Argentine ant invasion at
asper Ridge

To predict the eventual extent of Argentine ant invasion at
asper Ridge, we chose the variable set that produced the lowest
roportion of false negative predictions of Argentine ant occur-
ence at particular times. We  then performed additional runs of
he Argentine ant simulations using this variable set. For the initial
onditions of these runs, we assigned Argentine ant presence to
ll grid squares neighboring the Jasper Ridge boundary, and no
rgentine ant presence to all other grid squares. We  chose this set
f initial conditions based on the assumption that initial propagules

ntered from developed areas surrounding the preserves (Human
t al., 1998). We  allowed these models to run for 100 time steps. In
-year fall or spring simulations, each time step represented one
ear, and the entire run represented 100 years. In the 6-month
× Argentine ant presence
om development Vegetation cover + Argentine ant presence

Full model

simulation, each time step represented 6 months between spring
and fall in odd time steps, or between fall and spring in even time
steps, and the entire run represented 50 years. We  carried out
100 runs of each 1-year simulation (100 years per run) and each
6-month simulation (50 years per run).

To determine how quickly the Argentine ants approached and
then reached their final distribution, we  calculated a late-invasion
average of the number of grid squares at which Argentine ants were
present in each of the last 10 years of the simulation. As a measure
of how quickly the invasion approached its long-term distribution,
we then determined how quickly the number of grid squares occu-
pied by Argentine ants reached 90% of the late-invasion average. As
a measure of how quickly the invasion reached its full long-term
distribution, we  calculated how many years it took until the number
of occupied grid squares first exceeded the late-invasion average.
We also compared the predicted Argentine ant distributions, aver-
aged over each set of 100 simulation runs, with the distribution at
Jasper Ridge recorded in the last year of the survey data we used,
the spring and fall 2009 ant surveys.

2.3.4. Predicting Argentine ant spread at other preserves
We repeated the 50- and 100-year simulations described above

for Fremont Older and for Pulgas Ridge. Based on the 100-m ant
survey grid at these sites, we simulated a grid of 1-ha squares
as we did for Jasper Ridge. For Fremont Older, the simulated grid
did not include the western portion of the preserve, which was
not surveyed. In the initial conditions for simulations of Argentine
ant invasion at Fremont Older, Argentine ants were not assigned
to grid squares in boundary areas that bordered the county park,
or the western portion of the preserve. For the initial condi-
tions of simulations of Argentine ant invasion at Pulgas Ridge,
Argentine ants were assigned to all grid squares at the boundary.
For both preserves, random effects were randomly drawn from
a normal distribution for every grid square at the beginning of
each simulation run, with mean at 0 and standard deviations taken
from the random effects calculated for the Jasper Ridge survey
sites. To predict future invasions in each preserve, we calculated
how quickly the number of grid squares occupied by Argentine
ants reached 90% of the late-invasion average, and how soon it
exceeded this average. We  compared the predicted Argentine ant
distributions to the observed distributions from the 2008 to 2009
surveys.

3. Results

3.1. Evaluation of simulations of Argentine ant presence,
1994–2009 at Jasper Ridge

The accuracy of model predictions for Argentine ant distribu-
tion depended on the variables used (Tables 2 and 3 and Fig. 1).
In full-model simulations, which incorporated information about

winter ant presence as predicted by the winter ant simulations, the
accuracy of the predicted Argentine ant distributions did not differ
significantly depending on which winter ant variable set was in use
(2-way ANOVA, N.S.).
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Table 2
Error rates (mean ± standard deviation) for predictions of spatial extent of Argentine ant invasion during 1994–2009. Error rates marked with the same letter do not differ
statistically from one another (t-tests with Bonferroni corrections, p > 0.05). All other pairs of models within the same row differ significantly from one another (t-tests with
Bonferroni corrections, p < 0.05; for most pairs, p < 2e–16). Error rates listed in bold are the lowest for that particular measure in that particular season.

Error rates Full model Neighbors + development Development Neighbors Random effects

False negatives
Fall (1 year) 0.073 ± 0.014 0.083 ± 0.014 0.078 ± 0.012 0.106 ± 0.026 0.102 ± 0.017
Fall  (6 month) 0.113 ± 0.014 0.077 ± 0.010 0.071 ± 0.010a 0.072 ± 0.021a 0.086 ± 0.014
Spring  (6 month) 0.174 ± 0.017 0.093 ± 0.012c 0.074 ± 0.011d 0.074 ± 0.021d 0.092 ± 0.016c

Spring (1 year) 0.102 ± 0.016b 0.101 ± 0.014b 0.100 ± 0.012b 0.112 ± 0.025 0.132 ± 0.018
False  positives

Fall (1 year) 0.147 ± 0.028e 0.149 ± 0.024e 0.153 ± 0.022 0.381 ± 0.080 0.294 ± 0.038
Fall  (6 month) 0.091 ± 0.020 0.142 ± 0.020f 0.141 ± 0.019f 0.529 ± 0.084 0.168 ± 0.031
Spring  (6 month) 0.052 ± 0.015 0.157 ± 0.019 0.175 ± 0.017h 0.449 ± 0.082 0.169 ± 0.027h

Spring (1 year) 0.126 ± 0.023g 0.129 ± 0.022g 0.131 ± 0.020 0.273 ± 0.055 0.162 ± 0.026
All  errors

Fall (1 year) 0.102 ± 0.013 0.109 ± 0.012i 0.108 ± 0.011i 0.209 ± 0.030 0.180 ± 0.018
Fall  (6 month) 0.104 ± 0.012 0.103 ± 0.0098 0.099 ± 0.0096 0.239 ± 0.032 0.119 ± 0.015
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Spring  (6 month) 0.117 ± 0.011 0.122 ± 0.011
Spring  (1 year) 0.113 ± 0.013j 0.114 ± 0.012j

.1.1. Predicting the spatial extent of Argentine ant distribution
Distance to development was the most important factor to pre-

ict which sites were ever invaded during the years 1994–2009.
imulations using only distance to development produced the
owest overall rate of errors in identifying which sites were ever
nvaded in the fall (Table 2, all errors). For spring surveys, distance
o development, the presence of Argentine ants at neighboring
ites, and full-model variable sets were equally accurate overall in
dentifying which sites were ever invaded (Table 2, all errors).

Simulations using distance to development and those using
resence of Argentine ants at neighboring sites produced the low-
st rate of false negative predictions at sites that were invaded at
ome time during the 15 years (Table 2 and Fig. 1A, false negatives).
owever, simulations based only on the presence of Argentine ants
t neighboring sites often predicted Argentine ant invasion at sites
here the ants were never observed during a survey (Table 2 and

ig. 1A, false positives). Full model simulations, which included a
ange of variables depending on season (see Appendix A), were
he least likely to predict Argentine ant invasion at sites where
t never occurred during 1994–2009 (Table 2 and Fig. 1A, false
ositives).

.1.2. Predicting Argentine ant occurrences at sites at particular

imes

To predict when Argentine ants arrived at a site, both distance
o development and the presence of Argentine ants at neighboring
ites were important. Simulations that included these two  factors

able 3
rror rates (mean ± standard deviation) for predictions Argentine ant occurrences at sites 

rom  one another (t-tests with Bonferroni corrections, p > 0.05). All other pairs of models
orrections, p < 0.05; for most pairs, p < 2e–16). Error rates listed in bold are the lowest fo

Error rates Full model Neighbors + development 

False negatives
Fall (1 year) 0.117 ± 0.011a 0.117 ± 0.010a

Fall (6 month) 0.165 ± 0.012 0.113 ± 0.008 

Spring  (6 month) 0.222 ± 0.013 0.136 ± 0.009 

Spring  (1 year) 0.169 ± 0.016 0.145 ± 0.013 

False  positives
Fall (1 year) 0.130 ± 0.012 0.150 ± 0.013 

Fall  (6 month) 0.087 ± 0.007 0.147 ± 0.0087 

Spring  (6 month) 0.085 ± 0.006 0.156 ± 0.008 

Spring  (1 year) 0.137 ± 0.012 0.152 ± 0.012 

All  errors
Fall (1 year) 0.124 ± 0.006 0.134 ± 0.0066 

Fall  (6 month) 0.123 ± 0.005 0.131 ± 0.0055 

Spring  (6 month) 0.144 ± 0.006 0.147 ± 0.005 

Spring  (1 year) 0.151 ± 0.008d 0.149 ± 0.007 
0.122 ± 0.010 0.236 ± 0.034 0.128 ± 0.015
0.115 ± 0.011j 0.185 ± 0.025 0.146 ± 0.015

were least likely to predict Argentine ant absence in places and
times at which they were actually present (Table 3 and Fig. 1B, false
negatives). Among 1-year simulations of fall Argentine ant pres-
ence, simulations based only on distance to development and those
based on the full suite of variables were similarly accurate, rarely
failing to predict Argentine ant presence (Table 3, false negatives).
In simulations from 6-month simulations and 1-year spring simu-
lations, the combination of distance to development and presence
of Argentine ants at neighboring sites was least likely to fail to pre-
dict Argentine ant presence, compared to any other set of variables,
including the full model simulations (Table 3, false negatives).

Models based on the full complement of variables were far more
accurate than other models in predicting Argentine ant absence
(Table 3 and Fig. 1B, fewer false positives). Models based on dis-
tance to development, presence of Argentine ants at neighboring
sites, or both, were significantly more likely to predict Argentine
ant presence where the ants did not occur at a given time than
even the random model (Table 3, false positives).

Full models, including all relevant habitat and climate vari-
ables, were more accurate overall than models with fewer variables
(Table 3, all errors).

3.1.3. Comparison of 1-year and 6-month simulations

Incorporating seasonal effects improved the prediction of

Argentine ant distribution. In general, the 6-month simulations
made better predictions than the 1-year simulations, both in iden-
tifying which sites were ever invaded over 15 years (Table 2) and

at particular times. Error rates marked with the same letter do not differ statistically
 within the same row differ significantly from one another (t-tests with Bonferroni
r that particular measure in that particular season.

Development Neighbors Random effects

0.116 ± 0.008a 0.151 ± 0.022b 0.151 ± 0.016b

0.131 ± 0.008c 0.132 ± 0.019c 0.156 ± 0.015
0.209 ± 0.009 0.156 ± 0.019 0.199 ± 0.017
0.159 ± 0.012 0.173 ± 0.025 0.225 ± 0.020

0.142 ± 0.0094 0.167 ± 0.032 0.159 ± 0.016
0.160 ± 0.008 0.190 ± 0.031 0.124 ± 0.0097
0.204 ± 0.008 0.194 ± 0.029 0.135 ± 0.010
0.146 ± 0.009 0.167 ± 0.023 0.140 ± 0.012

0.129 ± 0.0062 0.159 ± 0.015 0.155 ± 0.011
0.146 ± 0.065 0.163 ± 0.014 0.139 ± 0.0085
0.206 ± 0.006 0.178 ± 0.014 0.162 ± 0.009
0.152 ± 0.007d 0.170 ± 0.012 0.176 ± 0.010
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Fig. 1. Error rates for Argentine ant simulations. (A) Spatial extent of Argentine
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had  Argentine ants between 1994 and 2009. (B) Argentine ant occurrences at sites
at  particular times. False positive and false negative predictions of whether sites
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diamonds for 2-variable simulations; circles for full-model simulations; and stars
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of sites in the spring. The 6-month and 1-year simulations respec-
imulation, fall results; and open symbols surrounding smaller open symbols for
-month simulation, spring results.

redicting Argentine ant presence and absence at particular sites
nd times (Table 3). There was one exception: 1-year spring simu-
ation produced lowest rate of errors (Table 2).

.2. Long-term outcome of Argentine ant invasion at Jasper Ridge

Our long-term simulations of Argentine ant invasion at Jasper
idge predicted that the invasion would not reach the center of the
reserve even after 100 years, but would halt within 400–500 m
rom roads, buildings, or other development (Fig. 2A). In the sim-
lation results, the invaded area increased quickly, reaching 90%
f the long term average in 4–9 years, and first exceeding the late-
nvasion average at 7–19 years (Fig. 3). After the initial increase, the
umber of invaded grid squares in each season fluctuated slightly
round the long-term mean, with larger fluctuations between the
easons (Fig. 3).

Results for each season in the 6-month simulation were simi-
ar to the results for the corresponding season’s 1-year simulation,

ith a late-invasion average of 210 or 208 1-ha grid squares with
rgentine ants present each spring, and 234 or 230 1-ha grid
quares with Argentine ants each fall, respectively, out of 490
-ha grid squares tracked in the simulation. Counting only the
rid squares corresponding to sites surveyed in spring and fall of
009, the predicted late invasion averages for spring were 121 1-
a grid squares for both 6-month and 1-year spring simulations.
rgentine ants were observed in 105 sites (corresponding to 105 1-
a grid squares) in spring 2009. For fall, the predicted late-invasion
verages were 131 or 134 1-ha grid squares for 6-month and 1-

ear fall simulations, respectively. Argentine ants were observed
n 114 sites (corresponding to 114 1-ha grid squares) in fall 2009
Figs. 2A and D and 3).
elling 247 (2012) 262– 272 267

3.3. Predicting Argentine ant spread at other preserves

At Fremont Older and Pulgas Ridge, preserves that are smaller
than Jasper Ridge, Argentine ants were predicted to reach nearly
all grid squares of each preserve (Fig. 2B and C). As at Jasper Ridge,
the distributions of Argentine ants at Fremont Older and Pulgas
Ridge were predicted to fluctuate seasonally and from year to year.
As was  also the case for Jasper Ridge, the simulations predicted a
more widespread Argentine ant presence than we observed in fall
2008 or spring 2009 surveys. Like those at Jasper Ridge, simulated
Argentine ant invasions at Pulgas Ridge and Fremont Older quickly
approached their final distribution, although in some simulations
the invasions continued to progress slowly for several decades.

Simulation results for Fremont Older predicted that Argentine
ants would quickly approach their long-term distribution, reaching
90% of the late-invasion average number of grid squares after 2–7
years. However, in some simulation conditions, the invasion did
not reach its full long-term distribution until after several decades.
The results from the 1-year simulations predicted that the invasion
would first exceed the late-invasion average after 22 years in fall
or 39 years in spring. The results from the 6-month simulations
were more similar to those at Jasper Ridge, first exceeding the fall
late-invasion average after 13 years and the spring late-invasion
average after 6 years.

The simulation predicted that Argentine ants would eventually
invade most of Fremont Older; however, we did not observe such
widespread Argentine ant presence in 2008–2009. The simulation
tracked 256 1-ha grid squares at Fremont Older. The 6-month sim-
ulation predicted that in years 40–50 of the invasion, a mean of
91% of these grid squares would have Argentine ants present in the
fall and 84% would have them in the spring. The 1-year simulations
predicted that in years 90–100 of the invasion, 92% of grid squares
would have Argentine ants present in the fall and 86% would have
Argentine ants in the spring. Out of 172 sites that were surveyed,
we observed Argentine ants at 74% in fall 2008, and at 58% in spring
2009. The 6-month and 1-year simulations respectively predicted
that Argentine ants would be present at 92% or 94% of the grid
squares corresponding to these sites in the fall and at 86% or 88%
in the spring.

As at Fremont Older, simulations results for Pulgas Ridge pre-
dicted that Argentine ants would quickly approach their long-term
distribution, taking 3–7 years to reach 90% of the late-invasion
average number of grid squares. Also similar to Fremont Older,
1-year and 6-month simulations differed in their predictions of
how quickly the invasion would fully reach its long-term distri-
bution. In the 1-year simulations, the invasion first exceeded the
late-invasion average after 34 years in fall or 24 years in spring,
while the 6-month simulations for Pulgas Ridge first exceeded the
late-invasion averages after 10 years in fall and 8 years in spring

Simulations predicted that Argentine ants would eventually
reach most of Pulgas Ridge, but with a lower proportion of grid
squares invaded than at Fremont Older. As at Fremont Older, in
2008–2009 we  observed Argentine ants at many fewer sites than
predicted by the simulation. At Pulgas Ridge, the simulation tracked
179 grid squares. The 6-month simulation predicted that in years
40–50 of the invasion, a mean of 86% of the grid squares would
have Argentine ants present in the fall and 79% would have them in
the spring. The 1-year simulations predicted that in years 90–100
of the invasion, 84% of the grid squares would have Argentine ants
present in the fall and 79% would have the ants in the spring. In
this preserve, 112 sites were surveyed in fall 2008 and spring 2009.
We observed Argentine ants at 57% of sites in the fall and at 36%
tively predicted that Argentine ants would be present at 91% or 92%
of the grid squares corresponding to surveyed sites in the fall and
at 85% or 86% of these grid squares in the spring.
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Fig. 2. Predicted Argentine ant distributions, actual distributions, vegetation cover and elevation at Jasper Ridge, Pulgas Ridge, and Fremont Older. A, D, G,  J: Jasper Ridge; B,
E,  H, K: Pulgas Ridge, C, F, I, L: Fremont Older. (A–C) The predicted fall distribution of Argentine ants after 100 years, predicted by distance to disturbance and neighbors with
Argentine ants, from one fall to the next. Darker grays indicate that Argentine ants were present in a higher proportion of simulation runs. (D–F) The observed fall distribution
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f  Argentine ants in fall 2009 (D) or fall 2008 (E, F) surveys. Black squares had Argen
urveyed. In panels A–F, each square represents 1 ha. (G–I) Vegetation cover for eac
or  each preserve. White areas are higher and black areas are lower (elevation scale

. Discussion

.1. Distance to developed areas predicts Argentine ant invasion
t Jasper Ridge

Our results suggest that Argentine ants in natural areas occur
ainly at boundaries with suburban or agricultural lands, in agree-
ent with previous studies (Bolger, 2007; Holway and Suarez,

006; Suarez et al., 1998). Our previous results also identified
istance to developed areas as one of the two factors, along with
he presence of Argentine ants at neighboring sites, that were most
losely associated with Argentine ant invasion and persistence

Fitzgerald and Gordon, 2012). Here we found that distance to
evelopment best predicted whether Argentine ants ever invaded

 site over the course of 15 years. Simulations using distance to
evelopment were least likely to provide false negatives, predicting
nts present, white squares had Argentine ants absent, and striped squares were not
erve. Black areas were covered by trees or shrubs > 0.75 m in height. (J–L) Elevation
wn below panel J). All maps A–L are shown at the same spatial scale.

absence at sites where Argentine ants were present. Such false
predictions of an invader’s absence can be more costly than false
predictions of the invader’s presence, false positives (Hartley et al.,
2006). While false positive errors may  lead to a waste of effort on
misdirected monitoring and prevention measures, false negative
errors may  cause an invasion to go undetected and unmitigated.

However, distance to development was not sufficient to pre-
dict the time course of the invasion. To predict when a particular
site would be invaded, it was  also necessary to model the pres-
ence of Argentine ants at neighboring sites. Argentine ant dispersal
distances by founding queens traveling on foot are estimated to
be around 100–150 m per year, at maximum (Ingram and Gordon,

2003; Suarez et al., 2001). Neighboring sites in the survey grid are
100 or 141 m apart, so a site will most likely be invaded over the
course of a year only if Argentine ants are already present at neigh-
boring sites.
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Fig. 3. Long-term predictions for Argentine ant invasion at Jasper Ridge, using the
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nts were observed in the Fall 2009 survey; dotted line: number of sites where
rgentine ants were observed in the Spring 2009 survey.

Development may  contribute to invasion as an initial source of
ropagules, but may  also alter the environment in ways that are
avorable for the invader. Our simulations assumed that the ini-
ial source of propagules for the invasions came from developed
reas surrounding the preserves (Human et al., 1998). However,
eveloped areas, including buildings inside preserves, continue to
avor Argentine ant establishment even after the initial introduc-
ion (Fitzgerald and Gordon, 2012). The effect of human-caused
isturbances may  be due in part to Argentine ants’ ability to
xploit areas of cleared vegetation or disturbed soil for nest sites
Carpintero et al., 2003; Way  et al., 1997). Distance to development
lso serves as a proxy for ongoing propagule pressure (Fitzgerald
nd Gordon, 2012), a factor that is often neglected in invasion mod-
ls, in spite of a growing recognition of its importance for invasive
pread in general (Dullinger et al., 2009; Simberloff, 2009). Fur-
her understanding of these effects may  allow the formulation of
etter management decisions at both the boundaries and inter-
al edges of preserves. In the case of Jasper Ridge, the strong
ssociation between invasion at a site and its proximity to devel-
pment explains why the invasion has been stalled since 2000:
he remaining uninvaded sites are, for the most part, too far from
evelopment to be suitable for invasion.

.2. Additional factors influencing the time course of invasion

Simulations based on a wider array of habitat and climate vari-
bles provided predictions of Argentine ant occurrences that were
verall more accurate than those based only on distance to devel-
pment and Argentine ant presence at neighboring sites, although
he extra accuracy was based entirely on the reduction of false
ositives and did not reduce false negative predictions. Depend-

ng on season, the additional factors included various subsets of
he following: winter ant presence, vegetation cover, elevation, dis-
ance to water, precipitation, and temperature. Simulations based
n these full models were less likely than other simulations to pre-
ict Argentine ant presence at sites that were not invaded, or at

imes when Argentine ants were absent. Full-model simulations
lso offered the lowest overall error rate in predicting the course
f the Jasper Ridge invasion through time. However, in a manage-
ent context, such models might be less useful than simpler ones,
elling 247 (2012) 262– 272 269

because they required additional data and tended to underestimate
the extent of Argentine ant distribution.

Full-model simulations more accurately predicted Argentine
ant absence than the simpler ones using only distance to devel-
opment and the presence of Argentine ants at neighboring sites.
At sites in Jasper Ridge where the full models were accurate but
the simpler models were not, it appears that Argentine ants had
access to the sites but were not established there. These sites were
often in closed-canopy forested areas, located at higher elevations,
or both (Fig. 2G and J). Similarly, at both Fremont Older and Pulgas
Ridge, sites where the simulation predicted invasion, but where
Argentine ants were not observed in 2008–2009, often had a high
proportion of vegetation cover or were high-elevation sites at the
top of a windy ridge (Fig. 2H, I, K and L). Unsuitable microclimate at
forested and high-elevation areas may  prevent invasion or estab-
lishment. Argentine ant populations in Hawaii thrive at elevations
up to 2850 m above sea level, but are limited at higher eleva-
tions by cool temperatures and heavy rainfall (Hartley et al., 2010;
Krushelnycky et al., 2005). The highest elevations in preserves we
studied are much lower (from 275 m above sea level at Jasper Ridge
and Pulgas Ridge up to 360 m at Fremont Older). However, espe-
cially at Pulgas Ridge and Fremont Older, the high elevation areas
that were not invaded were located on windy, exposed ridgetops,
where temperatures may  be much lower, or air and soil may be
drier, than in the surrounding habitat. Although Argentine ants
readily invade forested sites, they are less likely to maintain a con-
tinuous presence under a closed canopy, probably in part due to a
cooler microclimate there (Fitzgerald and Gordon, 2012).

At Pulgas Ridge and Fremont Older, we observed Argentine ant
presence and absence only during one year, 2008–2009. Because
Argentine ant presence fluctuates, especially at forested sites, one
observation of Argentine ant absence at these sites does not indi-
cate that the site has never been invaded. Although our simulations
overestimated the extent of Argentine ant presence in 2008–2009,
they may  have been more accurate in their predictions of the even-
tual extent of the invasion. In addition, our spring surveys in these
preserves were conducted earlier in the spring than surveys at
Jasper Ridge, and Argentine ants may  not yet have begun their
spring expansion of territory. We also finished the autumn surveys
later in these preserves than at Jasper Ridge, and Argentine ants
may  have begun their autumn contraction of territory. These fac-
tors may  account for the discrepancy between model predictions
and observed Argentine ant distributions. Additional observations
at these preserves, preferably during late May  and late September,
will be necessary to test this hypothesis.

4.3. Jasper Ridge will continue to provide a refuge to native ants,
but smaller preserves may not

Our long-term predictions suggest that the Argentine ant inva-
sion will not reach the central area of Jasper Ridge. Both the 15-year
and longer term simulations that used distance to development
and dispersal from neighbors overestimated the extent of the inva-
sion at Jasper Ridge. In the long-term simulations, Argentine ant
invasion reached its maximum extent after 7–19 years and then
stalled. Even after 100 years, Argentine ants were predicted to
advance only 400–500 m into Jasper Ridge (Fig. 2A), except in the
built-up western area of the preserve, which includes many build-
ings, roads, and parking lots. These distances are somewhat greater
than the 50–250 m Argentine ant edge effects estimated by Bolger
(2007) in Southern California. Previous studies have suggested that,
unlike in arid Southern California, Argentine ants may more easily

invade coastal northern California natural areas (DiGirolamo and
Fox, 2006; Holway, 1995). However, our results suggest that even
in northern California, the core of natural areas may  be resistant to
Argentine ant invasion, as long as they are large or isolated enough.
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Smaller preserves adjacent to developed areas are more likely
o be overrun by Argentine ants. Fremont Older and Pulgas Ridge
re considerably smaller than Jasper Ridge. Our long-term simula-
ions predicted that only a few central hectares of each preserve
ill remain uninvaded (Fig. 2B and C). DiGirolamo and Fox (2006)

bserved an Argentine ant invasion advancing into the middle of
he 242-ha Fort Ord Natural Reserve near Monterey Bay. Fort Ord,
ike our study areas, is surrounded by development or agricultural
reas (DiGirolamo and Fox, 2006). Like Fremont Older, which is
f a similar size, Fort Ord may  be too small to provide a refuge for
ative ants. In these preserves, Argentine ants will continue to exert
egative effects not only on native ant communities, but also on
ther native species, including birds and horned lizards (reviewed
n Holway et al., 2002). The result here highlights the importance of
arge preserve size in an urban landscape where invasive species are
ften abundant in developed lands adjacent to preserves. However,
rban conservationists may  not have the luxury to ignore invasions

nto small preserves, and more research will be necessary in order
o determine how best to prevent or eradicate these invasions.

.4. Future use of similar models in other systems

Like habitat suitability models, our model was based on statisti-
al analysis of presence–absence data. However, we  combined this
pproach with elements of cellular automaton models, in order to
ncorporate the processes of invasion and retreat. This approach
llowed us to predict not only the eventual extent of invasion, but
lso the progress of the invasion over time.

The modeling approach employed here may  be useful in predict-
ng other invasions at local scales. This approach is appropriate as
ong as data are collected on a grid, or a grid can be readily superim-
osed over the data collection sites, so that it is possible to measure
he effect of neighbors on the invader’s spread. It may  be sufficient
o collect data on two occasions from a large number of sites. Finally,
his approach does not require any assumption that the invader be
t equilibrium with the environment, because it accounts for the
rocess of spread. While this approach does not provide either the

arge-scale screening capacity of habitat suitability models to iden-
ify invasible regions worldwide, or the in-depth understanding
f invasion dynamics offered by mechanistic models incorporat-
ng more detailed demographic or dispersal parameters, it offers
redictions at a local scale, and a measure of invasion limits.
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ppendix A. Formulae used in calculating transition

robabilities

These formulae are taken from the generalized linear mixed
odels reported in (Fitzgerald and Gordon, 2012)
elling 247 (2012) 262– 272

Variables

s random effect of site (adds or subtracts from intercept)
y random effect of year (adds or subtracts from intercept)
lhn proportion of neighboring sites with Argentine ants

present
dev distance to developed areas (m)
veg proportion of 1-ha grid square covered in vegeta-

tion > 0.75 m tall
pip presence of winter ants at a given time step
elev elevation (m)
wat distance from nearest creek, lake, or marsh (m)
sppt summer precipitation (mm)
wppt winter precipitation (mm)
stmin average summer minimum temperature (◦C)
wtmin average winter minimum temperature (◦C)
stmax average summer maximum temperature (◦C)
wtmax average winter maximum temperature (◦C)

Transition probabilities for Argentine ants

A.1. Equations for continuing Argentine ant presence

A.1.1. Effect of Argentine ant presence at neighboring sites
Transition between one fall and the next (1-year simulation):

p = (1+exp(−(s + y − 1.1750 + 5.2814*lhn)))−1

Transition between one spring and the next (1-year simulation):

p = (1+exp(−(s + y − 0.3171 + 3.5687*lhn)))−1

Transition between spring and fall (6-month simulation):

p = (1+exp(−(s + y + 0.4119 + 4.0767*lhn)))−1

Transition between fall and spring (6-month simulation):

p = (1+exp(−(s + y − 0.9324 + 3.7998*lhn)))−1

A.1.2. Effect of distance to developed areas
Transition between one fall and the next (1-year simulation):

p = (1+exp(−(s + y + 4.9449 − 0.0210*dev)))−1

Transition between one spring and the next (1-year simulation):

p = (1+exp(−(s + y + 3.2887 − 0.0128*dev)))−1

Transition between spring and fall (6-month simulation):

p = (1+exp(−(s + y + 4.5004 − 0.0130*dev)))−1

Transition between fall and spring (6-month simulation):

p = (1+exp(−(s + y + 3.5865 − 0.0175*dev)))−1

A.1.3. Effects of Argentine ant presence at neighboring sites and
distance to developed areas

Transition between one fall and the next (1-year simulation):
p = (1+exp(−(s + y + 1.1401 + 3.9287*lhn − 0.0130*dev)))−1

Transition between one spring and the next (1-year simulation):
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p = (1+exp(−(s + y + 0.8658 + 2.9028*lhn − 0.0086*dev)))−1

Transition between spring and fall (6-month simulation):

p = (1+exp(−(s + y + 1.4287 + 3.5083*lhn − 0.0071*dev)))−1

Transition between fall and spring (6-month simulation):

p = (1+exp(−(s + y + 1.1551 + 2.5503*lhn − 0.0122*dev)))−1

.1.4. Full model (best model from model selection)
Transition between one fall and the next (1-year simulation):

 = (1 + exp(−(s + y + 11.3944 + 3.8000 ∗ lhn − 0.0322 ∗ dev

− 10.3709 ∗ veg + 0.018406 ∗ sppt − 0.95 ∗ wtmin

− 0.0419 ∗ elev + 11.2966 ∗ pip + 0.0672 ∗ veg ∗ elev

− 2.23 ∗ wtmin  ∗ pip + 0.0046118 ∗ dev ∗ wtmin)))−1

Transition between one spring and the next (1-year
imulation):

 = (1 + exp(−(s + y − 7.4764 + 2.9385 ∗ lhn − 0.0052 ∗ dev

− 0.5220 ∗ pip + 0.5005 ∗ stmax  − 12.4540 ∗ veg

+ 0.018406 ∗ sppt − 0.0287 ∗ elev − 0.0026 ∗ wppt

+ 0.0657 ∗ veg ∗ elev + 0.0059 ∗ veg ∗ wppt)))−1

Transition between spring and fall (6-month simulation):

= (1 + exp(−(s + y − 10.2568 + 6.7553 ∗ lhn + 17.0686 ∗ veg

− 0.0061 ∗ dev + 0.0137 ∗ wat + 0.0450 ∗ elev

+ 0.8199 ∗ stmin  − (1.1188e − 4) ∗ wat ∗ elev

− 1.8924 ∗ veg ∗ stmin  − 0.0329 ∗ dev ∗ elev)))−1

Transition between fall and spring (6-month simulation):

 = (1 + exp(−(s + y + 5.5323 − 0.0097 ∗ dev + 2.7098 ∗ lhn

− 10.2361 ∗ veg − 0.0025 ∗ wppt − 0.0209 ∗ elev

+ 0.0056 ∗ veg ∗ wppt + 0.0469 ∗ veg ∗ elev)))−1

.2. Equations for transition from Argentine ant absence to
resence

.2.1. Effect of Argentine ant presence at neighboring sites
Transition between one fall and the next (1-year simulation):

p = (1+exp(−(s + y − 4.0738 + 5.5548*lhn)))−1

Transition between one spring and the next (1-year
imulation):

p = (1+exp(−(s + y − 4.4938 + 6.2706*lhn)))−1

Transition between spring and fall (6-month simulation):
p = (1+exp(−(s + y − 4.0737 + 6.3606*lhn)))−1
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p  = (1+exp(−(s + y − 4.4657 + 4.7080*lhn)))−1

A.2.2. Effect of distance to developed areas
Transition between one fall and the next (1-year simulation):

p = (1+exp(−(s + y + 1.2147 − 0.0145*dev)))−1

Transition between one spring and the next (1-year simulation):

p = (1+exp(−(s + y + 1.4147 − 0.0187*dev)))−1

Transition between spring and fall (6-month simulation):

p = (1+exp(−(s + y + 2.1326 − 0.0198*dev)))−1

Transition between fall and spring (6-month simulation):

p = (1+exp(−(s + y + 0.5440 − 0.0155*dev)))−1

A.2.3. Effects of Argentine ant presence at neighboring sites and
distance to developed areas

Transition between one fall and the next (1-year simulation):

p = (1+exp(−(s + y − 1.1669 + 3.2221* lhn − 0.0087*dev)))−1

Transition between one spring and the next (1-year simulation):

p = (1+exp(−(s + y − 1.2264 + 3.5014*lhn − 0.0111*dev)))−1

Transition between spring and fall (6-month simulation):

p = (1+exp(−(s + y − 0.3984 + 3.2053*lhn − 0.0121*dev)))−1

Transition between fall and spring (6-month simulation):

p = (1+exp(−(s + y − 0.8722 + 1.9125*lhn − 0.0117*dev)))−1

A.2.4. Full model (best model from model selection)
Transition between one fall and the next (1-year simulation):

p = (1 + exp(−(s + y + 21.2602 + 11.6745 ∗ lhn − 0.0096 ∗ dev

− 0.8229 ∗ ip + (6.7016e − 4) ∗ wat − 0.7506 ∗ sppt

+ 0.2410 ∗ wtmin  − 1.2764 ∗ stmin  − 0.3700 ∗ stmax

− 1.4865 ∗ lhn ∗ wtmin  − 0.0041 ∗ lhn ∗ wat

+ 0.0412 ∗ sppt ∗ stmin  + 0.0120 ∗ sppt ∗ stmax)))−1

Transition between one spring and the next (1-year simulation):

p = (1 + exp(−(s + y + 0.1571 + 5.1729 ∗ lhn − 0.0089 ∗ dev

− 0.0151 ∗ elev + 0.5450 ∗ veg − 3.4504lhn ∗ veg)))−1

Transition between spring and fall (6-month simulation):

p = (1 + exp(−(s + y + 15.6401 + 2.7874 ∗ lhn − 0.0105 ∗ dev

− 0.0159 ∗ elev − 0.5128 ∗ st max)))−1
Transition between fall and spring (6-month simulation):
(same as model including effects of Argentine ant presence at

neighboring sites and distance to developed areas; see A.2.3 above)
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